JPS5978589A - Photo semiconductor device - Google Patents

Photo semiconductor device

Info

Publication number
JPS5978589A
JPS5978589A JP18815582A JP18815582A JPS5978589A JP S5978589 A JPS5978589 A JP S5978589A JP 18815582 A JP18815582 A JP 18815582A JP 18815582 A JP18815582 A JP 18815582A JP S5978589 A JPS5978589 A JP S5978589A
Authority
JP
Japan
Prior art keywords
spherical lens
chip
hole
semiconductor laser
tapered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18815582A
Other languages
Japanese (ja)
Inventor
Kenji Kobayashi
憲治 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18815582A priority Critical patent/JPS5978589A/en
Publication of JPS5978589A publication Critical patent/JPS5978589A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor

Abstract

PURPOSE:To enhance the coupling efficiency of a semiconductor laser chip output to a glass fiber and thus improve the reproducibility by holding a spherical lens by means of a tapered through hole having the same axis as the center axis of a laser light flux. CONSTITUTION:A stem 2 loaded with the semiconductor laser chip 1 has the tapered through hole 9 in proximity to the chip, and the center axis of the tapered hole 9 is so processed and arranged with accuracy as to be coincident with the optical axis of the laser light passing through the chip 1 and the glass fiber 5. The distance between the laser light radiation surface of the chip 1 and the surface of the spherical lens is adjusted at an appropriate value according to the diameter and the refractive index of the spherical lens. The spherical lens can be easily arranged within the distance by suitably selecting the tapered angle and the diameter of the hole 9.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は光半導体装置の構造に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to the structure of an optical semiconductor device.

〔発明の技術的背景及びその問題点〕[Technical background of the invention and its problems]

近年、光伝送用発光素子としての半導体レーザおよび発
光ダイオードの技術的進歩は著しく、一部はすでに実用
化の段階にきている。光伝送用光源の進歩にともない、
光伝送システムも長距離化、高度化の傾向(ヨ′あり、
これが更に発光素子の高性能化に拍車をかけている。光
伝送用ガラスファイバとしてコア径50μm、クラツド
径125μmのものが、一般番二多く用いられている。
In recent years, the technological progress of semiconductor lasers and light emitting diodes as light-emitting elements for optical transmission has been remarkable, and some of them have already reached the stage of practical use. With the advancement of light sources for optical transmission,
Optical transmission systems are also becoming longer-distance and more sophisticated.
This has further spurred improvements in the performance of light-emitting devices. Glass fibers with a core diameter of 50 μm and a cladding diameter of 125 μm are most commonly used as optical transmission glass fibers.

