JPS5981022A - Wire cut taper machining method - Google Patents
Wire cut taper machining methodInfo
- Publication number
- JPS5981022A JPS5981022A JP18873782A JP18873782A JPS5981022A JP S5981022 A JPS5981022 A JP S5981022A JP 18873782 A JP18873782 A JP 18873782A JP 18873782 A JP18873782 A JP 18873782A JP S5981022 A JPS5981022 A JP S5981022A
- Authority
- JP
- Japan
- Prior art keywords
- control
- work
- wire
- points
- component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H7/00—Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
- B23H7/02—Wire-cutting
- B23H7/06—Control of the travel curve of the relative movement between electrode and workpiece
- B23H7/065—Electric circuits specially adapted therefor
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はワイヤカットテーパ加工方法に係り、特に2つ
の制御面においてそわぞれ同時2軸制御し、全体として
同時4軸制御によシワイヤとワーク間の相対的移狸1を
制御し、ワークに所定のテーパ加工を施すワイヤカット
テーバ加工方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a wire cut taper machining method, and in particular, the relative movement between the shear wire and the workpiece is achieved by simultaneously controlling two axes on two control planes and simultaneously controlling four axes as a whole. The present invention relates to a wire cut taper processing method in which a predetermined taper processing is performed on a workpiece by controlling
ワイヤカット放flf加工機tま周知の如く、上ガイド
と下ガイドとの間にワイヤを張設しておき、該ワイヤと
ワークとの間に放電を生じさせてワークを加工するもの
であり、ワークはテーブル上に固定され、加工形状に沿
って数値制御装置からの指令によりX、Y方向に移「、
ハせしめらtする。この場合、テーブル(ワーク)に対
してワイヤを垂直方向に張設しておけば、ワーク上面と
1面との加工形状が同一となり、父上ガイド或いは下ガ
イドをX、 Y方向((〕軸、■軸という)に偏位可能
な如く構成、シ、たとえはワーク移シ1方向と直角方向
に該上カイト或いは下ガイドを偏位してワイヤをワーク
に対して傾斜せしめilはワーク上面と下面との加工形
状は同一とならす、ワイヤ〃ロエ面が傾斜する、いわゆ
るテーパ加工が行わわる。As is well known, a wire cut free-flow milling machine (t) is one in which a wire is stretched between an upper guide and a lower guide, and an electrical discharge is generated between the wire and the workpiece to process the workpiece. The workpiece is fixed on the table and moved in the X and Y directions according to the instructions from the numerical control device along the machining shape.
Let's do it. In this case, if the wire is stretched perpendicularly to the table (workpiece), the machining shape on the top surface of the workpiece and the first surface will be the same, and the upper guide or lower guide will be moved in the X, Y direction (() axis, (1) The upper kite or the lower guide is deviated in a direction perpendicular to the one direction in which the workpiece is moved, and the wire is tilted relative to the workpiece. The machining shape is the same as that of the wire, and so-called taper machining is performed in which the loe surface is inclined.
第1図Vよか\るテーパ加工の油、明図であり、上ガイ
ドU Gと下ガイドDGとの間にワイヤWRがワークW
Kに対し所定角度傾斜して張設されている。今、ワーク
WKの下面PLをプログラム形状(ワークWKの上面Q
、 Uをプログラム形状としてもよい)と17、又、テ
ーパ角度α、上ガイドUGと下ガイドDG間の距1tl
11.下ガイドDGからワークWK下面寸での距離りと
すわば、ワーク下面PLK対する下カイトDGのオフセ
ットi d+及び上ガイドLJ Gのオフセット量d、
はそれぞれ、(11= h* tinα十−
d、=n*tgna−h°tan(1−;”He1nn
α−d。Figure 1 is a clear diagram of the oil for taper machining, where the wire WR is placed between the upper guide UG and the lower guide DG.
It is stretched at a predetermined angle with respect to K. Now, set the lower surface PL of the work WK to the program shape (the upper surface Q of the work WK
, U may be a program shape) and 17, and the taper angle α and the distance 1tl between the upper guide UG and the lower guide DG.
