JPS59777B2 - Pipeline leakage defect detection method - Google Patents

Pipeline leakage defect detection method

Info

Publication number
JPS59777B2
JPS59777B2 JP54152916A JP15291679A JPS59777B2 JP S59777 B2 JPS59777 B2 JP S59777B2 JP 54152916 A JP54152916 A JP 54152916A JP 15291679 A JP15291679 A JP 15291679A JP S59777 B2 JPS59777 B2 JP S59777B2
Authority
JP
Japan
Prior art keywords
pipeline
traveling body
detection
pipe
leakage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54152916A
Other languages
Japanese (ja)
Other versions
JPS5676025A (en
Inventor
耕司 石原
浩司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP54152916A priority Critical patent/JPS59777B2/en
Publication of JPS5676025A publication Critical patent/JPS5676025A/en
Publication of JPS59777B2 publication Critical patent/JPS59777B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Examining Or Testing Airtightness (AREA)

Description

【発明の詳細な説明】 本発明はパイプラインの漏洩欠陥部検出方法の改良に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved method for detecting pipeline leakage defects.

パイプラインの漏洩欠陥部を検出するため、パイプライ
ン内部にピグ等の漏洩監視装置を装入して漏洩検出を行
うという方法が行われている。
In order to detect leakage defects in pipelines, a method of detecting leakage by inserting a leakage monitoring device such as a pig inside the pipeline has been used.

しかしながら、この方法では、流体を流送したままで検
査を行うことはできるものの、装置の装入及び取り出し
の際におけるパイプライン内部流体の 。シール性を確
保する上で大きな問題があるとともに、流体を流送した
まま検査を行うにしても実際には内部流体の圧力ダウン
等の措置を取る必要があり、またこれに加えて装置自体
をライン内に直接通すことによるライン損傷や装置装入
等のための付帯設備の必要性等の問題もある等、実用上
種種の難点を有している。またこの方式では、埋設パイ
プライン等については、管内部への漏洩監視装置の装入
の問題からその適用が難しいという欠点があり、また輸
送対象が天然ガスや石油のような燃焼性が高い流体であ
る場合、管内での火花による引火の危険があるため、こ
れらを対象とするパイプラインについてもその適用が事
実上できないという欠点がある。また他の方法として、
いわゆるアコースティック・工ミッション方式の検出方
法が採用されている。
However, although this method allows inspection to be performed while the fluid is flowing, it is difficult to inspect the fluid inside the pipeline when loading and unloading the equipment. There is a major problem in ensuring sealing performance, and even if the inspection is performed while the fluid is flowing, it is actually necessary to take measures such as reducing the pressure of the internal fluid. There are various problems in practical use, such as damage to the line caused by passing it directly into the line and the need for incidental equipment for device loading. In addition, this method has the disadvantage that it is difficult to apply to buried pipelines due to the problem of installing a leak monitoring device inside the pipe, and it is also difficult to apply it to underground pipelines, etc. In this case, there is a risk of ignition due to sparks within the pipe, so there is a drawback that it is virtually impossible to apply it to pipelines that are intended for these. Also, as another method,
A so-called acoustic transmission detection method is used.

この方法はパイプラインに高周波音響雑音センターを貼
り付け、各センサーが検出した信号を各センサーに対応
するアンプで増幅し、この信号を予め定められた基準信
号と比較することによつて漏洩の有無を判定し、また相
となるセンサーからの信号の振幅比及び配管の減衰定数
からおよその漏洩位置を推定するというものである。し
力化ながら、一個のセンサーの監視範囲はパイプライン
の管径の塗覆装状態により大きく変化し、例えば直径工
00mmの無塗覆装鋼管では一個のセンサーで約200
mの範囲が監視できるのに対し、直径600mmのプラ
スチックライニング鋼管ではその監視可能範囲は数m以
内となり、塗覆装置を使つた距離が長いパイプラインで
は多数のセンサーを必要とし、このため配線等との関係
で装置自体がきわめて大損りなものとなり、また個々の
センサー ・アンプ等の保守・点検が容易でないという
欠点がある。このようなことから、本発明者等は先に、
埋設パイプラインや燃料用パイプライン等にも適用でき
、しかも従来のものに較べ比較的簡単な構成によつて漏
洩欠陥部を検出できる方法を提案した。
This method attaches a high-frequency acoustic noise center to the pipeline, amplifies the signal detected by each sensor with an amplifier corresponding to each sensor, and compares this signal with a predetermined reference signal to determine whether there is any leakage. The approximate location of the leak is estimated from the amplitude ratio of the signals from the phase sensors and the damping constant of the piping. However, the monitoring range of one sensor varies greatly depending on the coating condition of the pipe diameter of the pipeline. For example, for an uncoated steel pipe with a diameter of 00 mm, one sensor can monitor approximately 200
While a plastic-lined steel pipe with a diameter of 600 mm can be monitored over a range of several meters, the range that can be monitored is within a few meters, and pipelines that use coating equipment over long distances require a large number of sensors. The disadvantage is that the equipment itself is extremely damaged due to the fact that it is difficult to maintain and inspect individual sensors, amplifiers, etc. For this reason, the inventors first
We have proposed a method that can be applied to buried pipelines, fuel pipelines, etc., and can detect leakage defects with a relatively simpler configuration than conventional methods.