したがって、コア径50μmのカラスファイバf二、発
光素子から放射した光をできる限り多く入れること(以
後ガラスファイバへの光結合という)が伝送システムを
設計する上で有利となる。このため、光伝送用光源とし
ての半導体装置の開発ではガラスファイバへの光結合を
大きくするため、いろいろ工夫されている。第1図は、
レーザダイオードのガラスファイバへの光結合を示す従
来例である。半導体レーザチップ(1)を搭載したステ
ム(2)と、前記半導体レーザチップ(1)を内蔵する
ように配設されたキャップ(8)とは接触面(4)で気
密封じされている0キヤツプ(8)には、内蔵した半導
体レーザチップ(1)から放射されたレーザ光を外部(
二取り出すためのガラス窓(8)が設けられている。半
導体レーザチップ(1)とステム(2)およびキャップ
(8)とから成る半導体レーザダイオード叫とガラスフ
ァイバ(5)との間には、光結合を増大するため球状レ
ンズ(6)が配筒さね1、前記球状レンズ(6)は例え
ば透明シリコーン樹脂(γンでガラス窓(8)上に固定
される。また球状レンズ(6)はガラス窓(8)上では
なく、ガラスファイバ(5)の先端に固定される場合も
ある(図示せず)0以上の従来例では、半導体レーザチ
ップ(1)から放射したレーザ光はガラス窓(8)を透
過し、球状レンズ(6)で集束され、ガラスファイバ(
5)に入射する。
Therefore, it is advantageous in designing a transmission system to incorporate as much light emitted from the light emitting element as possible into the glass fiber f2 with a core diameter of 50 μm (hereinafter referred to as optical coupling to the glass fiber). For this reason, in the development of semiconductor devices as light sources for optical transmission, various efforts have been made to increase optical coupling to glass fibers. Figure 1 shows
This is a conventional example showing optical coupling of a laser diode to a glass fiber. A stem (2) on which a semiconductor laser chip (1) is mounted and a cap (8) disposed to house the semiconductor laser chip (1) are an O cap that is hermetically sealed at a contact surface (4). (8) The laser beam emitted from the built-in semiconductor laser chip (1) is transmitted to the outside (
A glass window (8) is provided for taking out the contents. A spherical lens (6) is disposed between the glass fiber (5) and the semiconductor laser diode consisting of the semiconductor laser chip (1), stem (2), and cap (8) to increase optical coupling. 1. The spherical lens (6) is fixed on the glass window (8) with, for example, transparent silicone resin (gamma). Also, the spherical lens (6) is not fixed on the glass window (8), but on the glass fiber (5). (not shown) In the conventional example, the laser light emitted from the semiconductor laser chip (1) passes through the glass window (8) and is focused by the spherical lens (6). , glass fiber (
5).

この場合半導体レーザチップ(1)2球状レンズ(6)
およびガラスファイバ(6)が同一光軸(A)上にあり
、かつ半導体レーザチップ(1)と球状レンズ(6)お
よび前記球状レンズとガラスファイバ(6)との間隔が
それぞれ適当に調整されていなければならない。
In this case, the semiconductor laser chip (1), 2 spherical lenses (6)
and the glass fiber (6) are on the same optical axis (A), and the distances between the semiconductor laser chip (1) and the spherical lens (6) and between the spherical lens and the glass fiber (6) are respectively adjusted appropriately. There must be.

このような従来例においては次の欠点を有する。Such conventional examples have the following drawbacks.

まず、ガラス窓(8)上に、光軸(A)に合せて球状レ
ンズ(6)を配設し、固定することが極めて困難である
こと、球状レンズ(6)はシリコーン樹脂(7)のみで
固定されているため、温度変動によって球状レンズが光
軸(A)からずれることがあり、その為ファイバへの光
結合l二も変動が生じ易いこと、また、半導体レーザチ
ップ(1)0球状レンズ(6)およ’CF カラスファ
イバ(6)を同時j二元軸方向およびそれに垂直な平面
内で調整する必要があり、調整治具、方法が複雑となり
再現性が悪く、半導体レーザチップ出力のガラスファイ
バへの結合効率は3o±8%である。
First, it is extremely difficult to arrange and fix the spherical lens (6) on the glass window (8) in alignment with the optical axis (A), and the spherical lens (6) is made of only silicone resin (7). Since the spherical lens is fixed at It is necessary to simultaneously adjust the lens (6) and the CF glass fiber (6) in the direction of the binary axis and in a plane perpendicular to it, which makes the adjustment jig and method complicated, resulting in poor reproducibility and the output of the semiconductor laser chip. The coupling efficiency to the glass fiber is 3o±8%.

〔発明の目的〕[Purpose of the invention]

本発明は従来例のこのような欠点を除去し、安定した光
結合と再現性の優iた光半導体装置を提供するものであ
る。
The present invention eliminates these drawbacks of the conventional example and provides an optical semiconductor device with stable optical coupling and excellent reproducibility.