11. The distance from the lower guide DG to the lower surface dimension of the workpiece WK, the offset i d+ of the lower kite DG with respect to the lower surface PLK of the workpiece, and the offset amount d of the upper guide LJG,
are respectively (11=h*tinα−d,=n*tgna−h°tan(1−;”He1nn
α-d.
で表わせる。冑、d8i加工幅である。It can be expressed as The machining width is d8i.
従って、ワークの4動に応じてオフセット量d、、d、
が一定になるよう、ワイヤWRを張設する上ガイドU
()を移動制御すれば第2図に示すようにテーパ角αの
テーパ加工を行なうことができる。Therefore, depending on the four movements of the workpiece, the offset amount d,,d,
Upper guide U to which wire WR is stretched so that
By controlling the movement of (), taper processing with a taper angle α can be performed as shown in FIG.
伺、図中、点線及び一点ψt1線はそ1+ぞt1上ガイ
ドUG、下ガイドDGの通路である。以上のようにワイ
ヤカット放電加工指令としてはワーク下面或・ いは上
面でのプログラム通路と、該プログラム通路上での送p
速度、テーバ角α、前記距離)1.h等を指令すilば
指令通りの加工が行わわる。In the figure, the dotted line and the one-point ψt1 line are the passages of the upper guide UG and lower guide DG. As mentioned above, wire cut electric discharge machining commands include a program path on the bottom or top surface of the workpiece, and a feed point on the program path.
velocity, Taber angle α, said distance) 1. If a command such as h is given, processing will be carried out according to the command.
ところで、最近上面形状と下面形状が全く異なる加工、
たとえは上面形状が直線と在り、下面形状が円弧となる
ような部品が要求されてきている。By the way, recently, the top surface shape and bottom surface shape are completely different from each other.
For example, there is a demand for parts whose top surface is a straight line and whose bottom surface is an arc.
しかしながら、従来のテーパ加工方法ではか\る部品形
状の加工を行なうことができなかった。However, conventional taper processing methods have not been able to process parts with very large shapes.
以上から、本発明は部品の上面形状と下面形状が与えら
れているとき、か\る上面形状並びに下面形状を有する
部品の加工ができる新規なテーパ加工方法を提供するこ
とを目的とする。In light of the above, it is an object of the present invention to provide a novel taper machining method that can process a component having a given upper and lower surface shape.
以下、本発明を図面に従って詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.
伺、以下の説明においてプログラム面を第1制御面(X
Yプログラム面)、下ガイドが移置1する面を第2制御
面(UV下ガイド移動面)として説明するが制御面の選
定法として本発明はこわに限るものでt、jない。In the following explanation, the program plane will be referred to as the first control plane (X
The surface to which the lower guide is moved will be described as the second control surface (UV lower guide movement surface), but the present invention is not limited to stiffness as a method of selecting the control surface.
第3図1制御面と部品面との関連説明図であり、W K
i、j部品、[J Sは部品上面、L) 8 iJ部
品下面、Wlllワイヤ、FO8r、tプログラム面で
ある第1制御L11tfri (X Yプログラム面)
、SO8は下ガイドの移動面である第2制御面(UV下
ガイド移動面)であり1部品W Kはその部品上面U
S並ひに部品]−hl)8がそt+、−LjlXYブc
+fラム1iiFO8とUV−トガイド移動面SO8と
VCそれぞわ平行になるように配設さねている。FIG. 3 is an explanatory diagram of the relationship between the control surface and the component surface, WK
i, j components, [J S is the top surface of the component, L) 8 iJ component bottom surface, Wllll wire, FO8r, t program surface 1st control L11tfri (X Y program surface)
, SO8 is the second control surface (UV lower guide movement surface) which is the movement surface of the lower guide, and 1 part WK is the upper surface U of the part.
S parallel parts] -hl) 8 is t+, -LjlXYbuc
The +f ram 1iiFO8, the UV guide moving surface SO8, and the VC are arranged so as to be parallel to each other.