この方法は第1図に示すように、パイプライン1にクラ
ンプ2を介して添設された副管3内で、高周波音響雑音
を検知する検知素子4を備えた走行体5を移動せしめ、
この移動途中、検知素子4によりパイプライン欠陥部か
らの流体漏洩によつて生ずる高周波音響雑音を前記クラ
ンプ2及び副管3を介して検知するようにしたものであ
る。しかしながら、上記の方法では高周波音響雑音の検
知はクランプ2及び副管3を介して行うので、高周波雑
音の減衰が大きく、得られる漏洩信号はきわめて微少な
電圧となつてしまい、このため正確な検知に支障をきた
すという場合もあり得、また正確な検知を行うためには
前記クランプ2のパイプライン1の長さ方向での間隔を
かなり狭くしなければならない等の問題点があることが
判明した。本発明はこのような実情に鑑みて創案された
もので、パイプラインに、該パイプラインの外壁の一部
が内壁の一部をなすように添設された副管内で、高周波
音響雑音を検知する検知素子を備えた走行体を移動せし
め、かかる移動途中前記検知素子によりパイプライン欠
陥部からの流体漏洩によつて生ずる高周波雑音を検知し
、かかる検知結果に基づき漏洩欠陥部を検出するように
したものであり、これにより漏洩欠陥部の正確な検知を
行えるようにしたものである。
As shown in FIG. 1, this method moves a traveling body 5 equipped with a detection element 4 for detecting high-frequency acoustic noise within an auxiliary pipe 3 attached to a pipeline 1 via a clamp 2,
During this movement, the detection element 4 detects high-frequency acoustic noise caused by fluid leakage from the defective portion of the pipeline via the clamp 2 and the auxiliary pipe 3. However, in the above method, high-frequency acoustic noise is detected through the clamp 2 and the sub-pipe 3, so the high-frequency noise is attenuated significantly, and the leakage signal obtained becomes an extremely small voltage, which makes accurate detection impossible. In addition, it has been found that there are problems such as the distance between the clamps 2 in the length direction of the pipeline 1 must be considerably narrowed in order to perform accurate detection. . The present invention was devised in view of the above circumstances, and is a method for detecting high-frequency acoustic noise in a sub-pipe attached to a pipeline such that part of the outer wall of the pipeline forms part of the inner wall. A traveling body equipped with a detection element is moved, and during the movement, the detection element detects high frequency noise caused by fluid leakage from a pipeline defect, and the leakage defect is detected based on the detection result. This enables accurate detection of leakage defects.

次に本発明の実施例を図面に基づいて説明する。Next, embodiments of the present invention will be described based on the drawings.

