JPS598098B2 - Optical transmission method - Google Patents

Optical transmission method

Info

Publication number
JPS598098B2
JPS598098B2 JP54112394A JP11239479A JPS598098B2 JP S598098 B2 JPS598098 B2 JP S598098B2 JP 54112394 A JP54112394 A JP 54112394A JP 11239479 A JP11239479 A JP 11239479A JP S598098 B2 JPS598098 B2 JP S598098B2
Authority
JP
Japan
Prior art keywords
wavelength
dispersion
optical fiber
light
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54112394A
Other languages
Japanese (ja)
Other versions
JPS5637742A (en
Inventor
正宏 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP54112394A priority Critical patent/JPS598098B2/en
Publication of JPS5637742A publication Critical patent/JPS5637742A/en
Publication of JPS598098B2 publication Critical patent/JPS598098B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters

Description

【発明の詳細な説明】 本発明は光ファイバを用いた光伝送方式に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical transmission system using optical fibers.

光ファイバを用いた光伝送方式としてはグレーデッド形
多モード光ファイバが伝送路として有望視されている。
As an optical transmission system using optical fiber, graded multimode optical fiber is considered to be a promising transmission line.

これはコア径が60μm〜80μmと比較的太く接続が
容易な事、モード分散が小さく伝送帯域が広い事等に起
因している。一方光源としてはレーザダイオードLDあ
るいは発光ダイオードLED等が候補として挙げられる
が、いずれの光源にしても発光波長に拡がりがある。例
えばLDで30入、LEDで800λ程度の波長拡がり
が観測されている。
This is due to the relatively thick core diameter of 60 μm to 80 μm, which makes connection easy, and the fact that mode dispersion is small and the transmission band is wide. On the other hand, candidates for the light source include a laser diode LD or a light emitting diode LED, but either light source has a wide range of emission wavelengths. For example, a wavelength spread of about 30 λ has been observed for an LD and about 800 λ for an LED.

したがつて多モード光ファイバを伝搬した光信号はモー
ド分散と材料分散とによつて歪を受け伝送帯域が決定さ
れる。例えばモード分散については最高次モードと最低
次モードとの群遅延時間差Δτmがlnsec/km以
下のものがグレーデツド形光ファイバで得られる。一方
材料分散については800nmの波長で約10ps/λ
「の値が石英系ファイバで観測されている。したがつて
光源の波長拡がりが100Λ程度であれば材料分散によ
る群遅延時間差Δτ1は約lnsec/kmとなる。し
たがつてモード分散が小さいグレーデツド形ファイバが
製造できるようになるにつれて材料分散の占める割合が
大きくなる。光源については発光波長巾の狭いものが研
究されているが発光波長幅が狭くなるにつれて光パワが
減少すること、あるいは寿命が短かくなること、製造価
格が高くなる事等の欠点がある。
Therefore, an optical signal propagated through a multimode optical fiber is subjected to distortion due to mode dispersion and material dispersion, and the transmission band is determined. For example, regarding mode dispersion, a graded optical fiber can provide a group delay time difference Δτm between the highest order mode and the lowest order mode of less than lnsec/km. On the other hand, material dispersion is approximately 10 ps/λ at a wavelength of 800 nm.
A value of As it becomes possible to manufacture fibers, the proportion of material dispersion increases.As for light sources, light sources with narrow emission wavelength widths are being researched, but as the emission wavelength width becomes narrower, the optical power decreases or the lifetime becomes shorter. There are disadvantages such as the increase in the temperature and the high manufacturing cost.

また光ファイバの損失は1.6μm近辺の波長で最低と
なりO、5dB/kmのものも製造されている。
Furthermore, the loss of optical fibers is lowest at wavelengths around 1.6 μm, and optical fibers with a loss of 5 dB/km are also manufactured.

このように損失の低い波長帯においては光ファイバの波
長分散による伝送帯域制限が光伝送方式の重要な要因と
なつてくる。従つて本発明は波長分散による伝送帯域の
制限を軽減するごとき光伝送方式を提供することを目的
とし、その基本思想は材料分散とモード分散を互いに打
ち消しあうごとく構成することにある。
In such a low-loss wavelength band, transmission band limitation due to chromatic dispersion of optical fibers becomes an important factor in optical transmission systems. Therefore, an object of the present invention is to provide an optical transmission system that alleviates the limitation of the transmission band due to chromatic dispersion, and its basic idea is to construct the system so that material dispersion and mode dispersion cancel each other out.

