JPS5978427A - Magnetron - Google Patents

Magnetron

Info

Publication number
JPS5978427A
JPS5978427A JP18980282A JP18980282A JPS5978427A JP S5978427 A JPS5978427 A JP S5978427A JP 18980282 A JP18980282 A JP 18980282A JP 18980282 A JP18980282 A JP 18980282A JP S5978427 A JPS5978427 A JP S5978427A
Authority
JP
Japan
Prior art keywords
cathode
electrode
magnetron
spiral
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18980282A
Other languages
Japanese (ja)
Inventor
Norio Tashiro
田代 紀夫
Toshio Kawaguchi
川口 敏夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18980282A priority Critical patent/JPS5978427A/en
Publication of JPS5978427A publication Critical patent/JPS5978427A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/02Electrodes; Magnetic control means; Screens
    • H01J23/04Cathodes
    • H01J23/05Cathodes having a cylindrical emissive surface, e.g. cathodes for magnetrons

Landscapes

  • Microwave Tubes (AREA)

Abstract

PURPOSE:To economically obtain a magnetron with high mass-productivity and reliability by forming the third electrode which provides spiral protrusion and is disposed at the area near the cathode as a half-completed products divided into plural segments through the sintering of a high melting point metal. CONSTITUTION:A third electrode 60 is provided at the area near the cathode 25, this electrode 60 is provided with a conductive cylindrical base material 61 which is smaller than the spiral internal diameter of cathode 25 at the internal side of cathode 25, and a spiral protrusion 62 which is protruded at the circumference of the base material 61 and between each spiral parts of cathode 25 is also integrally provided. Moreover, this third electrode 60 is formed with a single material selected from infusible metals such as W, Mo, Ta, Ti etc. or alloy of them in such surface condition which shows bad primary and secondary electron emitting characteristic and is located in such a position as is near the cathode and is not interfering the flow of electrons from the cathode to anode. Thereby, a magnetron ensuring mass-productivity and high reliability can be obtained economically.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明はマグネトロンに係り、特にその陰極構体の改
良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a magnetron, and particularly to improvements in its cathode structure.

〔発明の技術的背景及び問題点〕[Technical background and problems of the invention]

一般に、電界に対して直角に磁界を与えるマグネトロン
は、これを取付けだ電子機器、例えば電子レンツとして
今日広く普及しているが、これに伴なって雑音漏洩の規
制が強化される方向にある。この雑音規制に関して、国
際的には国際無線障害特別委員会(crspaと称す)
の勧告に基づき、各国において実施もしくは検討中であ
る。従って、マグネトロン自体から発生する雑音の低減
対策が一層望まれるようになってきた。
In general, magnetrons that apply a magnetic field perpendicular to an electric field are now widely used in electronic equipment such as electronic lenses, but as a result, regulations on noise leakage are becoming stricter. Regarding this noise regulation, the International Special Committee on Radio Interference (CRSPA)
Based on the recommendations, each country is implementing or considering it. Therefore, measures to reduce the noise generated from the magnetron itself have become even more desirable.

ところで、マグネトロンから発生する低い周波数(例え
ば1’ 00 Mllz以下)の雑音の原因として1次
のような考えがある。即ち、第1図はマグネトロンの同
軸的に配置されたアノードを構成するアノードペイン2
6とカソード25とを模式的に示しだものであるが、同
図においてカソード25を負、アノードペイン26を正
としてカソード、アノード間に数1000Vの高電圧を
加え、カソード25から熱電子が放出されるようにする
と、電子作用空間39においては、カソード近傍の空間
電荷によυ、図に点線曲線aで示すようにカソード電位
よりも負と力る下に凹んだ部分を本つ電位分布となる。
By the way, there is a first-order theory as a cause of low frequency noise (for example, 1' 00 Mllz or less) generated from a magnetron. That is, FIG. 1 shows the anode pane 2 constituting the coaxially arranged anode of the magnetron.
6 and the cathode 25. In the figure, a high voltage of several thousand V is applied between the cathode and the anode, with the cathode 25 being negative and the anode pane 26 being positive, and thermoelectrons are emitted from the cathode 25. In the electron action space 39, due to the space charge near the cathode, υ creates a potential distribution with a concave portion that is more negative than the cathode potential, as shown by the dotted curve a in the figure. Become.