第2図は本発明による漏洩欠陥部検出方法の一実施例を
示すものであつて、本発明を実施するに当つては、前記
パイプライン1に副管6を添設せしめるものであり、そ
の具体的構成は、副管6の長さ方向全長に亘つて一定幅
の切欠部7を設け、その切欠部7の両端61,61をパ
イプライン1の外壁aに接着或いは溶接等により固着せ
しめ、これによつてパイプライン1の外壁aの一部が副
管6の内壁の一部となる如き構成とするものである。な
お、上記副管6の添設手段としては上記溶接等に加え、
図に示す如きクランプ8を併用してもよい。しかして、
本発明の基本構成は前記副管6内部で高周波音響雑音の
検知素子4を備えた自走式又は圧送式の走行体5を移動
せしめるものであり、かくすれば、仮にパイプライン1
に欠陥部があり、この部分から流体が漏洩しているよう
な場合には、この流体漏洩によつて生ずる高周波音響雑
音が直接副管6内部に伝わり、走行中の前記走行体5に
備えられた検知素子4がこれを検知することができ、か
かる検知結果に基づき漏洩・欠陥部を検出することがで
きる。
FIG. 2 shows an embodiment of the leakage defect detection method according to the present invention. In carrying out the present invention, an auxiliary pipe 6 is attached to the pipeline 1; Specifically, a notch 7 having a constant width is provided along the entire length of the sub pipe 6, and both ends 61, 61 of the notch 7 are fixed to the outer wall a of the pipeline 1 by gluing, welding, etc. As a result, a part of the outer wall a of the pipeline 1 becomes a part of the inner wall of the auxiliary pipe 6. In addition to the above-mentioned welding, etc., as a means of attaching the secondary pipe 6,
A clamp 8 as shown in the figure may also be used. However,
The basic configuration of the present invention is to move a self-propelled or pressure-feeding traveling body 5 equipped with a high-frequency acoustic noise detection element 4 inside the sub-pipe 6.
If there is a defective part and fluid is leaking from this part, high-frequency acoustic noise generated by this fluid leakage is directly transmitted to the inside of the sub-pipe 6, and the traveling body 5 is equipped with The detection element 4 can detect this, and based on the detection result, leaks and defective parts can be detected.

以上の基本構成に対し、欠陥部検出方法のより具体的構
成を示せば以下の通りである。
In contrast to the above basic configuration, a more specific configuration of the defect detection method is as follows.

即ち、副管3には前記走行体5の装入口及び回収口(図
示せず)を各設けるとともに、走行体5の検知素子4を
その検出素子端が副管3の内壁を構成するパイプライン
1の外壁aに接触し得るような状態に取付け、或いは走
行体5に別途油圧装置を設け、この油圧装置で検知素子
端を前記外壁aに圧接するようになすものである。走行
体5の駆動方法としては、走行体5内部に走行体駆動用
バツテリ一などを内蔵せしむる内部電源方式あるいは、
レール、ワイヤーなど走行体5の外部から電源を供給す
る外部電源方式等いずれかが使用される。さらに走行体
5には、第3図に示すように、検知素子4とは別に速度
計9、積分器10及び自動記録装置11(例えば磁気テ
ープレコーダー)を内蔵せしめ、前記速度計9による速
度値を積分器10に供給することで走行体5の走行距離
を求め、この走行距離を自動記録装置11にて記録せし
め、同時に、前記検知素子4によつて検知された高周波
音響雑音をも検知増幅(場合によつては波形成形)した
後、前記自動記録装置11にて記録せしめるものであり
、かくすれば、前記自動記録装置11には走行体5の走
行距離とこの走行距離に対応する高周波音響雑音の検出
結果が記録されることになる。しかして実際には、前記
走行体5を装入口から副管6内に装入し、これを前記装
入口から、適当な距離にある回収口から回収し、前記自
動記録装置11の記録を解析すればパイプライン1の漏
洩欠陥部を適確に知ることができる。
That is, the secondary pipe 3 is provided with a charging port and a recovery port (not shown) for the traveling body 5, and the detection element 4 of the traveling body 5 is connected to a pipeline whose detection element end forms the inner wall of the secondary pipe 3. 1, or a separate hydraulic device is provided on the traveling body 5, and the end of the sensing element is pressed against the outer wall a by this hydraulic device. The driving method for the traveling body 5 is an internal power supply method in which a battery for driving the traveling body is built inside the traveling body 5, or
An external power supply system that supplies power from outside the traveling body 5, such as a rail or a wire, is used. Furthermore, as shown in FIG. 3, the traveling body 5 is equipped with a speedometer 9, an integrator 10, and an automatic recording device 11 (for example, a magnetic tape recorder) in addition to the detection element 4, so that the speed value detected by the speedometer 9 can be measured. is supplied to the integrator 10 to determine the traveling distance of the traveling body 5, and this traveling distance is recorded by the automatic recording device 11. At the same time, the high frequency acoustic noise detected by the detection element 4 is also detected and amplified. (waveform shaping in some cases) and then recorded by the automatic recording device 11. In this way, the automatic recording device 11 records the traveling distance of the traveling object 5 and the high frequency wave corresponding to this traveling distance. