JPS5979151A - Determination of nitrate ion - Google Patents

Determination of nitrate ion

Info

Publication number
JPS5979151A
JPS5979151A JP18972282A JP18972282A JPS5979151A JP S5979151 A JPS5979151 A JP S5979151A JP 18972282 A JP18972282 A JP 18972282A JP 18972282 A JP18972282 A JP 18972282A JP S5979151 A JPS5979151 A JP S5979151A
Authority
JP
Japan
Prior art keywords
electrode
nitrate ions
ions
hydrochloric acid
uranyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18972282A
Other languages
Japanese (ja)
Inventor
Tokio Oodo
大戸 時喜雄
Kenji Harada
健治 原田
Hisao Osawa
大沢 久男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP18972282A priority Critical patent/JPS5979151A/en
Publication of JPS5979151A publication Critical patent/JPS5979151A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PURPOSE:To enable simply and efficiently measurement by an inexpensive electrode by using an amalgamated copper electrode as a working electrode in the presence of hydrochloric acid in a prescribed concentration and uranyl ions and measuring a polarogram. CONSTITUTION:After an enameled copper wire 1 polished at a top end is inserted into a tapered glass tube at a top end and fixed with epoxy resin 3, the top end 4 of the copper wire 1 is immersed in mercury 5 under hydrochloric acid 6 to form an amalgamated layer 7. By using this body, a saturated calomel electrode and a platinum coil as a working electrode, a reference electrode 10 and a counter electrode 9 respectively, nitrate ions are measured by a direct current polarograph and a differential pulse polarograph 13 in the presence of an electrolyte 12 incorporating 10<-4>-0.1M hydrochloric acid and 0.02-1.0mM UO2<2+>. The measured results are recorded and indicated on a recorder 14. By this method, a trace quantity of nitrate ions are measured rapidly, efficiently and sensitively over the wide range of potential, and without effect of coexistent substances.

Description

【発明の詳細な説明】 本発明は試料溶液中の硝酸イオンを定量する方法に関す
るものである。この種の物質の定量は、環境計測、土壌
分析9食品添加物の分析などにおいてきわめて重要であ
り、高精度かつ簡便に定量する方法が強く要請されてい
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for quantifying nitrate ions in a sample solution. Quantification of this type of substance is extremely important in environmental measurement, soil analysis 9 food additive analysis, etc., and a highly accurate and simple method for quantifying it is strongly required.

従来、硝酸イオンのポーラログラフ法による分析では、
0.01 MHCl 、 0.2 mMウラニルイオン
存在下で滴下水銀電極を用いて、硝酸イオンの還元波を
観測していた。しかしこの方法では、多量の廃水銀が出
る上に、電流感度を規制する電極表面積に限界があるた
め、微量な硝酸イオンの定量は困難である。また、他に
電位差測定法として硝酸イオン選択性電極を用いて、硝
酸イオンを定量する方法があるが、共存物質の影響が非
常に大きくかつ電極の寿命にも問題があると指摘されて
いる。他に、酵素反応を利用して測定する方法として、
硝酸レダクターゼおよび亜硝酸レダクターゼを用いて硝
酸イオンからアンモニウムイオンを生成させ、アンモニ
ウムイオン電極あるいはアンモニアガス電極で定量する
方法が報告されているが、この方法は硝酸レダクターゼ
が一般に高価でかつ入手が難しいため実用的ではない。
Conventionally, in polarographic analysis of nitrate ions,
Reduction waves of nitrate ions were observed using a dropping mercury electrode in the presence of 0.01 MHCl and 0.2 mM uranyl ions. However, this method produces a large amount of waste mercury and has a limited electrode surface area that regulates current sensitivity, making it difficult to quantify trace amounts of nitrate ions. Another potential difference measurement method is to quantify nitrate ions using a nitrate ion-selective electrode, but it has been pointed out that the influence of coexisting substances is very large and that there are problems with the lifespan of the electrode. In addition, as a measurement method using an enzymatic reaction,
A method has been reported in which ammonium ions are generated from nitrate ions using nitrate reductase and nitrite reductase and quantitatively determined using an ammonium ion electrode or an ammonia gas electrode, but this method is difficult to obtain because nitrate reductase is generally expensive and difficult to obtain. Not practical.

