JPS5980823A - Monitoring method of slope degradation - Google Patents

Monitoring method of slope degradation

Info

Publication number
JPS5980823A
JPS5980823A JP19002282A JP19002282A JPS5980823A JP S5980823 A JPS5980823 A JP S5980823A JP 19002282 A JP19002282 A JP 19002282A JP 19002282 A JP19002282 A JP 19002282A JP S5980823 A JPS5980823 A JP S5980823A
Authority
JP
Japan
Prior art keywords
ground
electrodes
water content
content ratio
slope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19002282A
Other languages
Japanese (ja)
Inventor
Takeo Suzuki
健夫 鈴木
Akira Nakai
彰 中井
Shigetaka Suzuki
鈴木 重隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
T S GIJUTSU KK
TOSHIMA KENSETSU KK
Original Assignee
T S GIJUTSU KK
TOSHIMA KENSETSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by T S GIJUTSU KK, TOSHIMA KENSETSU KK filed Critical T S GIJUTSU KK
Priority to JP19002282A priority Critical patent/JPS5980823A/en
Publication of JPS5980823A publication Critical patent/JPS5980823A/en
Pending legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D17/00Excavations; Bordering of excavations; Making embankments
    • E02D17/20Securing of slopes or inclines

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Abstract

PURPOSE:To exactly predict a danger of the occurrence of slope degradation by a method in which at least one or more electrodes are set under the ground, and the variations in electric resistance values between the electrodes due to an increase in the water content ratio of the ground between the electrodes are measured. CONSTITUTION:Pipes 2 provided with electrodes 3 are buried at plural places in the ground 1 where slope degradation tends to occur, lead wires 4 sent out from the pipes 2 to the outside are collected for plural pipes 2 as a group, and these wires 4 are connected through resistance measurers 6 to power sources 5. When the amount of rain water permeating into the ground is increased and the water content ratio of the ground 1 is increased, since electric resistance values between the electrodes 3 are varied to smaller ones than those when no rain falls, it follows that when the electric resistance values are lowered beyond set values on the basis of a dangerous water content ratio, a danger of the occurrence of slope degradation is raised.

Description

【発明の詳細な説明】 本発明は地すベリ、山崩れなどの斜面崩壊の発生危険率
を未然に検知し得る監視法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a monitoring method that can detect the risk of occurrence of slope collapse such as landslides and landslides.

最近では台風や集中豪雨の度毎に各地において斜面崩壊
が発生し、多くの人命が失われている。
Recently, slope failures occur in various places every time there is a typhoon or torrential rain, resulting in the loss of many lives.

いうまでもなく斜面崩壊は発生する場所の土質、水理的
条件等によっても異るが、浸透水圧、地震、交通振動、
ナダレ等が原因となって発生する。これらのうち一般的
には最近の例に見られるように、集中豪雨による浸透水
圧が原因となって発生する場合が多い。即ちこの場合は
降雨や流水等によシ地盤中の含水比が増大し、やがて飽
和含水比に達して土の強度が低下すると共に土中の浸透
水圧が高まり、それ以上の水は地表面を浸食する状態と
なってやがて斜面崩壊を生ずることとなる。
Needless to say, slope failure varies depending on the soil quality and hydraulic conditions of the place where it occurs, but it is also affected by seepage pressure, earthquakes, traffic vibrations, etc.
It occurs due to sagging, etc. Of these, as seen in recent examples, they are often caused by seepage water pressure caused by concentrated heavy rain. In other words, in this case, the water content ratio in the ground increases due to rainfall, running water, etc., and eventually reaches the saturated water content ratio, which lowers the strength of the soil and increases the water pressure in the soil. This will lead to erosion and eventually cause a slope failure.

現在において、このような斜面崩壊の発生危険率を予知
する手段としては、比較的崩壊速度のおそい(crrL
/年)地上シのような斜面の移動速度を測定する方法と
して、1.標柱による移動測量、2伸縮計による測定、
3.傾斜計による測定、4.スベリ面測定管による測定
、5.ヒズミ計測定管による測定などが提案されている
。しかし乍ら比較的崩壊速度の早い(cIIL/秒)山
崩れのような斜面の移動速度を測定するものとしては、
特に現在では適切な方法がなく、わずかに各地の降雨量
の大小のみによシ危険率を予測して、斜面崩壊の発生す
るであろうと予想される地域の住民に避1M警報を発す
るとか、道路の閉鎖措置を講するという方法によってい
る。
At present, as a means of predicting the risk of occurrence of such slope failure, the relatively slow collapse velocity (crrL
/year) As a method for measuring the moving speed of slopes such as ground slopes, 1. Moving survey using marker pole, measurement using 2 extensometers,
3. Measurement with an inclinometer, 4. Measurement using a sliding surface measuring tube, 5. Measurement using a histometer measurement tube has been proposed. However, for measuring the movement speed of slopes such as landslides, which have a relatively fast collapse rate (cIIL/sec),
In particular, there is currently no suitable method, such as predicting the danger rate based only on the magnitude of rainfall in each area and issuing a 1M evacuation warning to residents in areas where slope failure is expected to occur. This is done by taking measures to close roads.