本発明による光伝送方式は、光ファイバの材料分散とモ
ード分散とが相互に打ち消しあうように光源の波長幅と
光ファイバの材料の屈折率分布を選定し、波長拡がりの
ある光源からの光束を分波器により空間的に分離し、分
離された各波長と励振される光ファイバのコアの中心か
らの距離との間に所望の関係を有するごとく集光器によ
り多モードファイバに入射することを特徴とする。以下
図面により詳説する。具体例として、光源を中心波長0
.81μmのLED、光ファイバとして石英系グレーデ
ツド形多モードファイバを検討する・第1図はLEDの
発光スペクトラムで、スペクトラム半値幅約750λ、
スペクトラム全幅約1500λである。
The optical transmission system according to the present invention selects the wavelength width of the light source and the refractive index distribution of the optical fiber material so that the material dispersion and mode dispersion of the optical fiber cancel each other out, and transmits the light beam from the light source with wavelength spread. The wavelengths are spatially separated by a demultiplexer, and then incident on the multimode fiber by a concentrator so as to have a desired relationship between each separated wavelength and the distance from the center of the core of the optical fiber to be excited. Features. This will be explained in detail below with reference to the drawings. As a specific example, a light source with a center wavelength of 0
.. Consider a 81μm LED and a silica-based graded multimode fiber as the optical fiber. Figure 1 shows the emission spectrum of the LED, with a spectral half-width of approximately 750λ,
The full spectrum width is about 1500λ.

図中のo印は測定値、曲線はガウシアン分布を表わして
いる。第2図は石英系フアイバの材料分散を示す。
The o mark in the figure represents a measured value, and the curve represents a Gaussian distribution. FIG. 2 shows the material dispersion of quartz-based fibers.

例えば0.81μmの波長で材料分散値は10.1ps
/λ―である。この図から解るように、より長波長での
群遅延時間は短波長側に比べて小さい。前記光源での材
料分散による群遅延時間差Δτlは約15.2ns/K
Inとなる。
For example, at a wavelength of 0.81 μm, the material dispersion value is 10.1 ps.
/λ-. As can be seen from this figure, the group delay time at longer wavelengths is smaller than at shorter wavelengths. The group delay time difference Δτl due to material dispersion in the light source is approximately 15.2 ns/K
Becomes In.

したがつて時間軸で考えると、LEDの発光波長のうち
で長波長側の光が短波長側の光より約15.2ns/I
<In早く到達する。この時間差が伝送帯域を制限する
要因の一つである。次にモード分散について述べる。
Therefore, considering the time axis, the longer wavelength light of the LED emission wavelength is approximately 15.2 ns/I faster than the shorter wavelength light.
<In arrive early. This time difference is one of the factors that limits the transmission band. Next, we will discuss mode dispersion.

グレーデツド形多モードフアイバのコアにおける屈折率
分布は(1)式のようにあられされる。ただし、NOは
コア中心の屈折率、△はコア中心とクラツデイングとの
屈折率差の比、aはコア半径、αは屈折率の分布形を表
す。
The refractive index distribution in the core of a graded multimode fiber can be expressed as shown in equation (1). Here, NO is the refractive index at the core center, Δ is the ratio of the refractive index difference between the core center and the cladding, a is the core radius, and α is the refractive index distribution shape.

(1)式の分布形を持つた光フアイバのモード分散によ
る群遅延時間△τ.は(2)式で与えられる。ただしL
は伝搬長、Cは直空中での光速を表わす。
The group delay time △τ due to the mode dispersion of an optical fiber having the distribution form of equation (1). is given by equation (2). However, L
is the propagation length, and C is the speed of light in direct air.

第3図はΔが0.01(1%)の場合の(2)式を示し
たものである。
FIG. 3 shows equation (2) when Δ is 0.01 (1%).

この図はd=2を境にしてdが2より大きい場合には高
次モードの方が低次モードよりも群遅延時間が大きく、
αが2より小さい場合には逆の関係になることを示して
いる。したがつて上記材料分散による群遅延差△τ1を
Δτ.で打ち消し合うようにするためには、第3図より
α:4あるいはα=1の分布形のフアイバを用いて、α
=4のものに対しては長波長側の光を高次モードに、短
波長側の光を低次モードに励振してやれば良い。なおα
=1の分布のものに対しては逆の関係となる。次に波長
に対してモードを選択的に励振する方法を述べる。
This figure shows that when d is larger than 2, the group delay time of the higher-order mode is larger than that of the lower-order mode.
It is shown that when α is smaller than 2, the relationship is reversed. Therefore, the group delay difference △τ1 due to the material dispersion mentioned above is expressed as Δτ. In order to cancel each other out at
=4, it is sufficient to excite the light on the long wavelength side to a high-order mode and the light on the short wavelength side to a low-order mode. Note that α
The relationship is the opposite for those with a distribution of =1. Next, a method for selectively exciting modes with respect to wavelength will be described.

第4図はグレーデツド形光フアイバにおける光線の軌跡
を模式的に表わしたもので、1はコア、2はクラツデイ
ングを表わしている。
FIG. 4 schematically shows the trajectory of a light ray in a graded optical fiber, where 1 represents the core and 2 represents the cladding.

この図においてA,b,cは各々低次モードから高次モ
ードへの励振のし方を示している。すなわち高次モード
に対してはコアの外周部を励振すれば良いことがわかる
。第5図は上記原理に基づいた本発明の一実施例で1は
コア、2はクラツデイング、3,4は集光用レンズ、5
は光源、6は分波用プリズムを示す。
In this figure, A, b, and c each indicate how to excite from a low-order mode to a high-order mode. In other words, it can be seen that for higher-order modes, it is sufficient to excite the outer peripheral portion of the core. FIG. 5 shows an embodiment of the present invention based on the above principle, in which 1 is a core, 2 is a cladding, 3 and 4 are condensing lenses, and 5
indicates a light source, and 6 indicates a splitting prism.

今光源からの光はレンズ4で集光されプリズムに入射す
ると波長によつて出射角θがδθだけ異なる。これをレ
ンズ3で絞りCt=4のフアイバに対しては第5図に示
した配置のように長波長側の光を外周部に絞り込むこと
で分散を打消すことができる。プリズムの頂角をd、入
射と出射のなす角をθ、ブリズムの焦点距離をf、絞り
込まれた点における距離をδXとすると次式の関係が成
立する。ここで前記光源と実際のフアイバについて検討
する。
When the light from the light source is focused by the lens 4 and enters the prism, the output angle θ differs by δθ depending on the wavelength. For a fiber with an aperture of Ct=4, the dispersion can be canceled by confining the light on the long wavelength side to the outer periphery as shown in FIG. 5 using the lens 3. Assuming that the apex angle of the prism is d, the angle between incidence and exit is θ, the focal length of the prism is f, and the distance at the focused point is δX, the following relationship holds true. Let us now consider the light source and the actual fiber.

△λ=0.15μm1δx=30μm1プリズムとして
普通の光学ガラスを使用するとn=1.5、Dn/dλ
二0.02μm−1(λ−0.81μm)となり、(4
)式よりα=451でf=10.7nとなる。したがつ
て第5図の構成は容易に実現できることがわかる。また
第5図において、プリズムの代りに回折格子を利用する
ことができる。
△λ = 0.15 μm 1 δx = 30 μm 1 When ordinary optical glass is used as a prism, n = 1.5, Dn/dλ
20.02μm-1 (λ-0.81μm), (4
), α=451 and f=10.7n. Therefore, it can be seen that the configuration shown in FIG. 5 can be easily realized. Also, in FIG. 5, a diffraction grating can be used instead of the prism.

この場合に角分散dθ/dλは次式で表わされる。ただ
しmは回折の次数、dは格子のピツチ間隔4..本】−
+ ?′P′−4$h★昏φ.1hL】 1等の角分散
を得るためには(5)式よりd〜50.4μmとなり、
格子のピツチは20本/Mmとなる。
In this case, the angular dispersion dθ/dλ is expressed by the following equation. where m is the order of diffraction, and d is the grating pitch interval 4. .. Book】−
+? 'P'-4$h★koφ. 1hL] To obtain angular dispersion of 1st order, d~50.4μm from equation (5),
The grid pitch is 20 lines/Mm.

これは現時点の技術で容易に実現できる値である。なお
光源としてLDを利用した場合でも上記構成は実現可能
なパラメータとなる。本発明においては材料分散とモー
ド分散の距離依存性が当しい場合に非常に有効となる。
This is a value that can be easily achieved with current technology. Note that even when an LD is used as a light source, the above configuration becomes an achievable parameter. The present invention is very effective when the distance dependence of material dispersion and mode dispersion is appropriate.

すなわち材料分散の効果は距離に比例する。したがつて
モード分散効果が距離に比例する場合には如何なる伝搬
長の所においても全分散を打消すことができる。現時点
における光フアイバの損失は低減化され、モード分散効
果はほとんど距離の1乗に比例することが確認されるよ
うになつてきている。以上説明したように材料分散とモ
ード分散とを打消す構成にすることができるため、波長
拡がりのある光源を使用して伝送帯域の広い伝送路を実
現することができ、長距離大容量伝送方式を構成する上
で非常に有利となる。
In other words, the effect of material dispersion is proportional to distance. Therefore, if the modal dispersion effect is proportional to distance, the total dispersion can be canceled at any propagation length. At present, the loss of optical fibers has been reduced, and it has been confirmed that the mode dispersion effect is almost proportional to the first power of the distance. As explained above, since it is possible to create a configuration that cancels material dispersion and mode dispersion, it is possible to realize a transmission line with a wide transmission band using a light source with a wavelength spread, and a long-distance high-capacity transmission method. This is very advantageous in configuring.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はLEDの発光スペクトラムを示す図、第2図は
石英系フアイバの材料分散による群遅延差を示す図、第
3図はα乗光フアイバのモード分散による群遅延差を示
す図、第4図はグレーデツド形光フアイバにおける光線
の模式図、及び第5図は本発明の一実施例の構成図であ
る。 1・・・・・・コア、2・・・・・・クラツデイング、
3,4・・・・・・集光用レンズ、5・・・・・・光源
、6・・・・・・プリズム。
Fig. 1 shows the emission spectrum of the LED, Fig. 2 shows the group delay difference due to the material dispersion of the silica fiber, Fig. 3 shows the group delay difference due to the mode dispersion of the α-th power optical fiber, and Fig. 4 shows the group delay difference due to the mode dispersion of the α-th power optical fiber. The figure is a schematic diagram of light rays in a graded optical fiber, and FIG. 5 is a block diagram of an embodiment of the present invention. 1...Core, 2...Kratsding,
3, 4... Concentrating lens, 5... Light source, 6... Prism.