一方、矢印Bで示すように、この電子作用空間39にl
d 11) OO〜2000 #ウスの直流磁界がカソ
ード軸方向に加わっているため、カソード25を出た電
子は、電界と磁界との作用によりカソード25の咬わり
を周回する。特に直交電磁界のため、電子の走行距離が
長いので電子は残留ガスに衝突する確率が大きく、他の
直進形管等に比べて著しく多くのグラスイオン■を発生
する。N発生したプラスイオンは曲線aで示しだ電位分
布の谷つ寸りJ?テンシャル・ミニマム(図に符号mで
示す)に流れ込み、次第に空間電荷中の電子とグラスイ
オンとの中和が進行し、その結果、この谷附近の電位が
上昇し、符号nで示ずようにカソード25と同等もしく
はそれより僅かに高い電位まで高められる。その状態で
作用壁間中の電位分布は実線曲#bの如くになる。プラ
スイオンはカソードに流れ込む。次の段階として、再び
空間電荷によシミ位の谷mが形成される。このような一
連の過程が周ル」的に繰り返される。その結果、カソー
ド、アノード間の電流即ちアノード電流に複雑々脈動現
象が生じ、これが雑音として外部回路に漏洩するものと
推定できる。このような雑音は、主として入力線路にの
って漏洩するいわゆるラインノイズとして現われ、種々
の電波障害を引き起してしまう。
On the other hand, as shown by arrow B, l is added to this electron action space 39.
d11) Since a DC magnetic field of OO~2000 #us is applied in the cathode axial direction, the electrons leaving the cathode 25 orbit around the bite of the cathode 25 due to the action of the electric field and the magnetic field. In particular, due to the orthogonal electromagnetic field, the traveling distance of the electrons is long, so there is a high probability that the electrons will collide with residual gas, and significantly more glass ions (2) are generated than in other straight tubes. The positive ions generated by N are shown by curve a.The valley of the potential distribution is J? It flows into the tensile minimum (indicated by the symbol m in the figure), and the electrons in the space charge gradually become neutralized with the glass ions, and as a result, the potential near this valley rises, as indicated by the symbol n. It is raised to a potential equal to or slightly higher than that of the cathode 25. In this state, the potential distribution between the working walls becomes as shown by a solid curve #b. Positive ions flow into the cathode. In the next step, a valley m at the stain level is again formed by the space charge. This series of processes is repeated periodically. As a result, a complicated pulsation phenomenon occurs in the current between the cathode and the anode, that is, the anode current, and it can be assumed that this leaks into the external circuit as noise. Such noise mainly appears as so-called line noise that leaks along the input line, causing various radio interference.

そこで、このような韓粋の低減対策の1つとして、カソ
ード近傍に第3電極を設け、カソードに対し第3電極に
負の数10〜数1oovの電位を加えることにより、電
位分布の谷つ一!シポテンンヤル・ミニマムmへ集まる
グラスイオンをこの第3電極で捕獲し、グラスイオンの
原因による雑音を低減することが考えられている。
Therefore, as one of the measures to reduce such Korean style, a third electrode is provided near the cathode, and a negative potential of several tens to several 1 oov is applied to the third electrode with respect to the cathode, thereby reducing the valleys of the potential distribution. one! It is considered that the third electrode captures the glass ions that gather at the point m, thereby reducing the noise caused by the glass ions.

この例を示すと第2図のように構成されている。即ち、
管軸上に配置された棒状のカソード支持体32の一端に
エントノ・ット51h及びエンドチップ52が固着され
てお9、このカソード支持体32の他端はカソード端子
及び排気管(いずれも図示せず)に接合されている。ス
リーブ状のカソード支持体33はその一端が一ヒラミッ
クス被−ザ55で絶縁して同軸配置され、エントノ・ッ
ト51bに接合されており、他端はもう1つのカソード
端子(図示せず)に接合されている。そしてエンドチッ
プ52とエントノ・ット51bとの間に螺旋状に巻かれ
たトリウム−タングステン直熱カソード25が接合され
ている。これによってカソード25はカソード端子に供
給される加熱電力で通電加熱されるようになっている。
This example is constructed as shown in FIG. 2. That is,
An end knot 51h and an end tip 52 are fixed to one end of a rod-shaped cathode support 32 arranged on the tube axis. (not shown). The sleeve-shaped cathode support 33 has one end insulated and coaxially arranged with a Hiramix shield 55 and joined to an end node 51b, and the other end is connected to another cathode terminal (not shown). is joined to. A spirally wound thorium-tungsten directly heated cathode 25 is bonded between the end tip 52 and the end tip 51b. Thereby, the cathode 25 is heated by the heating power supplied to the cathode terminal.