しかし乍ら降雨量によって斜面崩壊の発生を予知すると
いう手段は、特に雨水や地下水が他の場所から集中して
流れ込むような所などでは、土中水の含水比の増加率が
平地における降雨量によって得られるデータよシも急激
に上廻るために、所定の降雨量によって危険域に達した
と判断したときには既に危険率をオーバーしていること
があり、その意味で適切な予知手段とは言い難い。
However, the method of predicting the occurrence of slope failure based on rainfall is difficult to predict, especially in places where rainwater and groundwater flow from other places in a concentrated manner. Because the data obtained by the method rapidly exceeds the limit, by the time it is determined that the amount of rainfall has reached the danger zone, the danger rate may have already been exceeded.In that sense, it cannot be called an appropriate means of prediction. hard.

本発明は従来の降雨量を基準とした斜面崩壊水の監視法
の不確実性を解消し、確実にして適切な監視法の提供を
目的としたものであシ、斜面崩壊を発生し易いと見られ
る地域の地盤中に少なくとも一対の電極を配置して、当
該地盤中の含水比の増大による電気抵抗値の変化によシ
斜面崩壊の発生危険率を検知することを特徴とするもの
である。
The present invention aims to eliminate the uncertainties of the conventional method of monitoring slope failure water based on rainfall, and to provide a reliable and appropriate monitoring method. The method is characterized in that at least one pair of electrodes are placed in the ground in the area where the slope failure is observed, and the risk rate of slope failure is detected based on changes in electrical resistance due to an increase in water content in the ground. .

本発明の実施例を述べるに先立って、発明者が行った含
水比の異る土壌中における二個の電極間の電気抵抗値を
測定した実験結果の一例を示せば次の通シである。
Before describing the embodiments of the present invention, the following is an example of the results of an experiment conducted by the inventor to measure the electrical resistance between two electrodes in soils with different water content ratios.

1、 砂の含水比側抵抗値 2、真砂土の含水比B9抵抗値 3、粘土の含水側抵抗値 上記の各種土質における含水北側の抵抗値75為ら判明
するように、各種の土質において含水比力;増加するに
従って二個の電極間の抵抗値は小さい値に変化する。ま
た土質別にみれば砂と粘土とでは、粘土の方が抵抗値が
小さいことが判明する。
1. Moisture content side resistance value of sand 2, Moisture content ratio B9 resistance value of Masago soil 3, Moisture content side resistance value of clay. Specific force: As the specific force increases, the resistance value between the two electrodes changes to a smaller value. Furthermore, when looking at the soil type, it is found that the resistance value of clay is smaller than that of sand and clay.

次に上記の実験結果を基とする本発明を、図面に示す実
施例によって詳記すれば、第1図に示すように、斜面崩
壊の発生し易い地盤(1)における適宜の選定された複
数箇所に夫々電極(3)を付設した管(2)を埋込む。
Next, the present invention based on the above experimental results will be described in detail with reference to an embodiment shown in the drawings. A tube (2) with an electrode (3) attached thereto is embedded at each location.

これらの管(2)は第3図に示すように土砂と接する外
周面の複数箇所に良電導体の金属からなる電極(3)が
周設されていて、夫々の電極(3)の内側に接続された
リード線(4)が夫々管(2)内を通って管外に延出し
ている。また夫々の管(2)は、第1図aのように傾斜
に対して横向きかまた第1図すのような縦向きで第2図
のように上下、左右方向に間隔を置いて埋設される。更
にこれらの埋設された電極付管(2)から管外に延出さ
れたリード線(4)は、複数本の管(2)を一つのグル
ープとした状態で集められて電源(5)と抵抗測定器(
6)とを介して互に接続される。
As shown in Figure 3, these tubes (2) are equipped with electrodes (3) made of a metal that is a good conductor at multiple locations on the outer circumferential surface that comes into contact with the earth and sand, and on the inside of each electrode (3). The connected lead wires (4) pass through the tubes (2) and extend outside the tubes. In addition, each pipe (2) is buried horizontally to the slope as shown in Figure 1a, or vertically as shown in Figure 1, and spaced apart in the vertical and horizontal directions as shown in Figure 2. Ru. Furthermore, the lead wires (4) extending outside the tubes from these buried electrode-equipped tubes (2) are collected into a group of multiple tubes (2) and connected to a power source (5). Resistance measuring device (
6).

