JPS5977836A - Computer tomographic apparatus - Google Patents

Computer tomographic apparatus

Info

Publication number
JPS5977836A
JPS5977836A JP57187125A JP18712582A JPS5977836A JP S5977836 A JPS5977836 A JP S5977836A JP 57187125 A JP57187125 A JP 57187125A JP 18712582 A JP18712582 A JP 18712582A JP S5977836 A JPS5977836 A JP S5977836A
Authority
JP
Japan
Prior art keywords
radiation
subject
row
radiation detector
detectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57187125A
Other languages
Japanese (ja)
Inventor
斎藤 正弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP57187125A priority Critical patent/JPS5977836A/en
Publication of JPS5977836A publication Critical patent/JPS5977836A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、Rotate−Rotate型コンピュー
タ断層撮影装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a Rotate-Rotate computed tomography apparatus.

Rotate−Rotate型コンピュータ断層撮影装
置は、第1図にその概略を示すように、たとえばX線管
等の放射線源lとシンチレータとフォトマルチプライア
との組合せ等でなる放射線検出器列2とを被写体3を挟
んで対向配置し、放射線源lから照射された放射線ビー
ムが扇型に拡がって被写体3を透過し、放射線検出器列
2の各々の放射線検出器に入射するようにしておき、こ
の状態で被写体3中の回転中心軸4を中心として放射線
源1と放射線検出器列2とを一体に回転させて各放射線
検出器から透過放射線強度に関する情報を収集して、こ
の情報をコンボリューションおよびパックフロシェクシ
ョン等の画像再構成アルゴリズムによって処理し、被写
体3の断層面における放射線吸収率の2次元分布を断層
像として再構成するものである。
As schematically shown in FIG. 1, the Rotate-Rotate computed tomography apparatus uses a radiation source 1, such as an X-ray tube, and a radiation detector array 2, such as a combination of a scintillator and a photomultiplier, as an object. The radiation beam irradiated from the radiation source 1 spreads in a fan shape, passes through the subject 3, and enters each radiation detector in the radiation detector row 2. The radiation source 1 and the radiation detector row 2 are rotated together around the rotation center axis 4 in the subject 3, and information regarding the transmitted radiation intensity is collected from each radiation detector, and this information is convolved and packed. Processing is performed using an image reconstruction algorithm such as froshection, and the two-dimensional distribution of radiation absorption rate in the tomographic plane of the subject 3 is reconstructed as a tomographic image.

ところで、従来より、第1因に示すように、放射線検出
器列2の中央部の検出器間隔を細かく(この間隔をdと
する)して高密度部5とするとともに、周辺部の間隔を
2dと粗くして低密度部6とすることが行なわれている
(たとえば特開昭56−161039号−公報参照)。
By the way, conventionally, as shown in the first factor, the distance between the detectors in the central part of the radiation detector row 2 is finely set (this distance is d) to form the high-density part 5, and the distance in the peripheral part is narrowed. 2d to form the low-density portion 6 (see, for example, Japanese Patent Laid-Open No. 161039/1983).

これは、被写体3の画像の分解能を中央部のみ向」ニさ
せることによって、コストパフォーマンス良好に患者の
頭部やを髄の高分解能画像を得ようとするためである。
This is because by increasing the resolution of the image of the subject 3 toward the center, a high-resolution image of the patient's head and spinal cord can be obtained with good cost performance.

そして、さらに、放射線源1と放射線検出器列2との回
転位置が00と180°との各々の場合において、第2
図に示すように、高密度部5でのサンプリング点がたが
いに丁度中間に位置するよう、放m線検出器列2を回転
中心軸4に対してd/4だけずらして位置させ、これに
より1q■構成画像において骨の端から出るよう表れる
ストリーキング状のアーティファクトを打消そうとして
いる。
Furthermore, in each case where the rotational position of the radiation source 1 and the radiation detector array 2 is 00° and 180°, the second
As shown in the figure, the radiation detector row 2 is shifted by d/4 with respect to the rotation center axis 4 so that the sampling points in the high-density area 5 are located exactly in the middle of each other. 1q ■ Attempt to cancel streaking artifacts that appear from the ends of bones in the composition image.

しかし、従来では高密度部5と低密度部6とにおける検
出器間隔比がl:2等のように偶数比であるため、低密
度部6におけるサンプリング点はOe′の回転角度と1
80°の回転角度で第2図に示すようにたがいに中間と
ならない関係となり、そのため再構成画像において表れ
る上記のアーティファクトが生じることが避けられない
等の欠点があった。
However, in the past, since the detector spacing ratio between the high-density part 5 and the low-density part 6 is an even ratio such as 1:2, the sampling point in the low-density part 6 is equal to the rotation angle of Oe'.
At a rotation angle of 80 degrees, as shown in FIG. 2, there is a relationship that is not intermediate between them, and as a result, the above-mentioned artifacts that appear in the reconstructed image are unavoidable.

この発明は、」−記のアーティファクト等を減少させて
画質を改善したコンピュータ断層撮影装置を提供するこ
とを目的とする。
An object of the present invention is to provide a computed tomography apparatus that improves image quality by reducing artifacts such as those described in "-".

この発明によれば、放射線検出器列の高密度部と低密度
部との検出器間隔比を奇数比とするとともに、放射線検
出器列の位置を回転中心軸に対して高密Ir!L部にお
ける検出器間隔のl/4に前記の音数を乗じた距離だけ
ずらすことによって、低密度部においても、サンプリン
グ点が00の回転角度と180’の回転角度の各場合で
たがいに中間となるように1することを特徴とする。
According to this invention, the detector spacing ratio between the high-density part and the low-density part of the radiation detector row is set to an odd ratio, and the position of the radiation detector row is set to the high-density Ir! By shifting the distance by a distance equal to 1/4 of the detector spacing in the L section multiplied by the above-mentioned number of tones, even in the low-density section, the sampling points can be set in the middle of each other at a rotation angle of 00' and a rotation angle of 180'. It is characterized in that it is set to 1 so that

以下、この発明の一実施例について図面を参照しながら
説明する。WS3図において、放射線検出器列2の高密
度部5では放射線検出器が間隔dで細かく配列されてお
り、低密度部6ではその奇数倍、この実施例では3倍の
間隔3dで粗く配列されている。そしてこの放射線検出
器列2の位置は回転中心軸4に対してd/4の3倍の距
離だけずらされている。
An embodiment of the present invention will be described below with reference to the drawings. In the WS3 diagram, in the high-density part 5 of the radiation detector row 2, the radiation detectors are arranged finely at intervals of d, and in the low-density part 6, the radiation detectors are arranged coarsely at intervals of 3d, which is an odd number times, in this example, 3 times as large. ing. The position of this radiation detector array 2 is shifted from the rotation center axis 4 by a distance three times d/4.

したがって第4図に示すように、放射線源lと放射線検
出器列2との回転角度が00と180゜との場合、高密
度部5および低密度部6の両方の部分において、サンプ
リング点がたがいに丁度中間の位置となる。したがって
高密度部5でも低密度部6でも画像のアーティファクト
やその他のモアレ(干渉模様)等が減少することになる
Therefore, as shown in FIG. 4, when the rotation angle between the radiation source 1 and the radiation detector array 2 is 00° and 180°, the sampling points are different from each other in both the high-density area 5 and the low-density area 6. It is exactly in the middle position. Therefore, image artifacts and other moiré (interference patterns) are reduced in both the high-density area 5 and the low-density area 6.

なお、上記の実施例では、放射線検出器列2にお(する
放+1411a検出器の配列間隔比を1:3としたが、
これに限られる訳でなく、たとえば1:5等とすること
ができる。
In the above embodiment, the arrangement interval ratio of the radiation detectors 1411a in the radiation detector row 2 was set to 1:3;
The ratio is not limited to this, and may be set to 1:5, for example.