第4図及び第5図は部品上面形状が円であり、部品丁1
il形状が正方形である場合において、XYズロクラム
面及び」〕v1ガイド移動而におけるワイヤ通路を説明
する説明図であり、そJlぞれ四回は部品断面図、(1
))図に、LXYプログラム而及面jJV下ガイ′ド梯
動面への投影図である。第4図においてtiX Yプロ
グラム面F 08と部品上1lliIUSとがPjし、
ており、−Fガイド移動面SO8と部品下面])Sが?
5+足距離隔たっている。この結果・XYプログシム面
FO8のワイヤ通路PILI)は円になっているが、U
V下ガイド44 ’dHJj面SO8のワイヤ通路DG
Pは正方形がゆがんだ偏平な形状になっている。一方、
第5図においてはXYプログラム面FO8と部品上面U
Sとが隔たっており、又下ガイド移動面SO8と部品下
面も隔たっている。この結果、XYプログラム面F(3
8のワイヤ通路PRPは円でなくなシゆがんだ形状にな
っており、又UV下ガイド#動向SO8のワイヤ通路D
GI)も正方形でなく、ゆがんだ形状になっている。In Figures 4 and 5, the top surface of the part is circular, and the part 1
When the il shape is a square, it is an explanatory diagram illustrating the wire passage in the XY zigzag plane and the v1 guide movement.
)) The figure shows the projection of the LXY program onto the JV lower guide ladder plane. In Fig. 4, the tiX Y program plane F08 and the part top 1lliIUS are Pj,
-F guide moving surface SO8 and the bottom surface of the component])S?
5+ feet apart. As a result, the wire path PILI) on the XY program plane FO8 is circular, but
V lower guide 44 'dHJj plane SO8 wire passage DG
P has a flat shape with a distorted square. on the other hand,
In Figure 5, the XY program plane FO8 and the top surface U of the component are shown.
The lower guide moving surface SO8 and the lower surface of the component are also separated from each other. As a result, the XY program plane F (3
The wire path PRP of 8 is no longer circular but has a distorted shape, and the wire path D of the UV lower guide #trend SO8
GI) is also not square but has a distorted shape.
さて、本発明I/(おいでは、部品上面USとXYプロ
グラム面I”O8,並びに部品下面DBとUV下ガイド
移動1risesの組のうち少なくとも一方の組におH
る2つの面の間に隔たりが存在するとき、部品上面と部
品下面の対応するポイントを結んだ直線が前記隔たりの
ある組の制御面と交叉する点(投影点)の位置を求め、
しかる後XYプログラム面とUV下ガイド、v動面とに
おける対応するポイントをワイヤが同時にたどるようr
(、これら対応ポイントの位置データを用いて四時4軸
制御し、部品上面と[而における形状の異なる加工4行
なっている。Now, the present invention I/(Now, H
When there is a gap between the two surfaces, find the position of the point (projection point) where a straight line connecting corresponding points on the top surface of the component and the bottom surface of the component intersects the control surface of the set with the gap,
After that, the wires are set so that they simultaneously trace corresponding points on the XY program plane, UV lower guide, and V moving plane.
Using the position data of these corresponding points, four-axis control is performed to perform four machining operations with different shapes on the top and bottom surfaces of the parts.
第6図は本発明のデーパ加工方法を説明する説明図であ
る。図中、v3は部品上面U Sから下面J) S迄の
距離(jすさ)、V4は部品上面USからXYブロクラ
ム面F (j S迄の距離、■、は部品上面からUv下
カイト移動面S (i 8迄の距離である。FIG. 6 is an explanatory diagram illustrating the taper processing method of the present invention. In the figure, v3 is the distance from the top surface US of the component to the bottom surface J) S, V4 is the distance from the top surface US of the component to the XY block plane F (j S, and ■ is the distance from the top surface of the component Uv lower kite movement surface S (i is the distance to 8.