前記の実験例からも実証されるように、非降雨時におい
て地盤(1)の含水比が低い場合には、通電によって夫
々の管(2)における電極(3)間の電気抵抗値は大き
い値を示す。これに対して集中豪雨時のように地中に滲
透する雨水が増大して地盤(1)中の含水比が増加する
と、夫々の管電極(3)間における電気抵抗値は非降雨
時の抵抗値に比較して小さい値に変化する。従って該電
気抵抗値が、斜面崩壊の発生することになる危険含水比
の値を基準として設定された値よりも低下した場合には
、直ちに轟該地域に斜面崩壊の発生する危険度が高まっ
ていることを検知することができる。
As demonstrated by the above experimental example, when there is no rainfall and the moisture content of the ground (1) is low, the electrical resistance between the electrodes (3) in each pipe (2) increases by applying electricity to a large value. shows. On the other hand, when the water content ratio in the ground (1) increases due to an increase in rainwater seeping into the ground, as occurs during torrential rain, the electrical resistance value between each tube electrode (3) becomes the resistance during non-rainfall. Changes to a smaller value compared to the value. Therefore, if the electrical resistance value falls below the value set based on the dangerous water content ratio that would cause a slope failure, the risk of a slope failure occurring in the area immediately increases. It is possible to detect that

以上に述べたように本発明に係るの監視法は、斜面崩壊
を生じ易い地盤中に一対以上の電極(3)を埋設するこ
とと、両電極間に電源(5)と抵抗測定器(6)を設け
るだけで、従来では検出不可能とされた地盤内における
含水比の変化を確実にキャッチすることができ、従って
斜面崩壊の発生する危険度を事前に適確に予知すること
ができる。
As described above, the monitoring method according to the present invention involves burying one or more pairs of electrodes (3) in the ground that is prone to slope failure, and connecting a power source (5) and a resistance measuring device (6) between the two electrodes. ), it is possible to reliably detect changes in the water content ratio in the ground, which were previously undetectable, and therefore the risk of slope failure can be accurately predicted in advance.

また本発明による監視法は、検知手段としての電極(3
)を予め危険地域に埋設しておくだけでよいので、複数
の危険地域に対しての監視を、危険地域から離れた安全
区域において集中的に充分な管理体制御のもとで行うこ
とができ、警報の発生や必要な措置を迅速且適切に行え
るという効果を有するものである。
Furthermore, the monitoring method according to the present invention uses electrodes (3
) in a hazardous area in advance, monitoring of multiple hazardous areas can be carried out centrally in a safe area away from the hazardous area under sufficient management control. This has the effect of issuing an alarm and taking necessary measures quickly and appropriately.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る斜面崩壊の監視法の態様を示す斜
面崩壊発生危険地域の断面図、第2図は同地域の正面図
、第3図は電極付管の構成を示す断面図である。図にお
いて、 (1):地盤、(2):管、(3):電極、(4):リ
ード線、(5)二電源、(6):抵抗測定器。 特許庁長官若 杉 和 失敗 1.事件の表示 昭和57 年 4寺 許 願第190022号2、発明
の名称 斜面崩壊の監視法 3、補正をする者 事件との関係    特許出願人 4、代理人 (発送日 昭和  年  月  日) 6、補正の対象 明細書 7、補正の内容 別紙の通り 明細書の一部を下記の如(補正します。 記 1、明細書第4頁の「1.砂の含水死別抵抗値」の表欄
における「含水比」の欄にr90%Jとあるを「9.0
%」と補正します。 2、明細書第8頁第10行目に「・・・本発明に係るの
監視法・・・」とあるな「・・・本発明に係る監視法・
・・」と補正します。 以   上
Fig. 1 is a sectional view of a slope failure risk area showing an aspect of the slope failure monitoring method according to the present invention, Fig. 2 is a front view of the area, and Fig. 3 is a sectional view showing the configuration of the tube with electrodes. be. In the figure: (1): Ground, (2): Pipe, (3): Electrode, (4): Lead wire, (5) Two power supplies, (6): Resistance measuring device. Kazu Wakasugi, Commissioner of the Patent Office Failure 1. Indication of the case 1981 4 Temple Permit Application No. 190022 2 Name of the invention Slope failure monitoring method 3 Person making the amendment Relationship to the case Patent applicant 4 Agent (Shipping date: Month, Day, 1939) 6. Subject of amendment Specification 7, Contents of amendment As shown in the attached sheet, a part of the specification will be amended as follows. In the "Water content ratio" column, change the value of r90%J to "9.0".
%”. 2. On page 8, line 10 of the specification, it says "...the monitoring method according to the present invention...". "...the monitoring method according to the present invention..."
...” and correct it. that's all

Claims (1)