Claims (1)

【特許請求の範囲】[Claims] 1 光ファイバの材料分散とモード分散とが相互に打ち
消しあうように光源の波長幅と光ファイバの材料の屈折
率分布を選定し、波長拡がりのある光源からの光束を分
波器により空間的に分離し、分離された各波長と励振さ
れる光ファイバのコアの中心からの距離との間に所望の
関係を有するごとく集光器により多モードファイバに入
射することを特徴とする光伝送方式。
1 The wavelength width of the light source and the refractive index distribution of the optical fiber material are selected so that the material dispersion and mode dispersion of the optical fiber cancel each other out, and the light beam from the wavelength-spread light source is spatially split using a demultiplexer. An optical transmission system characterized by separating each wavelength and inputting the light into a multimode fiber using a condenser so as to have a desired relationship between each separated wavelength and the distance from the center of the core of the optical fiber to be excited.
JP54112394A 1979-09-04 1979-09-04 Optical transmission method Expired JPS598098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54112394A JPS598098B2 (en) 1979-09-04 1979-09-04 Optical transmission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54112394A JPS598098B2 (en) 1979-09-04 1979-09-04 Optical transmission method

Publications (2)

Publication Number Publication Date
JPS5637742A JPS5637742A (en) 1981-04-11
JPS598098B2 true JPS598098B2 (en) 1984-02-22

Family

ID=14585559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54112394A Expired JPS598098B2 (en) 1979-09-04 1979-09-04 Optical transmission method

Country Status (1)

Country Link
JP (1) JPS598098B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877302U (en) * 1981-11-20 1983-05-25 株式会社信明産業 Reflector for heat ray detector
US5359446A (en) * 1992-09-10 1994-10-25 Eldec Corporation Wide-angle, high-speed, free-space optical communications system

Also Published As

Publication number Publication date
JPS5637742A (en) 1981-04-11

Similar Documents

Publication Publication Date Title
US7376307B2 (en) Multimode long period fiber bragg grating machined by ultrafast laser direct writing
US7587110B2 (en) Multicore optical fiber with integral diffractive elements machined by ultrafast laser direct writing
US7920763B1 (en) Mode field expanded fiber collimator
JP2019519005A (en) Optical imaging system utilizing vortex fiber for multimode illumination
US4067642A (en) Reduction of modal and chromatic material dispersion in a multimode optical fiber
JP2020159973A (en) Light source device for light measurement, spectroscopic measurement device and spectroscopic measurement method
JP2004053992A (en) Diffraction grating, wavelength multiplexer/demultiplexer and wavelength multiplex signal optical transmission module using them
Kim et al. Achievement of large spot size and long collimation length using UV curable self-assembled polymer lens on a beam expanding core-less silica fiber
JPS61217002A (en) Prism optical system and information device using it
CN101719629B (en) Blazed grating external cavity semiconductor laser and collimating method thereof
JPS598098B2 (en) Optical transmission method
JP2006243500A (en) Wavelength dispersion compensator
US20020114568A1 (en) Optical fiber termination collimator and process of manufacture
US6219473B1 (en) Optical fiber wavelength multiplexer-demultiplexer
CA2248501C (en) External resonator light source
JP2003066269A (en) Multi-wavelength demultiplexing optical device and wavelength multiplexed light transmission module
WO2020027253A1 (en) Optical coupler
JP2005031477A (en) Optical fiber with lens
US9551830B1 (en) Optical system including multiplexed volume Bragg grating, methods, and applications
JPS56144411A (en) Collimating optical system
JP2548767B2 (en) Pseudo wavelength dispersion generator
Armin et al. Compact silicon nitride circular grating reflectors
JP2004258389A (en) Chirped diffraction grating, demultiplexer, and wavelength multiplexing optical transmission module
JPH1048450A (en) Manufacture of fiber grating and apparatus for manufacture thereof
Kaiser NA-dependent spectral loss measurements of optical fibers