さて、上記カソード25の近傍には、第3電極すが設け
られている。この第3電極りは、カソード25の内側に
このカソード25螺旋内径よりも小さい導電性筒状基体
6ノが設けられ、この基体6ノの外周で且つカソード2
5の各螺旋間に突出する螺旋状突出片62が一体的に設
けられている。そして、基体61の下端61hは絶縁物
等を介することなく遊端の捷まとされ、エントノ・ット
51bよりも図の上方に離れだ位置でセラミック絶縁体
63により内側の棒状カソード支持体32に保持され、
更に他端は第3電極端子(図示せず)の中心孔に密嵌合
され、機械的に保持されている。このようにして第3電
極りは、カソード25の部分から光分離れだ位置で絶縁
体を介してカソード支持体に保持され、先端は遊端のま
まとされている。また、この第3電極鉦はその突出片6
2がカソード25の螺旋間にあって、カソード25の外
周と同等の位置まで突出形成されてなる。また、この第
3電極りは、W 、 Mo 、 Ta 、 Tiのよう
な難溶性金〃4の9ちから選ばれた単体又は合金で、−
次、二次電子放射性のよくない表面状態に形成さJL、
図の上うにカソードの近傍で且つカッ−12からアノー
ド−\向かう電1子の流れを妨げないような位置に置か
れる。−例として2.45G)+2帯で約800Wの出
力のマグネトロンで、カソードのコイル線径が1t1径
で0.58m+n、カレートおよび:イシ3電極突出片
の各ピップ−間陥はそれぞし2. (l wn 、螺旋
外径が5.0m、アノードペイン先y;Mの内径が10
 nrmでイきる。したがってカソードの螺旋と第3電
極の螺旋とQよ、外周面が同一1+r上に1問間隔で交
互に配列きれる。なお、アノ−1゛ペイン26とアノー
ドシリンダー(図示せず)とは複数個の空胴共振器を1
14成しておシ、全体としてアノードを形成している。
Now, in the vicinity of the cathode 25, a third electrode is provided. This third electrode is provided with a conductive cylindrical base 6 which is smaller than the spiral inner diameter of the cathode 25 inside the cathode 25, and which is located on the outer periphery of the base 6 and the cathode 2.
A helical protruding piece 62 protruding between each of the spirals 5 is integrally provided. The lower end 61h of the base body 61 is tied together as a free end without intervening an insulator or the like, and is connected to the inner rod-shaped cathode support 32 by a ceramic insulator 63 at a position farther upward in the figure than the end node 51b. is held in
Further, the other end is tightly fitted into the center hole of a third electrode terminal (not shown) and is mechanically held. In this way, the third electrode is held on the cathode support via the insulator at a position that is optically separated from the cathode 25, and its tip remains free. Moreover, this third electrode gong has its protruding piece 6
2 is located between the spirals of the cathode 25 and is formed to protrude to a position equivalent to the outer periphery of the cathode 25. In addition, this third electrode is made of a single substance or an alloy selected from 4-9 of refractory gold such as W, Mo, Ta, and Ti, and -
Next, JL formed in a surface state with poor secondary electron emissivity,
As shown in the figure, it is placed in the vicinity of the cathode and in a position that does not impede the flow of electrons from the cup 12 to the anode. - For example, a magnetron with an output of about 800 W in the 2.45G)+2 band, the cathode coil wire diameter is 1t1 diameter and 0.58m+n, and the depression between each pip of the curated and :3 electrode protruding pieces is 2. .. (l wn , spiral outer diameter is 5.0 m, anode pane tip y; M inner diameter is 10
I can cum with nrm. Therefore, the outer circumferential surfaces of the cathode spiral, the third electrode spiral, and Q can be alternately arranged on the same 1+r at intervals of one. Note that the anode-1 pane 26 and the anode cylinder (not shown) contain multiple cavity resonators in one.
14, and the whole forms an anode.