【特許請求の範囲】[Claims] 1、斜面崩壊を生ずる虞れのある地盤中に少なくとも一
対以上の電極を配置し、降雨や流水等によって前記両電
極間地盤中の含水比が増大することによる両電極間の電
気抵抗値の変化によシ斜面崩壊の発生危険率を検知する
ことを特徴とする斜面崩壊の監視法。
1. At least one pair or more of electrodes are placed in the ground where there is a risk of slope failure, and the electrical resistance value between the two electrodes changes due to an increase in the water content ratio in the ground between the two electrodes due to rain, running water, etc. A slope failure monitoring method characterized by detecting the risk of occurrence of slope failure.
JP19002282A 1982-10-30 1982-10-30 Monitoring method of slope degradation Pending JPS5980823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19002282A JPS5980823A (en) 1982-10-30 1982-10-30 Monitoring method of slope degradation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19002282A JPS5980823A (en) 1982-10-30 1982-10-30 Monitoring method of slope degradation

Publications (1)

Publication Number Publication Date
JPS5980823A true JPS5980823A (en) 1984-05-10

Family

ID=16251065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19002282A Pending JPS5980823A (en) 1982-10-30 1982-10-30 Monitoring method of slope degradation

Country Status (1)

Country Link
JP (1) JPS5980823A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156428A (en) * 1985-06-03 1987-07-11 Tetsuya Iseda Predicting sensor for degradation of slope by rain water
JP2000035348A (en) * 1998-07-16 2000-02-02 Mitsui Bussan Plant Kk Monitoring apparatus for ground
JP2009293997A (en) * 2008-06-03 2009-12-17 East Nippon Expressway Co Ltd Landslide prediction system
CN110924408A (en) * 2019-12-11 2020-03-27 冯翠娟 Highway side slope landslide prevention device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4899902A (en) * 1972-03-31 1973-12-17

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4899902A (en) * 1972-03-31 1973-12-17

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156428A (en) * 1985-06-03 1987-07-11 Tetsuya Iseda Predicting sensor for degradation of slope by rain water
JP2000035348A (en) * 1998-07-16 2000-02-02 Mitsui Bussan Plant Kk Monitoring apparatus for ground
JP2009293997A (en) * 2008-06-03 2009-12-17 East Nippon Expressway Co Ltd Landslide prediction system
CN110924408A (en) * 2019-12-11 2020-03-27 冯翠娟 Highway side slope landslide prevention device
CN110924408B (en) * 2019-12-11 2021-06-04 胡小青 Highway side slope landslide prevention device

Similar Documents

Publication Publication Date Title
US10684112B2 (en) Structure for monitoring stability of existing subgrade/slope and construction method thereof
CN104831762B (en) Deep basal pit artesian water precipitation dynamic monitoring system and monitoring method
CN104111091B (en) A kind of mud-rock flow mechanics parameter monitoring method and debris flow early-warning method
CN106894821B (en) It is a kind of originate, the monitoring method of received well and jacking construction
JP5473760B2 (en) Pore water pressure measuring device, soft ground improvement method using it, ground dynamics grasping method for underground buried objects, and ground dynamics grasping method for embankment structures
CN111123365B (en) Goaf lagging water inrush early warning system based on natural potential method and application method thereof
TWI416438B (en) Swing type apparatus for sensing debris flow and method of sensing debris flow thereby
CN113902351A (en) Swedish striping method-based tailing pond dam slope anti-slip stability analysis method
Sheikh et al. Rainfall-induced unstable slope monitoring and early warning through tilt sensors
KR100812389B1 (en) Measurement method for observation of landslide
JPS5980823A (en) Monitoring method of slope degradation
RU2393290C2 (en) Method for monitoring safety of earth dam and device for its implementation
Wang et al. Displacement monitoring and physical exploration on the Shuping landslide reactivated by impoundment of the Three Gorges Reservoir, China
CN108230626B (en) Debris flow early warning system based on Internet of things
Wang et al. Deformation and failure mechanism of Yanjiao rock slope influenced by rainfall and water level fluctuation of the Xiluodu hydropower station reservoir
Navin et al. Example of 2D finite element analyses to inform backward erosion piping evaluation of a typical levee cross-section
CN113804153A (en) Liquid level control variable resistance type omnibearing telescopic device for monitoring deep soil deformation
JPS6160208B2 (en)
Swanston et al. Rate and mechanics of progressive hillslope failure in the Redwood Creek basin, northwestern California
JP3786765B2 (en) Structure scour monitoring equipment
CN208857832U (en) A kind of open caisson mechanism at band bottom
CN212052682U (en) Simple automatic alarm device for monitoring water level change and deformation around foundation pit
CN216791179U (en) Automatic monitoring system for longitudinal differential settlement of underground structure
JP2000111389A (en) Detecting device for underground water level
Drusa et al. Functionality of TDR piezometers and inclinometers for monitoring of slope deformations