〔発明の概要〕[Summary of the invention]

本発明は半導体レーザチップと、この半導体レーザチッ
プからのレーザ来光を集束し光ファイバに導くための球
状レンズとを有する光半導体装置において、 前記球状レンズは、前記半導体レーザチップと光ファイ
バとの中間にあって前記レーザ光束の中心軸と同一軸を
有するテーパ状貫通孔!−よって保持されることを特徴
とする光半導体装置である。
The present invention provides an optical semiconductor device comprising a semiconductor laser chip and a spherical lens for converging laser light from the semiconductor laser chip and guiding it to an optical fiber. A tapered through hole located in the middle and having the same axis as the central axis of the laser beam! - An optical semiconductor device characterized in that it is held by:

〔発明の実施例〕[Embodiments of the invention]

以下図面イニおいて本発明の詳細な説明する。 The present invention will be described in detail below with reference to the drawings.

第2図は本発明の光半導体装置の一実施例を示す概略断
面図である。半導体レーザチップ(1)を搭載したステ
ム(2)は、前記半導体チップに近接してテーパ状貫通
孔(9)を有し、テーパ状の孔の中心軸は、半導体レー
ザチップ(1)とガラスファイバ(5)を辿るレーザ光
の光軸(A)と一致するよう精密(二加工され配置され
ている。半導体レーザチップのレーザ光放射面と球状レ
ンズ表面の距離は、球状レンズの直径、屈折率によって
適正な値に調整されなければならない。例えば直径2闘
屈折率1.7の球状レンズの場合には、前記距離は0.
6±0.IN程度に調整される必要がある。本発明によ
れば、テーパ状貫通孔(9)のテーパ角度、孔径を適当
5二選ぶことによって前記距離内(二球レンズを容易に
配設することができる。テーパ状貫通孔のテーパ角度θ
(第3図)は20〜300が好ましい。また本発明の構
造によれば、貫通孔のテーパ面と球状レンズの表面は常
に接触しているため、従来例で述べたような温度変化に
よる球状レンズの中心線が光軸(A)からずれるのを防
ぐことができる。第2図において、キャップ(8)は半
導体レーザチップ(1)とテーパ状貫通孔(9)内に配
設された球状レンズ(6)を内蔵してステム(2)と接
触面(4)で気密封止される。
FIG. 2 is a schematic cross-sectional view showing an embodiment of the optical semiconductor device of the present invention. The stem (2) on which the semiconductor laser chip (1) is mounted has a tapered through hole (9) close to the semiconductor chip, and the central axis of the tapered hole is located between the semiconductor laser chip (1) and the glass. It is precisely machined and placed so that it coincides with the optical axis (A) of the laser beam tracing the fiber (5).The distance between the laser beam emission surface of the semiconductor laser chip and the spherical lens surface is determined by the diameter of the spherical lens, the refraction For example, in the case of a spherical lens with a diameter of 2 and a refractive index of 1.7, the distance should be adjusted to an appropriate value depending on the index.
6±0. It needs to be adjusted to about IN. According to the present invention, by appropriately selecting the taper angle and hole diameter of the tapered through hole (9), it is possible to easily arrange the two-sphere lens within the above distance.
(Fig. 3) is preferably 20 to 300. Furthermore, according to the structure of the present invention, the tapered surface of the through hole and the surface of the spherical lens are always in contact with each other, so that the center line of the spherical lens may shift from the optical axis (A) due to temperature changes as described in the conventional example. can be prevented. In Figure 2, the cap (8) has a built-in semiconductor laser chip (1) and a spherical lens (6) disposed in the tapered through hole (9), and is connected to the stem (2) and the contact surface (4). Hermetically sealed.

したがって、ガラスファイバ(6)への光結合は、球状
l/ンズ(6)で集束され、光取出し窓(8)を透過し
たレーザ光とガラスファイバ(5ンを光軸方向およびそ
れに垂直な方向【二調整することで達成でき、従来のよ
うに半導体レーザテップ、球状レンズおよびガラスファ
イバを同時l二調整する方法fニルべ、調聚方法・治具
が簡単で、再現性が良い。また、本発明により半導体レ
ーザチップ出力のガラスファイバへの結合効率も増大し
安定した光出力を得ることができる。
Therefore, light is coupled to the glass fiber (6) by combining the laser light that is focused by the spherical lens (6) and transmitted through the light extraction window (8) with the glass fiber (5) in the optical axis direction and in the direction perpendicular to it. [This can be achieved by adjusting the semiconductor laser tip, spherical lens, and glass fiber at the same time as in the past, the adjustment method and jig are simple, and the reproducibility is good. The invention also increases the coupling efficiency of the semiconductor laser chip output to the glass fiber, making it possible to obtain stable optical output.

〔発明の実施例〕[Embodiments of the invention]

次に本発明の詳細な説明する。波長が13ミクロンの半
導体レーザテップをコバールで製作したステム上g二通
常の方法でマウントし、半導体チップのレーザ光放射面
と球状レンズの表面の距離が06±0.1 m−になる
よう突起部にθ= 28.8°のテーパ状貫通孔を形成
し、前記テーパ状貫通孔内に直径2 iu+ 、屈折率
17の球状レンズを配設した。
Next, the present invention will be explained in detail. A semiconductor laser tip with a wavelength of 13 microns was mounted on a stem made of Kovar using the usual method, and the protrusion was mounted so that the distance between the laser beam emitting surface of the semiconductor chip and the surface of the spherical lens was 06 ± 0.1 m. A tapered through hole with an angle of θ=28.8° was formed, and a spherical lens with a diameter of 2 iu+ and a refractive index of 17 was disposed within the tapered through hole.

キャップ(81の光取出し窓を透過した光とガラスファ
イバとを光軸方向およびそれに垂直な面内で調整するこ
とによりコア径50μm NA O,21のガラスファ
イバに対して40±2%の結合効率を得ることができ、
従来の結合効率30±8%に比べ極めて良好な結果得る
ことができた。また、この半導体レーザを室温から60
℃まで繰り返し加熱しても球状レンズの位置ずれによる
光出力の変動は認められなかった。
By adjusting the light transmitted through the light extraction window of the cap (81) and the glass fiber in the optical axis direction and in the plane perpendicular to it, a coupling efficiency of 40 ± 2% is achieved for the glass fiber with a core diameter of 50 μm NA O and 21. you can get
We were able to obtain extremely good results compared to the conventional coupling efficiency of 30±8%. In addition, this semiconductor laser was
Even after repeated heating to ℃, no fluctuation in optical output due to positional deviation of the spherical lens was observed.

尚この実施例のように球状レンズの下面がテーパ状貫通
孔の下面よりも半導体レーザチップ側に突き出している
と、レーザ光受光面が広くなり効率がよい。
If the lower surface of the spherical lens protrudes further toward the semiconductor laser chip than the lower surface of the tapered through hole as in this embodiment, the laser beam receiving surface becomes wider and efficiency is improved.

〔発明の効果〕〔Effect of the invention〕

本発明は次の効果を有する。 The present invention has the following effects.

(1)半導体レーザチップ出力のガラスファイバへの結
合効率が高く、再現性が良い。
(1) The coupling efficiency of the semiconductor laser chip output to the glass fiber is high, and the reproducibility is good.

(2)温度変化による球状レンズの位置ずれに起因する
光出力の変動が認められない。
(2) No fluctuation in optical output due to positional shift of the spherical lens due to temperature change is observed.

(8)光結合方法、治具が簡単で、作業を効率化できる
(8) The optical coupling method and jig are simple, making work more efficient.