以1−1実施例について説明したように、この発明によ
れば、放射線源と放射線検出器列との回転角度が0°と
180°との各場合におけるサンプリング点が放射線検
出器列のいずれの部分でもたがいに丁度中間に位置する
ようになるので、再構成画像において表われる骨の端か
らのアーティファクトやモアレ等が減少し、画質が改善
される。そのため、画像の中央部の分解能を同程度にす
るのであれば放射線検出器列の全体の放射線検出器数が
少なくて済みコストダウンに寄与でき、逆に放射線検出
器列の全体の放射線検出器数が同じであれば画像の中央
部の分解能を向上することができる。
As described in Embodiment 1-1, according to the present invention, the sampling point in each case where the rotation angle between the radiation source and the radiation detector array is 0° and 180° is at any point in the radiation detector array. Since the parts are located exactly in the middle of each other, artifacts and moiré from the bone ends that appear in the reconstructed image are reduced, and the image quality is improved. Therefore, if the resolution of the central part of the image is to be maintained at the same level, the total number of radiation detectors in the radiation detector array can be reduced, contributing to cost reduction; If they are the same, the resolution of the central part of the image can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例の模式図、第2図は第1図におけるサン
プリング点を説明するだめの模式図、第3図はこの発明
の一実施例の模式図、第4図は第3図におけるサンプリ
ング点を説明するだめの模式図である。 l・・・放射線源 2・・・放射線検出器列 3・・・被写体 4・・・回転中心軸
FIG. 1 is a schematic diagram of a conventional example, FIG. 2 is a schematic diagram for explaining the sampling points in FIG. 1, FIG. 3 is a schematic diagram of an embodiment of the present invention, and FIG. FIG. 3 is a schematic diagram for explaining sampling points. l...Radiation source 2...Radiation detector row 3...Subject 4...Rotation center axis

Claims (1)

【特許請求の範囲】[Claims] (1)放射線源と放射線検出器列とを被写体を挟んで対
向配置し、放射線源から照射された放射線ビームが扇型
に拡がって被写体を透過し、放射線検出器列の各々の放
り1線検出器に入射するようにしておき、この状ff1
jで被写体を中心として放射線源と放射線検出器列とを
−・体に回転させて各放射線検出器から透過放射線強度
に関する情報を収集して、この情報を画像再構成処理し
、被写体の断層面における放射線吸収率の2次元分41
を断層像として再構俵するコンピュータ断層撮影装置に
おいて、前記放射線検出器列の中央部に放射線検出器を
細かい間隔で配列した高密度部を設けるとともに周辺部
に前記の間隔の俗数倍の粗い間隔で放射線検出器を配列
した低密度部を設け、かつ前記放射線検出器列の位置を
回転中心軸に対して前記高密度部の放射線検出器間隔の
l/4を前記の奇数倍した距離だけずらすようにしたこ
とを特徴とするコンピュータ断層撮影装置。
(1) A radiation source and a row of radiation detectors are arranged facing each other with the subject in between, and the radiation beam emitted from the radiation source spreads in a fan shape and passes through the subject, and each row of radiation detectors detects a single line. In this state, ff1
The radiation source and the radiation detector row are rotated around the subject at j, information about the intensity of transmitted radiation is collected from each radiation detector, this information is processed for image reconstruction, and the tomographic plane of the subject is The two-dimensional radiation absorption rate in 41
In a computed tomography apparatus that reconstructs a tomographic image as a tomographic image, a high-density area in which radiation detectors are arranged at fine intervals is provided in the center of the radiation detector row, and a coarse area that is a common number times the said interval is provided in the peripheral area. A low-density part is provided in which radiation detectors are arranged at intervals, and the position of the radiation detector array is set at a distance equal to the odd number times 1/4 of the distance between the radiation detectors in the high-density part with respect to the rotation center axis. A computerized tomography apparatus characterized by being shifted.
JP57187125A 1982-10-25 1982-10-25 Computer tomographic apparatus Pending JPS5977836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57187125A JPS5977836A (en) 1982-10-25 1982-10-25 Computer tomographic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57187125A JPS5977836A (en) 1982-10-25 1982-10-25 Computer tomographic apparatus

Publications (1)