又、Plは部品上面U”Sにおけるワイヤ通路上のポイ
ント、1警tま部品下面])Sにおけるワイヤ通路上の
ポイントであり、ポイントP、、P、は既知で、そ第1
ぞれ対応しているものとする。更にQi、Riは部品上
面と下面におHる対応するポイントb、hを結ぶ直膨P
、几がXYプログラム面1i’ OSと%UV下ガイド
移動面SO8とそれぞれ交叉するボイ゛ント(投影点)
である。又、機械座標系の原点を0とし、座標軸Xm、
Ym、 Zmを図示の如くとるものとする(但し、Y
軸は紙面に垂直)。In addition, Pl is a point on the wire path at the top surface U''S of the component, and a point on the wire path at the bottom surface U''S of the component, and the points P, , P, are known and the first
It is assumed that they correspond to each other. Furthermore, Qi and Ri are the direct expansion P connecting the corresponding points b and h on the top and bottom surfaces of the component.
, the points (projection points) where the plane intersects the XY program plane 1i' OS and the %UV lower guide movement plane SO8, respectively.
It is. Also, the origin of the machine coordinate system is 0, and the coordinate axes Xm,
Ym and Zm shall be taken as shown in the figure (however, Y
axis perpendicular to the paper).
さて、V、、 V、、 V、並びにポイントJ’、、P
、は後述するように既知である。従って、こ11らの値
からXYプロクラム而面O8及びUV]ガイド移動面8
08における投影点Qi、Riの座標(XMt 、 Y
M> 。Now, V,, V,, V, and points J',, P
, is known as described below. Therefore, from these 11 values, the XY program surface O8 and UV] guide movement surface 8
Coordinates of projection points Qi and Ri at 08 (XMt, Y
M>.
ZMt )、(XM、 、 YM、 、 ZM、 )
カ求”! h ハ、これら対応する投影点Qi、Ri
(i=1.2・・・)を同時にたどるようにXYプログ
ラム面でX、 Yの同軸2軸制御し、又UVT−ガイ
ド移動面でU、 Vの同時2軸制御し全体として同時4
軸制御すれば所望の部品が得られる。ZMt ), (XM, , YM, , ZM, )
h, these corresponding projection points Qi, Ri
(i = 1.2...) is controlled simultaneously on the X and Y program planes, and U and V are simultaneously controlled on the UVT-guide movement plane, resulting in a total of 4 simultaneous axes as a whole.
By controlling the axis, desired parts can be obtained.
今、ポイントP、の座標を(xx、yx、o)、ポイン
トhの座標を(x2. Yt、−V、)とすればワイヤ
W几と同一方向のベクトルB(=RQi)の単位ベクト
ルの各軸成分”t J+ kは
i = (xt −xt )/シ4−’xl −xt
’)ワ(’It −Vt−)’−+ Vs’ (1
)J = CYl−’It )/%/(X匹−xt 、
l”−+ 0’*−帰’−+−v、’ (21k =
Vs / v”(Xt −Xt 7+ (’It −
Yt ) + VB” (31となる。従って
、ポイントQiのZ軸座標ZM、はZM、 = 11月
・k
==lDI”Vs/’v’(xt Xt) +CYt
3’t)”+VT(41と表現さシ1.る。ところ
で、ZM、は部品上1fii U SからXYプロクラ
ム面迄の距離隻に等しいからV4= IB! ・vl/
V/(XI %)”+−(Yr−:Yt)”+Vs”
−となる。従って、ベクトルBの大きさはとシ・る。Now, if the coordinates of point P are (xx, yx, o) and the coordinates of point h are (x2.Yt, -V,), then the unit vector of vector B (=RQi) in the same direction as wire W Each axis component "t J+ k is i = (xt - xt)/shi4-'xl - xt
') wa ('It -Vt-)'-+Vs' (1
) J = CYl-'It)/%/(X animals-xt,
l"-+ 0'*-return'-+-v,' (21k =
Vs / v" (Xt - Xt 7+ ('It -
Yt) + VB" (31. Therefore, the Z-axis coordinate ZM of point Qi is ZM, = November・k ==lDI"Vs/'v'(xt Xt) +CYt
3't)"+VT(41) By the way, ZM is equal to the distance from 1fii U S to the XY program plane on the part, so V4 = IB! ・vl/
V/(XI%)”+-(Yr-:Yt)”+Vs”
− becomes. Therefore, the magnitude of vector B is .
以」:から、投影点qHのX軸、Y軸外標値XM1゜T
hl、なまぞilぞ1]
Xへ11 = XI + 11月 ・1Thf、
= V、 + IHI −jとなり、投影点Qid)
展標が求まる。同様にUV−トカイド移ji#而の面影
点Riの各軸座標値XM、 。”: From, the X-axis and Y-axis external coordinate values of the projection point qH XM1゜T
hl, Namazoilzo1] To X11 = XI + November ・1Thf,
= V, + IHI −j, and the projection point Qid)
A sign is sought. Similarly, each axis coordinate value XM of the shadow point Ri of the UV-tokaido displacement ji#.
zM、 =−V6O13 となる。zM, =-V6O13 becomes.
ついで、(6)〜(9)式よりXYプログラム面上の投
影点座標Xi 、’ Yiと、XYプログラム面上の投
影点QiからUV下下ガイド軸動面上投影JR・i迄の
ペク)/I/の軸成分Ui、Viヲ求め、Xi 、 Y
i 、 Ui 、 Vi fN(3データとしてメモリ
にii: (、fiする。世し、Xi。Next, from equations (6) to (9), we can calculate the projection point coordinates Xi, 'Yi on the XY program plane, and the projection point from the projection point Qi on the XY program plane to the projection JR・i on the UV lower guide axis dynamic plane) Find the axis components Ui and Vi of /I/, Xi, Y
i, Ui, Vi fN (3 data in the memory as ii: (, fi. output, Xi.
Yi、Di、Vi は
である6岡、Ui、 Vi Fi下ガイド移動量ベクト
ルの軸成分であり、Xi、Yiは部品上面とXYプログ
ラム面が一致しているときワーク移動量ベクトルの軸成
分となる。Yi, Di, Vi are the axial components of the lower guide movement vector, and Xi, Yi are the axial components of the workpiece movement vector when the top surface of the part and the XY program plane are aligned. Become.
そして、以後部品」二面と下面における全対応点に対1
51、(6)〜(9)、 ft11式t 用11111
次Xi 、 Yi 、 Ui 。Then, from now on, for all corresponding points on the second side and the bottom side of the part,
51, (6) to (9), 11111 for ft11 type t
Next Xi, Yi, Ui.
Vi (i=1.2.3・・・・・・)を求め、メモリ
レでi【1惧する、全対応点にキレするXi、 Yi、
Ui、 Viが求捷れば、こわらをNoデータと1−
てNoテープを作成し該Noテープを用いて(テープ運
転)、或いt」メモリより1ブロツクづつ読み出しくメ
モリ運転)、同面4軸制御によりワイヤカット放電加工
機を制御する。Find Vi (i = 1.2.3...), and in memory, i
If Ui and Vi are determined, the stiffness will be set as No data and 1-
A No. tape is created using the No. tape (tape operation), or a wire cut electrical discharge machine is controlled by the same 4-axis control using the No. tape (tape operation) or reading out one block at a time from the memory (memory operation).
次に部品−上面及び下面の形状入力につい1説1明する
。第7図は部品の一部平面図である。今、部品上面形状
PUPと部品下面形状PDPにおける線素をイわぞね(
17,0,、G、、 G、 ; G、、 G4. G6
. G、とし、又線素()1とへ、G、とG、、G、と
06.G7と080.・・・・・・・が互いに対応する
ものとすると部品形状定義プログラムに以下のようにな
る。但し、ポイントS、〜”Ion円弧Cl + Ot
+ (Jlは既に定義済テアル+l) 0’>とする
。Next, inputting the shape of the top and bottom surfaces of the component will be explained in detail. FIG. 7 is a partial plan view of the parts. Now, let's look at the line elements in the top surface shape of the component PUP and the bottom surface shape of the component PDP (
17,0,,G,,G,;G,,G4. G6
.. G, and line element ()1 to, G, and G, ,G, and 06. G7 and 080. Assuming that . . . corresponds to each other, the part shape definition program will be as follows. However, point S, ~”Ion arc Cl + Ot
+ (Jl is the already defined tear+l) 0'>.