本発明の主たる目的は試料中の硝酸イオンをポーラログ
ラフ法によってより簡便かつ高精度に定量するこ吉にあ
る。具体的な目的は、従来のポーラログラフ法で硝酸イ
オン定量に用いられていた滴下水銀電極に代わり、同様
の特性を持ち、しかも扱い易い電極を作製し、硝酸イオ
ンの定量に適した測定条件を見いだすことである。
The main object of the present invention is to more easily and accurately quantify nitrate ions in a sample by the polarographic method. The specific objective is to create an electrode that has similar characteristics and is easy to handle in place of the dropping mercury electrode used to quantify nitrate ions in the conventional polarographic method, and to find measurement conditions suitable for quantifying nitrate ions. That's true.

本発明者らは、上述の目的のもとに、ゆアマルガム電極
を作製し、銅アマルガム電極を作用電極さする電流測定
法による硝酸イオンの定量法を発明した。
For the above-mentioned purpose, the present inventors created a copper amalgam electrode and invented a method for quantifying nitrate ions by amperometric measurement using a copper amalgam electrode as the working electrode.

ウラニルイオン(UO? )を触媒とした硝酸イオンの
電極還元反応は、(1)式で示されるように、5電子還
元であると報告されている。
It has been reported that the electrode reduction reaction of nitrate ions using uranyl ions (UO?) as a catalyst is a five-electron reduction, as shown by equation (1).

No、 + 6H+ 5e −) 172 N、+、 
3H20(i)0、OIMHct、 0.2mMUO,
c7.存在下で滴下水銀電極を用いて測定した硝酸イオ
ンの還元波は、はぼ−1,0Vvs、SCEに現われ、
硝酸イオン濃度に比例して波高が増大する。
No, + 6H+ 5e -) 172 N, +,
3H20(i)0, OIMHct, 0.2mMUO,
c7. The reduction wave of nitrate ions measured using a dropping mercury electrode in the presence of -1,0 V vs. SCE appears,
The wave height increases in proportion to the nitrate ion concentration.

本発明の測定原理は上述の通りであるが、本発明では、
滴下水銀電極の代わりに、銅アマルガム電極を用いるこ
とが特徴である。一般に金属固体電極の水素過電、圧は
低く、特に酸性溶液中では甚し1.<、そのために硝酸
イオンの分析には適さない。
The measurement principle of the present invention is as described above, but in the present invention,
The feature is that a copper amalgam electrode is used instead of a dropping mercury electrode. In general, the hydrogen overvoltage and pressure of metal solid electrodes is low, and especially in acidic solutions, the hydrogen overvoltage is extremely low. <, Therefore, it is not suitable for analysis of nitrate ions.

その点、水銀は水素過電圧が高く、硝酸の還元波が十分
に観測できる。そこで、本発明では固体雷。
On the other hand, mercury has a high hydrogen overvoltage, and the reduction waves of nitric acid can be fully observed. Therefore, in the present invention, solid lightning is used.

極と水銀電極との利点を生かそうと考え、銅表面に水銀
をアマルガム層しで電極さして用いたところ、以下の実
施例に示すような良好な結果を得た。
In order to take advantage of the advantages of the electrode and the mercury electrode, we used an amalgam layer of mercury on the copper surface and used it as an electrode, and we obtained good results as shown in the following examples.

第1図に銅アマルガム電極の作製方法を示す。FIG. 1 shows a method for manufacturing a copper amalgam electrode.

先ず、第1図(5)に示すように、先端を細くしたガラ
ス管に予め先端を磨いておいた銅エナメル線1を差し込
み、エポキシ樹脂3で固定する。樹脂が硬化した後、第
1図(B)に示すように、希塩酸6中の水銀5に先端の
@線4部分を浸し、表面を十分に水銀で被覆する。最後
に、@1図(C)に示す電極先端は十分水洗する。なお
、7はアマルガム層である。
First, as shown in FIG. 1 (5), a copper enamelled wire 1 whose tip has been polished in advance is inserted into a glass tube with a thin tip and fixed with an epoxy resin 3. After the resin has hardened, as shown in FIG. 1(B), the @ wire 4 portion at the tip is immersed in mercury 5 in dilute hydrochloric acid 6 to fully coat the surface with mercury. Finally, thoroughly wash the electrode tip shown in Figure 1 (C) with water. Note that 7 is an amalgam layer.