Publication Number Publication Date
JPS5977836A true JPS5977836A (en) 1984-05-04

Family

ID=16200547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57187125A Pending JPS5977836A (en) 1982-10-25 1982-10-25 Computer tomographic apparatus

Country Status (1)

Country Link
JP (1) JPS5977836A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987001268A1 (en) 1985-08-30 1987-03-12 Yokogawa Medical Systems, Ltd. Method of collecting data for x-ray tomograph
JPS63209627A (en) * 1987-02-26 1988-08-31 ジーイー横河メディカルシステム株式会社 X-ray tomographic imaging apparatus
US4841553A (en) * 1985-09-30 1989-06-20 Yokogawa Medical Systems, Limited Method of and apparatus for carrying out tomography
JPH02503282A (en) * 1988-02-26 1990-10-11 アナロジック・コーポレーション X-ray tomography device
JP2003061946A (en) * 2001-08-27 2003-03-04 Shimadzu Corp Ct apparatus
CN102613985A (en) * 2011-01-31 2012-08-01 上海西门子医疗器械有限公司 Detector and X-ray projection data acquisition system comprising same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987001268A1 (en) 1985-08-30 1987-03-12 Yokogawa Medical Systems, Ltd. Method of collecting data for x-ray tomograph
US4852132A (en) * 1985-08-30 1989-07-25 Yokogawa Medical Systems Method of collecting data for x-ray tomograph
US4841553A (en) * 1985-09-30 1989-06-20 Yokogawa Medical Systems, Limited Method of and apparatus for carrying out tomography
JPS63209627A (en) * 1987-02-26 1988-08-31 ジーイー横河メディカルシステム株式会社 X-ray tomographic imaging apparatus
JPH0575414B2 (en) * 1987-02-26 1993-10-20 Yokogawa Medical Syst
JPH02503282A (en) * 1988-02-26 1990-10-11 アナロジック・コーポレーション X-ray tomography device
JP2003061946A (en) * 2001-08-27 2003-03-04 Shimadzu Corp Ct apparatus
JP4654551B2 (en) * 2001-08-27 2011-03-23 株式会社島津製作所 CT equipment
CN102613985A (en) * 2011-01-31 2012-08-01 上海西门子医疗器械有限公司 Detector and X-ray projection data acquisition system comprising same

Similar Documents

Publication Publication Date Title
Jaszczak et al. SPECT: Single photon emission computed tomography
JP2930123B2 (en) CT scanner apparatus and method for obtaining CT image
US4333145A (en) Method of high resolution partial area scan involving concentrated high density material outside the partial area
JP2004000734A (en) Improved using method for x-ray ct apparatus
US6426989B2 (en) Computed tomography method
Galvin et al. The use of digitally reconstructed radiographs for three-dimensional treatment planning and CT-simulation
Chakraborty et al. Self-masking subtraction tomosynthesis.
JP2000262515A (en) Method and apparatus for taking radiation image
JP2543034B2 (en) Camera device with collimator
JPS5977836A (en) Computer tomographic apparatus
US5430297A (en) Fan-beam collimator with offset focus and scintillation camera system which uses it
EP0519445B1 (en) Method and apparatus for reconstructing spect image with maintaining high spatial resolution
JPH0799539B2 (en) Radiation tomography equipment
US4053779A (en) Method and apparatus for constructing models of body sections
US4416018A (en) Device for forming images of layers of a three-dimensional object by superposition zonograms
Fuchs et al. Fast volume scanning approaches by X-ray-computed tomography
GB2074415A (en) Computed tomography with selectable image resolution
EP0747728B1 (en) Improved gamma camera imaging system
JPS6146140B2 (en)
JPS6129340A (en) X-ray ct apparatus
US5717213A (en) Collimator and scintillation camera system for use in carrying out attenuation-corrected spect studies of small body organs such as the heart and brain
JP2001104293A (en) Three-dimentional imaging display equipment
JPS6146144B2 (en)
Zwicker et al. Transverse tomosynthesis on a digital simulator
US10902647B2 (en) System for iteratively reconstructing computed tomography images through three domains