(Jl :81.82.1
(へ:S@、 87.1
o、’:c、、c嶌S、、 S、、 4゜G4 :
Gf v GWS? l S@ + 40Gs :
8.、8.、 i
G、 : 8.、8.、 I
Gi : 0.、 OW、 S、、 S、、 50
G8: 8.、 S、、、 s。(Jl:81.82.1 (to:S@, 87.1 o,':c,,c嶌S,,S,,4゜G4:
Gf v GWS? l S@+40Gs:
8. , 8. , iG, : 8. , 8. , IGi: 0. , OW, S,, S,, 50
G8: 8. , S,,, s.
岡、上記プログラム中CWは時計方向の円弧であること
を示し、又末尾の数値1,40,50は各線素Giの分
割数である。分割数が2以上のときにはNoデータ作成
処理に際し各分割点が求められ、対応する分割点毎VC
(61〜(91,(10式によすXi。Oka, in the above program, CW indicates a clockwise circular arc, and the numbers 1, 40, and 50 at the end are the number of divisions of each line element Gi. When the number of divisions is 2 or more, each division point is obtained during the No data creation process, and the VC is calculated for each corresponding division point.
(61~(91, (Xi according to formula 10.
Yi、 Ui、 Viが演算され、Noデータとして出
力される。Yi, Ui, and Vi are calculated and output as No data.
第8図は本発明のブロック図、第9図は処理の流ね図で
ある。FIG. 8 is a block diagram of the present invention, and FIG. 9 is a process flow diagram.
予め、ROMNo1にはNoデータ作成プログラムが記
憶されている。又、X、〜V62部品上面及び下面の形
状データ(前述の部品形状症義文)がテープ102から
デーブリーダー03に読取られて、 RAM104に記
憶さil”〔いる。処理部105は、1ずRAM104
より、形状データを読取り以下のステップ(イ)。A No. data creation program is stored in ROM No. 1 in advance. In addition, the shape data of the upper and lower surfaces of the parts X, ~V62 (the above-mentioned part shape description) is read from the tape 102 by the data reader 03 and stored in the RAM 104.
Then, read the shape data and perform the following step (a).
(ロ)により部品上面と一ト面における対応点の座標を
求めRAM106に順次格納する。By (b), the coordinates of corresponding points on the top surface of the component and the top surface of the component are determined and sequentially stored in the RAM 106.
(イ)対応する2つの線素の分割数、が2以上かとうか
を判定する。、1であれば各線素の端点を対応点座標と
してLLAM105に記憶し、次の線素データをL’5
み取る。(a) Determine whether the number of divisions of two corresponding line elements is 2 or more. , 1, the end point of each line element is stored in the LLAM 105 as the corresponding point coordinate, and the next line element data is stored as L'5.
Take it.
(ロ)分割数が2以上であれば、各線素の分割点の座標
を求めて対応点座標とし、これをRAM106に記憶し
7、次の線素データを読みとる。岡、第10回置に示す
ように分割数をM、2点の座標を千it七オ’ (xa
、Ya’ + (xbs )’b)とすわば2点を結
ぶ直膨の分割点座標xj、yj(j:=:1,2.・・
・・・・M)ilLX3 = x3+ −F;、 (x
b−xa)yj= yR+ M (yb−ya)
となる。又、gj% 10図の)に示すように、θOを
中心角、rを円弧半径、Mを分割数、θ(0/%1)を
角度増分、中心Opと円弧始点Osを結ぶ直線がX軸と
なす角度をψとすねは分割点の座標xj、yj。(b) If the number of divisions is 2 or more, the coordinates of the division points of each line element are determined and used as corresponding point coordinates, which are stored in the RAM 106 7 and the next line element data is read. Oka, as shown in the 10th inscription, the number of divisions is M, and the coordinates of the two points are 1,000 it seven o' (xa
, Ya' + (xbs )'b) and the coordinates of the division points of the direct expansion connecting the two points xj, yj (j:=:1,2...
...M)ilLX3 = x3+ -F;, (x
b-xa)yj=yR+M(yb-ya). Also, as shown in Figure 10), θO is the center angle, r is the arc radius, M is the number of divisions, θ (0/%1) is the angular increment, and the straight line connecting the center Op and the arc starting point Os is The angle with the axis is ψ, and the shank is the coordinates of the dividing point xj, yj.
(J=L 2* ・・・・・・M)F′iX*=XB
、 Ys=YB
X J ”” X J−1・助θ−Y j−1・sin
θyj=Xj−1・5ino+Yj−1拳■θとなる。(J=L 2*...M)F'iX*=XB
, Ys=YB
θyj=Xj−1・5ino+Yj−1 fist■θ.
以上の処理により全対応点の算出と記憶が終了すれば、
処理部105は各対応点を用いて(6)〜(9)式及び
01)式を用いてXi、 Yi、 Ui、 Vi (i
=1.2.・・・)を求め、これをNoデータとしてR
,AM 106に記憶する。以上により部品上面及び″
′F面形状が異なるNoデータがRAM106上に作成
されたことになる。Once all the corresponding points have been calculated and stored through the above processing,
The processing unit 105 uses each corresponding point and formulas (6) to (9) and formula 01 to calculate Xi, Yi, Ui, Vi (i
=1.2. ...) and set this as No data in R.
, AM 106. As a result of the above, the top surface of the part and
'This means that No. data with a different F-plane shape has been created on the RAM 106.
以後、Noデータをテープパンチ107によυテープ1
08に記録してNoテープを作成する。冑。After that, the No. data is passed through the tape punch 107 to υ tape 1.
08 to create a No. tape. Helmet.
RAM106よりNoデータを1ブロツクづつ直接読取
ってNO装置201に入力し、テーバ加工を行なうよう
圧してもよい。It is also possible to directly read the No. data one block at a time from the RAM 106 and input it to the No. 201 device 201 to press it to perform the tapering process.
以上、本発明によれば部品の上面形状と下面形状が異な
った場合でも4輔のテーパ加工ができ、ワイヤカット放
止、加工機の応用分野を広めることができた。父、部品
上面とXYプログラム面、或いt」部品下面とUV下ガ
イド移動面のいずれか少なくとも一方において、その面
位置に隔たりがあっても−に面形状と下面形状が異なる
テーパ加工ができ、極めて有用である。As described above, according to the present invention, even when the upper and lower surface shapes of parts are different, four-way taper processing can be performed, and the field of application of the wire cutting machine can be expanded. Even if there is a gap in the surface position on at least one of the top surface of the component and the XY program surface, or the bottom surface of the component and the UV lower guide movement surface, it is possible to perform taper machining in which the surface shape and bottom surface shape are different. , extremely useful.
第1図及び第2図は従来のテーパ加工説明図、第3図は
制御面と部品面との関連説明図、第4図及び3f! 5
図tま部品−L面形状が円であり、部品下面形状が正方
形である場合において、XYプログラノ・而及びUV移
邪1面におけるワイヤの通路説明図、第6図は本発明の
テーパ加工方法説明図、第7図は部品の一部平面図、第
8図は本発明のブロック図、第9図FiNoデータ作成
処理の流れ図、第ふ
10図は分割q−出説明図である。
W It・・・ワイヤ、WK・・・部品、US・・・部
品上面、1)S・・・部品1面、F OS・・・XYプ
ログラム面、SCS・・・UV)ガイド移動面
第4回
(8)Figures 1 and 2 are explanatory diagrams of conventional taper processing, Figure 3 is an explanatory diagram of the relationship between the control surface and the component surface, and Figures 4 and 3f! 5
Figure 6 is an explanatory diagram of the wire passage on the XY programmable plane and the UV transfer plane when the L side shape of the part is a circle and the lower side shape of the part is square. FIG. 7 is a partial plan view of the parts, FIG. 8 is a block diagram of the present invention, FIG. 9 is a flowchart of FiNo data creation processing, and FIG. 10 is an explanatory diagram of divided Q-output. W It...Wire, WK...Part, US...Part top surface, 1) S...Part 1 side, FOS...XY program surface, SCS...UV) Guide movement surface 4th Times (8)
Claims (1)
とt、て同時4軸制御によりワイヤとワーク間の相対的
移Bψを制御し、ワークに所定のテーパ加工を施すワイ
ヤカットテーパ加工方法において、部品」−面と第1
QIfIi制御面、並びに部品下面と第2の制御面の組
のうち少なくとも一方における2つの1alの間に隔−
/’tlりがイj什するとき、部品上面と部品T 1r
iiの対応するポイントを結んだ直線に沿って、とil
らポイントを前記隔た郵がある組の制御面に投影させて
投影点の位置を求め、第1及び第2の制御面i:おV)
る対応するポイントをワイヤが同時にたどるように前記
第1及び第2の制御面における対応するポイントの位置
データを用いて同時4軸制御ゴーることを特徴とするワ
イヤカットチーバカlド1力法。In a wire cut taper machining method in which the relative displacement Bψ between the wire and the workpiece is controlled by simultaneous two-axis control t7 on two control planes, and simultaneous four-axis control on the whole and t, and a predetermined taper process is performed on the workpiece, "Parts" - Surface and 1st
QIfIi control surface and a space between the two 1al on at least one of the set of the component lower surface and the second control surface.
/' When the tl is different, the top surface of the component and the component T 1r
Along the straight line connecting the corresponding points of ii, and il
The position of the projection point is determined by projecting the point on the set of control surfaces with the distance between the first and second control surfaces i:oV).
A wire cut chip card single force method characterized in that simultaneous four-axis control is performed using position data of corresponding points on the first and second control surfaces so that the wire simultaneously traces corresponding points on the first and second control surfaces. .
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18873782A JPS5981022A (en) | 1982-10-27 | 1982-10-27 | Wire cut taper machining method |
PCT/JP1983/000383 WO1984001735A1 (en) | 1982-10-27 | 1983-10-27 | A wire-cut taper machining method |
DE8383903312T DE3379940D1 (en) | 1982-10-27 | 1983-10-27 | A wire-cut taper machining method |
EP19830903312 EP0124611B1 (en) | 1982-10-27 | 1983-10-27 | A wire-cut taper machining method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18873782A JPS5981022A (en) | 1982-10-27 | 1982-10-27 | Wire cut taper machining method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5981022A true JPS5981022A (en) | 1984-05-10 |
Family
ID=16228886
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18873782A Pending JPS5981022A (en) | 1982-10-27 | 1982-10-27 | Wire cut taper machining method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5981022A (en) |
-
1982
- 1982-10-27 JP JP18873782A patent/JPS5981022A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR880002554B1 (en) | Numerially controlled cutting method | |
KR100306236B1 (en) | Method and apparatus for preparating data on tool moving path, and machining method and system | |
JPH0531162B2 (en) | ||
KR890003118B1 (en) | Numerical control | |
EP0148958B1 (en) | Tapering method for wire-cut electric discharge machining | |
JPS5981022A (en) | Wire cut taper machining method | |
CN104933287B (en) | Computing device | |
CN108027605B (en) | Control method and control device for tool movement | |
JPS5981023A (en) | Wire cut taper machining method | |
JP3202068B2 (en) | Method of creating tool movement path for NC machining | |
JPS594252B2 (en) | Taper processing method | |
JPH0683422A (en) | Numerical control method | |
CN112765697A (en) | Method for point drilling machine to generate drill point teaching according to track | |
JPH04217426A (en) | Wire electric discharge maching method and device thereof | |
JPH0530568B2 (en) | ||
JPH069007B2 (en) | NC data creation method for compound curved surface | |
JPS6238096B2 (en) | ||
US20240302820A1 (en) | Numerical control device | |
JPS6359604A (en) | Method for changing working route in numerical controller | |
Takeuchi | Current State of the Art of Multi-Axis Control Machine Tools and CAM System | |
JPS5976728A (en) | Method of taper machining | |
EP0124611B1 (en) | A wire-cut taper machining method | |
KR20220120852A (en) | Healing device and method for externally created drawing file elements | |
JPH0215304A (en) | Method for forming numerical control information | |
Makhanov et al. | Introduction to Five-Axis NC Machining |