2Bはストラツノ0リングである。2B is a stratono 0 ring.

次に動作を説明するど、カッ−1°25は加熱されて熱
電子を放出する。このカソード25とアノードベイン2
6との間には数1 oOO’Vの高電圧が印加され、又
、電子作用空間39には1500ガウス程度の管軸に平
行な磁束の直流磁界が力えられており、発振動作する。
Next, the operation will be explained. When the capacitor 1°25 is heated, it emits thermoelectrons. This cathode 25 and anode vane 2
6, a high voltage of several 1 oOO'V is applied, and a DC magnetic field of approximately 1500 Gauss of magnetic flux parallel to the tube axis is applied to the electron action space 39, causing oscillation.

空胴共振器に発生するマイクロ波エネルギーは、アンブ
ナ導体を通じて出力部から外部負荷に伝送される。さて
、カソード25を加熱すると、放出電子により第1図に
示した如くカソード25の前面約数10μllTl〜数
100 ytrn附近に電位の谷mが形成される(第3
電極がない場合)が、第3電極りをカソード25に対し
て例えば−数10〜−数10. tl V程度の負の電
位にすると、電位の谷mに向って集まるプラスイオンは
第3電極μJがこれよりも更に負の電位になっているた
め、この第3 tl、 *りに直ちに捕えられる。即ち
、グラスイオンはカソード近傍に留凍ることなく第3電
極りノに流入し、カソード近傍の不安定な電子−イオン
中和f−51,象が起らない。その結果、100 Ml
lz以下の雑音が大巾に低減される。
The microwave energy generated in the cavity resonator is transmitted from the output to the external load through the antenna conductor. Now, when the cathode 25 is heated, a potential valley m is formed near the front surface of the cathode 25 from about several 10 μll Tl to several 100 Ytrn as shown in FIG.
(if there is no electrode), the third electrode is placed at a distance of, for example, -several 10 to -several 10. When the potential is set to a negative potential of about tl V, the positive ions that gather toward the valley m of the potential are immediately captured by the third electrode μJ, since the potential is even more negative than this. . That is, the glass ions flow into the third electrode without being frozen near the cathode, and unstable electron-ion neutralization f-51 near the cathode does not occur. As a result, 100 Ml
Noise below 1z is greatly reduced.

尚、第3図は磁界Bの方向に荷電粒子が動く経路となる
スリット(空隙)SOを突出片75に設けてドレイン動
作を改善したもので、特に中波帯のノイズ改善に有効で
ある。図中、73が第3電極であり、74は基体75は
螺旋状突出片である。
In addition, in FIG. 3, the drain operation is improved by providing a slit (gap) SO, which becomes a path for charged particles to move in the direction of the magnetic field B, on the protruding piece 75, and this is particularly effective in reducing noise in the medium wave band. In the figure, 73 is a third electrode, and 74 is a base 75 that is a spiral protruding piece.

さて、第2図及び第3図に示すような第3電極μ0,7
30通、常の製作手順は、下記のようなものである。
Now, the third electrode μ0,7 as shown in FIGS. 2 and 3
30 The usual manufacturing procedure is as follows.

即ち、先ず旋盤で螺旋溝を作シ、旋盤で加工できない複
雑な部分はフライスで加工する。そして、スリット8o
は放電加工で形成する。とξろが、旋盤、フライスなど
の切削による方法は、どうしても刃跡が付いたり、パリ
が残ったりして凹凸ができる。そのため、発振中の電子
逆衝撃により局部的に過熱し易い部分ができ、ガスを放
出したり熱電子放出が原因となったシすることがある。
That is, first, a spiral groove is created using a lathe, and complicated parts that cannot be processed using a lathe are processed using a milling cutter. And slit 8o
is formed by electric discharge machining. However, cutting methods such as lathes and milling machines inevitably leave blade marks and edges, resulting in uneven surfaces. Therefore, there are parts that are easily overheated locally due to electron reverse impact during oscillation, which may cause gas to be released or thermionic emission to occur.

一般に、耐熱性から言って第3電極!□、ムノの材質と
しては、Moが好適であるが、切削加二[の困難性から
微細な部分の加工には放電加工が用いられる。しかし、
放電加工は+tlllかい金属粒子が加工中第3電極り
、Hに付着し、完全に除去することが困難なため、同様
の弊害の懸念が確率的にある、。
Generally speaking, the third electrode in terms of heat resistance! □, Mo is suitable as the material for the magnet, but electric discharge machining is used for machining minute parts due to the difficulty of cutting. but,
In electric discharge machining, metal particles adhere to the third electrode (H) during machining and are difficult to remove completely, so there is a probability that similar problems will occur.

〔発明の目的〕[Purpose of the invention]

この発明の目的は、安価にして址産性と信頼性の高いマ
グネト1.1ンを提供することである。
An object of the present invention is to provide a magnet 1.1 which is inexpensive, has high productivity and reliability.

〔発明の較要〕[Comparison of inventions]

この発明は、螺旋状の突出片を有しカソードの近傍に配
置された第3電極を、複数に分割した形状の生成品とし
て高融点金属の焼結により形成し、これを一体的に接合
して円筒状又は円柱状とし、腹雑な形状にも拘らず容易
に製作できるマグネトロンである。
In this invention, the third electrode, which has a spiral projecting piece and is placed near the cathode, is formed by sintering a high-melting point metal as a product in the shape of a plurality of parts, which are then integrally joined. It is a magnetron that can be easily manufactured despite its complicated shape.

〔発明の実施例〕[Embodiments of the invention]

この発ψノのマグネトロンは、上記欠点を除去するため
、第3電極を改良したもので、第3電極についてのみ製
造方法的に説明する。即ち、この発明で用いる第3電極
(第2図の第3電極りに対応する)は、第4図および第
5図(a)〜(c)に示すように高融点金属例えばMo
の粉末を、円筒の表面に螺旋状の突出片のある形状を軸
方向平行に2分割してできる形状の型に入れてブレス成
形し、高温で焼結して第3電極用の部品厘体60h、6
0bをつくる。第5図(a)の矢印はプレス方向を示す
。次に、この第3電極単体60h、60bを第6図に示
すように一体に接合して円筒状にすれば、第2図の第3
電極μJに近い形状のものが得られる。この場合、プレ
スの型の動きから考えて、突出片62は完全な螺旋状に
ならず擬似的なものになる。
In order to eliminate the above-mentioned drawbacks, this φ-generated magnetron has an improved third electrode, and only the third electrode will be explained in terms of its manufacturing method. That is, the third electrode (corresponding to the third electrode in FIG. 2) used in the present invention is made of a high melting point metal such as Mo as shown in FIGS. 4 and 5 (a) to (c).
The powder is put into a mold with a spiral protrusion on the surface of the cylinder and divided into two in parallel in the axial direction, and then press-molded and sintered at high temperature to form a parts reel for the third electrode. 60h, 6
Create 0b. The arrow in FIG. 5(a) indicates the pressing direction. Next, if the third electrodes 60h and 60b are joined together to form a cylindrical shape as shown in FIG.
A shape close to that of the electrode μJ can be obtained. In this case, considering the movement of the press die, the protruding piece 62 does not have a perfect spiral shape but a pseudo spiral shape.

尚、第7図は第3図に対応したもので、突出片75にス
リット80が形成されている場合であり、上記実施例と
同様に製作され、図は単体7、?a、7.?bを示す。
Incidentally, FIG. 7 corresponds to FIG. 3, and shows a case in which a slit 80 is formed in the protruding piece 75, and is manufactured in the same manner as the above embodiment, and the figure shows a single unit 7, ? a.7. ? b.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、安価にして駐産性と信頼性の^いマ
グネトロンが得られる。即ち、この発明でな」、Moの
焼結によシ第3電極を形成しているので、電子逆衝撃に
よる局部的過熱が防止でへると共に、複雑な形状の第3
電極も製作容易にして量産が可能となる。
According to this invention, it is possible to obtain a magnetron that is inexpensive and has high productivity and reliability. That is, in this invention, since the third electrode is formed by sintering Mo, localized overheating due to electron reverse impact can be prevented, and the third electrode with a complicated shape can be prevented.
The electrodes can also be manufactured easily and mass production becomes possible.