以上のように本発明は高い光結合効率と安冗した光出力
を得ることができる。本発明の要旨を半導体レーザな例
に説明したが、端面放射形発光ダイオードについても本
発明が適用できることはいうまでもない。
As described above, the present invention can provide high optical coupling efficiency and safe optical output. Although the gist of the present invention has been explained using a semiconductor laser as an example, it goes without saying that the present invention is also applicable to edge-emitting light emitting diodes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光結合を示す概略断面図、第2図は本発
明による光結合を示す概略断面図、第3図はテーバ状貫
通孔の拡大断面図である。 (1)・・・半導体レーザチップ (2)・・・ステム
(5)・・・ガラスファイバ (6)・・・球状レンズ
(9)・・・テーマ状貫通孔
FIG. 1 is a schematic sectional view showing a conventional optical coupling, FIG. 2 is a schematic sectional view showing an optical coupling according to the present invention, and FIG. 3 is an enlarged sectional view of a tapered through hole. (1)...Semiconductor laser chip (2)...Stem (5)...Glass fiber (6)...Spherical lens (9)...Thematic through hole

Claims (1)

【特許請求の範囲】[Claims] 半導体レーザチップと、この半導体レーザチップからの
レーザ来光を集束し光ファイバに導くための球状レンズ
とを有する光半導体装置において、前記球状レンズは、
前記半導体レーザチップと光ファイバとの中間にあって
前記レーザ光束の中心軸と同一軸を有するテーパ状貫通
孔(二上って保持されることを特徴とする光半導体装置
In an optical semiconductor device including a semiconductor laser chip and a spherical lens for focusing laser light from the semiconductor laser chip and guiding it to an optical fiber, the spherical lens includes:
An optical semiconductor device, characterized in that the tapered through hole is located between the semiconductor laser chip and the optical fiber and has the same axis as the central axis of the laser beam.
JP18815582A 1982-10-28 1982-10-28 Photo semiconductor device Pending JPS5978589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18815582A JPS5978589A (en) 1982-10-28 1982-10-28 Photo semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18815582A JPS5978589A (en) 1982-10-28 1982-10-28 Photo semiconductor device

Publications (1)

Publication Number Publication Date
JPS5978589A true JPS5978589A (en) 1984-05-07

Family

ID=16218711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18815582A Pending JPS5978589A (en) 1982-10-28 1982-10-28 Photo semiconductor device

Country Status (1)

Country Link
JP (1) JPS5978589A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63211783A (en) * 1987-02-27 1988-09-02 Omron Tateisi Electronics Co Semiconductor laser light source
US4811350A (en) * 1986-08-05 1989-03-07 Sharp Kabushiki Kaisha Semiconductor laser apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4811350A (en) * 1986-08-05 1989-03-07 Sharp Kabushiki Kaisha Semiconductor laser apparatus
JPS63211783A (en) * 1987-02-27 1988-09-02 Omron Tateisi Electronics Co Semiconductor laser light source

Similar Documents

Publication Publication Date Title
US4733094A (en) Bidirectional optoelectronic component operating as an optical coupling device
US4191446A (en) Directional coupling-device for multi-mode optical fibres
JP2645862B2 (en) Semiconductor light emitting device and its applied products
US4830453A (en) Device for optically coupling a radiation source to an optical transmission fiber
JPS6065705U (en) Coupling device for dielectric optical waveguide
JP2002182073A (en) Light source-optical fiber coupler
JPH06120609A (en) Light emitter and light receiver and their manufacture
JPH11305081A (en) Optical coupling structure, optical device, and method and device for manufacture thereof
US7223024B2 (en) Optical module including an optoelectronic device
JPS5978589A (en) Photo semiconductor device
US6718090B2 (en) Automatic device for assembling fiber collimator
GB2326999A (en) Optical communications apparatus with an off centre light emitter
JPH0544643B2 (en)
JPS62299091A (en) Photosemiconductor module
JPS6235304A (en) Optical waveguide circuit with lens and its manufacture
JPH04223412A (en) Receptacle-type semiconductor laser module
JP3821576B2 (en) Optical module
JPS6049283B2 (en) Optical transmission lens terminal
JPS584192Y2 (en) Optical semiconductor device
JP2002341189A (en) Optical module
JPS587652Y2 (en) Semiconductor light emitting device with lens
JPS6064313A (en) Optical fiber with lens
JP2007304298A (en) Photoactive element mounting substrate
JPS6160595B2 (en)
CN115275765A (en) SLD light emission structure