第2図に本実験に用いたポーラログラフ測定の系統図を
示す。測定は精度向上を図るため3電極刃式で行なった
。参照電極10および対極9にはそれぞれ飽和カロメル
電極(scE)および白金コイルを用い、作用電極8に
第1図にて作成された銅アマルガム電4医を用いた。ポ
ーラログラフアナライザー13は市販の装置を用いるこ
とができる。なお、箱2図において、11は窒素ガス吹
込みパイプ、12は電解液、14はレコーダである。
Figure 2 shows a system diagram of the polarographic measurement used in this experiment. Measurements were performed using a three-electrode blade method to improve accuracy. A saturated calomel electrode (scE) and a platinum coil were used as the reference electrode 10 and the counter electrode 9, respectively, and a copper amalgam electrode prepared as shown in FIG. 1 was used as the working electrode 8. A commercially available device can be used as the polarographic analyzer 13. In addition, in the box 2 diagram, 11 is a nitrogen gas blowing pipe, 12 is an electrolytic solution, and 14 is a recorder.

本発明者らは、上述の(1)式で示された測定条件を検
討したところ、塩酸の濃度は10−4〜0.1Mの範囲
で、またUO,は0.02〜0.1mMの範囲で測定可
能であることをつきつめたが、最適条件は上述の(1)
式についての報告さ同様、塩酸は0.01 M1F 00、  は0.2mMであった。従って、測定溶液は
すべて0.01 M Oct、 0.2 mM UO2
を含む水溶液である。
The present inventors investigated the measurement conditions shown in equation (1) above, and found that the concentration of hydrochloric acid was in the range of 10-4 to 0.1M, and UO, was in the range of 0.02 to 0.1mM. Although we have determined that it is possible to measure within the range, the optimal condition is (1) above.
As reported for the formula, hydrochloric acid was 0.01 M1F 00 and 0.2 mM. Therefore, all measurement solutions were 0.01 M Oct, 0.2 mM UO2
It is an aqueous solution containing.

測定は室温(25〜26’O)で行ない、必要に応じて
窒素ガスにより溶存酸素を除いた。
Measurements were performed at room temperature (25-26'O), and dissolved oxygen was removed with nitrogen gas as necessary.

実施例1 以上の条件下で直流ポーラログラフ法で測定した硝酸イ
オンの還元波を第3図に示す。特性線15は硝酸イオン
が存在しない場合の電流−雷1位曲線で、UO2(71
)R発液カー1.OVvs、SCE lc現ワt1.テ
ィる。特性線16は硝酸イオンを0.1 mMに調製し
た場合のd流−電位曲線である。これらの曲線は滴下水
銀電極を用いた場合と全く同じものである。
Example 1 Figure 3 shows the reduction wave of nitrate ions measured by DC polarography under the above conditions. Characteristic line 15 is the current-lightning 1st curve when nitrate ions are not present, and UO2 (71
) R liquid emitting car 1. OVvs, SCE lc current t1. Tiru. Characteristic line 16 is a d current-potential curve when nitrate ion is adjusted to 0.1 mM. These curves are exactly the same as when using a dropping mercury electrode.

第4図は、硝酸イオン濃度を変化させ還元波から得られ
る拡散電流値を濃度に対してプロットしたものである。
FIG. 4 is a graph in which the diffusion current value obtained from the reduction wave is plotted against the concentration while changing the nitrate ion concentration.

硝酸イオン濃度0.05mM (0,31mgNO,/
dL )から0.8 mM (5mg NO,/dt 
)の範囲では良い直線関係が得られている。さらに、低
い濃度領域では、電位の掃引速度を大きくすることによ
って感度を向上させることが可能である。使用するUO
:”イオンは酢酸ウラニルさ塩化ウラニルから調製する
ことができる。
Nitrate ion concentration 0.05mM (0.31mgNO,/
dL ) to 0.8 mM (5 mg NO,/dt
), a good linear relationship is obtained. Furthermore, in a low concentration region, sensitivity can be improved by increasing the potential sweep speed. UO to use
:”The ion can be prepared from uranyl acetate and uranyl chloride.

実施例2 直流ポーラログラフ法と同溶液売件下で微分パルスポー
ラログラムを測定した結果を第5図に示す。この第5図
において、特性線17は硝酸イオンが存在しない場合の
電流−電位曲線、特性線18は硝酸イオンを0.2mM
に調整した場合の電流−電位曲線である。硝酸イオンの
還元ピークは−1,03Vvs、SCEのウラニルイオ
ンの還元ピークにほぼ重なって現われる。このピーク電
流値は硝酸イオンの濃度QjmM〜1.QmMで良い関
係を示す。この方法の特徴は、(])電流値がピーク状
て力えらオ9.るため−1,2Vv、、 S CE付近
から立ち上がる水素波との区別が容易であること、(2
)ピーク1F流を与えるピーク電位が直流ポーラログラ
ムやパルスポーラログラムの半波電位と近い値をとるた
め還元波の■位シフトを把握しゃすいこ吉などである。
Example 2 The results of measuring a differential pulse polarogram using the DC polarography method and the same solution conditions are shown in FIG. In FIG. 5, a characteristic line 17 is a current-potential curve in the absence of nitrate ions, and a characteristic line 18 is a current-potential curve when nitrate ions are present at 0.2mM.
This is a current-potential curve when adjusted to . The reduction peak of nitrate ions appears at -1,03 Vvs, almost overlapping with the reduction peak of uranyl ions in SCE. This peak current value depends on the concentration of nitrate ions QjmM~1. A good relationship is shown in QmM. The feature of this method is that (]) the current value is peak-shaped and the power gills are 9. -1,2Vv, S It is easy to distinguish from hydrogen waves rising from around CE, (2
) Because the peak potential that gives the peak 1F current takes a value close to the half-wave potential of the DC polarogram or pulsed polarogram, it is important to understand the shift of the reduction wave.

以上2つの実施例では、溶液中の溶存酸素を窒素ガスで
置換除去して測定を行ったが、酸素溶存状態においても
良好な結果が得られた。すなわち、直流ポーラログラム
の拡散W、電流値および微分パルスポーラログラムのピ
ーク+1?、流f1uは脱j浚素状態き同様に硝酸イオ
ン濃度と直稈ト′−1係のあるこみが見い出さ11た。
In the above two examples, measurements were performed by replacing and removing dissolved oxygen in the solution with nitrogen gas, but good results were obtained even in the state where oxygen was dissolved. That is, the diffusion W of the DC polarogram, the current value, and the peak of the differential pulse polarogram +1? Similarly to the de-dredging state, it was found that in the stream f1, there was a lot of waste that had a relationship between the nitrate ion concentration and the straight culm'-1.

本発明によれば、作用電極吉して、滴下水銀・t「。According to the invention, the working electrode is preferably a drop of mercury.

極の代わりに、銅アマルガム進極を用いて硝酸イオンの
ポーラログラムを画定しているため、次のような効果が
ある。
Instead of poles, copper amalgam progressive poles are used to define the polarogram of nitrate ions, resulting in the following effects.

(1)電極反応および宙、極飛位を滴下水銀′電極上同
様に扱える。
(1) Electrode reactions, aerial and polar jumps can be handled in the same way as on a dropping mercury electrode.

(2)一般の金属電極(例えば白金)と異なり酸性溶液
中でも水素過重圧フ1<太きい。そのため、広い電位領
域にわたってj′T!元波を発液できる。
(2) Unlike general metal electrodes (for example, platinum), hydrogen overpressure is large even in acidic solutions. Therefore, j′T! over a wide potential range! Can emit original waves.

(3)滴下水銀電極と異なり、静IF雷、極なので電位
の掃引速度を大きくすることにより′【n、流値の感度
を向上させることができる。
(3) Unlike a dropping mercury electrode, since it is a static IF lightning electrode, the sensitivity of the flow value can be improved by increasing the potential sweep speed.

(4)滴下水銀1h、極に比べ、使用する水銀の量が非
常に少ないため取り扱いが容易である。
(4) The amount of mercury used is very small compared to the dripping mercury 1h electrode, making it easier to handle.

(5)本発明では銅エナメル8Jpを使用しているため
、N、極が安価で容易に作製できろ。
(5) Since copper enamel 8Jp is used in the present invention, the N electrode can be manufactured easily and at low cost.

(6)共存イオンの還元1バ位が一般に硝酸イオンのそ
I″l、とは異なるため、硝酸イオンのみの還元電流を
測定できる。
(6) Since the reduction 1 position of coexisting ions is generally different from that of nitrate ions, the reduction current of only nitrate ions can be measured.

本発明は、硝酸イオンの他、亜硝酸イオン、ヨウ素酸イ
オンなどの定量にも応用できる。またウラニルイオンの
他に、La  およびCe を用いてもポルタンメトリ
ーの作用電極さして広く用いるこさができる。
The present invention can also be applied to quantifying nitrite ions, iodate ions, etc. in addition to nitrate ions. In addition to uranyl ions, La and Ce can also be used widely as working electrodes for portammetry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に用いら才1.る銅アマルガム
電極の作製工程を示す工程図、第2図はポーラログラフ
測定の概略図、第3図は本発明の実施例の銅アマルガム
電極を用いた硝酸イオンのポルタモグラム、第4図は本
発明の実施の効果を示す拡散電流−硝酸イオン濃度特性
図、第5図は本発明の実施例を示す硝酸イオンの微分パ
ルスポーラログラムである。 1・・・銅エナメル線、5・・・水銀、7・・・アマル
ガム層、8・・・銅アムルガム電極、】2・・・′r4
i解液、13・・・ポーラログラフアナライザー。 (Aン                      
    (B)                  
  (Cツヤ1閃 /、d ′f2(3) E/v vs3cE 才30 0  0、f   θ、2  θ、3  0.4   
υ、5 0石  0.8CtJINOs3 / 777
M 才4 (3) 9QA E/V  vs、5CE ′f’、ff図
FIG. 1 shows the structure 1 used in the embodiment of the present invention. FIG. 2 is a schematic diagram of polarographic measurement, FIG. 3 is a portammogram of nitrate ions using the copper amalgam electrode of the embodiment of the present invention, and FIG. A diffusion current-nitrate ion concentration characteristic diagram showing the effect of the implementation, and FIG. 5 is a differential pulse polarogram of nitrate ions showing an example of the present invention. 1... Copper enamelled wire, 5... Mercury, 7... Amalgam layer, 8... Copper amulgam electrode, ]2...'r4
i solution, 13...polarographic analyzer. (A
(B)
(C gloss 1 flash/, d'f2(3) E/v vs3cE age 30 0 0, f θ, 2 θ, 3 0.4
υ, 50 stones 0.8CtJINOs3 / 777
M age 4 (3) 9QA E/V vs, 5CE 'f', ff diagram

Claims (1)

【特許請求の範囲】 1)所定濃度の塩酸とウラニルイオンとの存在下で銅ア
マルガム電極を作用電極として電流測定法により試料中
の硝酸イオンを定量することを特徴とする硝酸イオンの
定量法。 2、特許請求の範囲第1項記載の硝酸イオンの定量法に
おいて、電解液の塩酸濃度は10−4〜0.1M。 ウラニルイオンの濃度は0.02〜1.QrrillJ
の濃度範囲であることを特徴とする硝酸イオンの定量法
。 3)特許請求の範囲第1項または第2項記載の硝酸イオ
ンの定量法において、ウラニルイオンは塩化ウラニルま
たは酢酸ウラニルから調製されることを特徴とする硝酸
イオンの定量法。 4)特許請求の範囲第1項から第3項のいずれかに記載
の硝酸イオンの定量法において、電流測定法は直流ポー
ラログラフ、微分パルスポーラログラフにより行なわれ
ることを特徴とする硝酸イオンの定着法。 5)特許請求の範囲第1項から第4項のし)ずI′L、
かに記載の硝酸イオンの定量法において、銅アマルガム
電極は水銀を用いて作製されることを特徴とする硝酸イ
オンの定量法。
[Scope of Claims] 1) A method for quantifying nitrate ions, which comprises quantifying nitrate ions in a sample by amperometric method using a copper amalgam electrode as a working electrode in the presence of a predetermined concentration of hydrochloric acid and uranyl ions. 2. In the method for determining nitrate ions as set forth in claim 1, the hydrochloric acid concentration of the electrolyte is 10-4 to 0.1M. The concentration of uranyl ions is between 0.02 and 1. QrrillJ
A method for quantifying nitrate ions characterized by a concentration range of . 3) A method for quantifying nitrate ions according to claim 1 or 2, characterized in that uranyl ions are prepared from uranyl chloride or uranyl acetate. 4) A method for determining nitrate ions according to any one of claims 1 to 3, characterized in that the amperometric method is carried out by direct current polarography or differential pulse polarography. 5) Claims 1 to 4) I'L,
2. The method for quantifying nitrate ions described in claim 1, wherein the copper amalgam electrode is prepared using mercury.
JP18972282A 1982-10-28 1982-10-28 Determination of nitrate ion Pending JPS5979151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18972282A JPS5979151A (en) 1982-10-28 1982-10-28 Determination of nitrate ion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18972282A JPS5979151A (en) 1982-10-28 1982-10-28 Determination of nitrate ion

Publications (1)

Publication Number Publication Date
JPS5979151A true JPS5979151A (en) 1984-05-08

Family

ID=16246090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18972282A Pending JPS5979151A (en) 1982-10-28 1982-10-28 Determination of nitrate ion

Country Status (1)

Country Link
JP (1) JPS5979151A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1328797B1 (en) * 2000-09-15 2010-03-10 Knut H. Schröder Usage of a bismuth alloy electrode for voltammetric analysis
CN102445468A (en) * 2011-09-29 2012-05-09 重庆大学 Electrode for determining nitrate concentration in solution and manufacturing method thereof
CN105241945A (en) * 2015-09-30 2016-01-13 中国工程物理研究院材料研究所 Sensor for detecting uranyl ions, and making method and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1328797B1 (en) * 2000-09-15 2010-03-10 Knut H. Schröder Usage of a bismuth alloy electrode for voltammetric analysis
CN102445468A (en) * 2011-09-29 2012-05-09 重庆大学 Electrode for determining nitrate concentration in solution and manufacturing method thereof
CN105241945A (en) * 2015-09-30 2016-01-13 中国工程物理研究院材料研究所 Sensor for detecting uranyl ions, and making method and application thereof
CN105241945B (en) * 2015-09-30 2017-10-27 中国工程物理研究院材料研究所 A kind of sensor, its preparation method and application detected for uranyl ion

Similar Documents

Publication Publication Date Title
Yosypchuk et al. Use of solid amalgam electrodes in nucleic acid analysis
Alemu et al. Differential pulse anodic stripping voltammetric determination of copper (II) with N-phenylcinnamohydroxamic acid modified carbon paste electrodes
CN106442659B (en) The active method of electrochemical sensing electrode quantitative detection 8-OhdG based on aniline deposition
Ostapczuk et al. Determination of cadmium, lead and copper in wine by potentiometric stripping analysis
Barek et al. Voltammetric Determination of N, N‐Dimethyl‐4‐amine‐carboxyazobenzene at a Silver Solid Amalgam Electrode
Piech et al. Sensitive and fast determination of papaverine by adsorptive stripping voltammetry on renewable mercury film electrode
CN105738441B (en) A kind of modified glassy carbon electrode and its preparation method and application
CN1916617B (en) Method for measuring density of corrosion inhibitor
Lee Electrochemical phenomena at a rotating mercury electrode. I. Reduction of metal ions
US3856634A (en) Method for measuring dissolved oxygen in aqueous solution using tungsten bronzes as a potentiometric indicating electrode
JPS5979151A (en) Determination of nitrate ion
Florence Differential potentiometric determination of parts per billion chloride with ion-selective electrodes
Radić Determination of nanomole amounts of aluminium by use of a fluoride ion-selective electrode
JP2003329564A (en) METHOD AND APPARATUS FOR MEASURING VALUE OF pH INSIDE THIN FILM ON SURFACE OF METAL
Shoemaker Polarographic determination of traces of fluoride and iron
Legault et al. Linear Polarization Measurements In the Study of Corrosion Inhibition
Rievaj et al. Determination of mercury in high-purity gallium arsenide using a gold-fibre voltammetric microelectrode
JPS6073450A (en) Quantitative determination of nitrate ion
Nagy et al. Amperometric air gap cell for the measurement of free cyanide
Hasebe et al. Trace determination of germanium by means of adsorption waves in differential-pulse polarography
Kolar et al. Chemically treated silver electrodes for the determination of cysteine
Shams Determination of trace amounts of copper by adsorptive stripping voltammetry
RU2330274C1 (en) Voltammetric method of silver detection in aqueous media
Young et al. Potentiometric determination of sulfur dioxide in flue gases with an ion selective lead electrode
Jemelková et al. Electroanalysis of some catecholamines at a single-wall nanotubes modified carbon paste electrode