尚、第3電極からの熱電子放出を抑制するため、第3電
極にptメッキ等を施してもよい。
Note that in order to suppress thermionic emission from the third electrode, the third electrode may be plated with PT or the like.

又、第3電極を焼結して製作するとき、陰極支持体やエ
ントノ・ットも一体で製作してもよい。
Furthermore, when manufacturing the third electrode by sintering, the cathode support and the electrode may also be manufactured integrally.

更に上記実施例の第3電極乞!、Lノは円筒状であった
が、第8図に示すように円柱状の基体91と螺旋状突出
片92を有する第3電極Uの場合も、上記実施例のよう
に軸方向に2分割した複数個の部品単体90n、90b
をMOの焼結によ多形成し、これらを一体に接合すれば
よい。この変形例では、図示の如く、第3電極ぜは棒状
のカソード支持体32に固着支持されてカソード電流の
通路を兼ね、且つ零バイアス動作で用いられるっ
Furthermore, the third electrode of the above embodiment is required! , L was cylindrical, but as shown in FIG. 8, in the case of the third electrode U having a cylindrical base 91 and a spiral protruding piece 92, it is divided into two in the axial direction as in the above embodiment. Multiple individual parts 90n, 90b
It is sufficient to form multiple layers by sintering MO and then join them together. In this modified example, as shown in the figure, the third electrode is fixedly supported by a rod-shaped cathode support 32 and also serves as a path for cathode current, and is used in zero bias operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はマグネトロンにおける雑音の発生機構を示す模
式図、第2図は雑音を低減させるために第3電極を設け
たマグネトロンの1例を示す断面図、第3図は同じく他
の例を示す断面図、第4図はこの発明の一実施例に係る
マグネトロンの第3電極を構成する単体を示す斜視図、
第5図(a)、(b)、(C)は同じく左側面IZ、平
面図、右側面図、第6図は単体を接合して第3電極とし
た斜視メ1、第7図は単体の他の例を示す平面図、第8
図はこの発明の変形例を示す断面図である。 25・・・カソード、26・・・アノードペイン、32
・・棒状カソード支持体、3,9・・・筒状カソード支
持体、39・・・電子作用空間、51h、51b・・・
エンドハツト、5.?・・・エンドチップ、60・・・
第3電極、60 a、60b・・・単体、6ノ・・・基
体、62・・・突出片、−ζフ・・・第3電極、73h
、73b・・・単体、74・・・基体、75・・・突出
片、80・・・スリット(空隙)、ダーg=・・第3電
極、90IL、90b・・・単体、91・・・基体、9
2・・・突出片。 出願人代理人 弁理士 鈴 江 武 彦第1図 第2図 第3図 第4図 第5図 (a)      (b)     (C)第6図  
    第7図 第8図
Figure 1 is a schematic diagram showing the noise generation mechanism in a magnetron, Figure 2 is a cross-sectional view of an example of a magnetron equipped with a third electrode to reduce noise, and Figure 3 is another example. A sectional view, FIG. 4 is a perspective view showing a single unit constituting the third electrode of a magnetron according to an embodiment of the present invention,
Figures 5 (a), (b), and (C) are the same left side IZ, top view, and right side view. Figure 6 is a perspective view of the single body joined to form the third electrode. Figure 7 is the single body. A plan view showing another example of
The figure is a sectional view showing a modification of the invention. 25... Cathode, 26... Anode pane, 32
... Rod-shaped cathode support, 3,9... Cylindrical cathode support, 39... Electron action space, 51h, 51b...
End hat, 5. ? ...End tip, 60...
Third electrode, 60a, 60b...Single body, 6th...Base, 62...Protruding piece, -ζF...Third electrode, 73h
, 73b...Single body, 74...Base body, 75...Protruding piece, 80...Slit (gap), Darg=...Third electrode, 90IL, 90b...Single body, 91... Base, 9
2...Protruding piece. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 (a) (b) (C) Figure 6
Figure 7 Figure 8

Claims (4)

【特許請求の範囲】[Claims] (1)互いに同軸状に配置された電子放射カソードと空
胴共振器を内蔵するアノードとを有し、これらカソード
及びアノード間の電子作用空間に六ソード軸に平行な磁
界が与えられたマグネトロンにおいて、 上記カソード近傍にカソードと導電的に接続もしくは電
気的に絶縁された導電体よシなる第3電極を配設し、該
第3電極は高融点金属の粉末をプレス成形し、焼結して
形成されてなることを特徴としたマグネトロン。
(1) In a magnetron that has an electron-emitting cathode and an anode containing a cavity resonator that are arranged coaxially with each other, and a magnetic field parallel to the six-sode axis is applied to the electron action space between the cathode and the anode. , A third electrode made of a conductor is provided near the cathode and is electrically conductively connected to or electrically insulated from the cathode, and the third electrode is formed by press-molding and sintering high-melting point metal powder. A magnetron is characterized by being formed.
(2)上記第3電極は、軸に平行に複数に分割して成形
した部品が一体に接合されて円筒状又t」:円柱状に形
成されてなる特許請求の範囲第1項記載のマグネトロン
(2) The magnetron according to claim 1, wherein the third electrode is formed into a cylindrical shape by integrally joining parts that are divided into a plurality of parts parallel to the axis and molded. .
(3)、]−記カソードは螺旋状をなし、且つ上記第3
電極はカソードの螺旋間に沿って螺旋状に設けられた突
出片を有している特許請求の範囲第1項または第2項記
載のマグネトロン。
(3),] - the cathode has a spiral shape, and the third cathode has a spiral shape, and
3. The magnetron according to claim 1, wherein the electrode has a protruding piece spirally provided between the spirals of the cathode.
(4)上記突出片にスリットを形成した特許請求の範囲
第3項記載のマグネトロ7゜
(4) The magnetro 7° according to claim 3, wherein a slit is formed in the protruding piece.
JP18980282A 1982-10-28 1982-10-28 Magnetron Pending JPS5978427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18980282A JPS5978427A (en) 1982-10-28 1982-10-28 Magnetron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18980282A JPS5978427A (en) 1982-10-28 1982-10-28 Magnetron

Publications (1)

Publication Number Publication Date
JPS5978427A true JPS5978427A (en) 1984-05-07

Family

ID=16247449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18980282A Pending JPS5978427A (en) 1982-10-28 1982-10-28 Magnetron

Country Status (1)

Country Link
JP (1) JPS5978427A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0593768A1 (en) * 1992-04-15 1994-04-27 Proizvodstvennoe Obiedinenie "Pluton" Magnetron

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0593768A1 (en) * 1992-04-15 1994-04-27 Proizvodstvennoe Obiedinenie "Pluton" Magnetron
EP0593768A4 (en) * 1992-04-15 1994-12-28 Proizv Ob Pluton Magnetron.

Similar Documents

Publication Publication Date Title
EP0187033B1 (en) Magnetron with a ceramic stem having a cathode support structure
US2477122A (en) Electron discharge device
US3500110A (en) Noncurrent intercepting electron beam control element
US2226653A (en) Electromagnetic oscillation apparatus
JP2594262B2 (en) Magnetron
US4310786A (en) Magnetron tube with improved low cost structure
JPS5978427A (en) Magnetron
JP3329509B2 (en) Magnetron for microwave oven
US2437279A (en) High-power microwave discharge tube
US4031425A (en) Dispenser cathode for a grid-controlled electron tube and method of manufacturing same
JPS6236773B2 (en)
US4489254A (en) Magnetron
JP2005085750A (en) Magnetron for microwave oven and its forming method
JPS594819B2 (en) ion source
US3412283A (en) Coaxial magnetron in which the anode is welded to the body
JP3720913B2 (en) Impregnated cathode structure, cathode substrate used therefor, and electron tube using the same
JPS58198819A (en) Cathode ray tube manufacturing method
JP2016071999A (en) Magnetron
JPS6326919Y2 (en)
JPH07201285A (en) Magnetron
JPS5994330A (en) Magnetron
JPS6231776B2 (en)
JPS6347100B2 (en)
JPS6316852B2 (en)
KR0122691Y1 (en) Cathode support structure of mangnetron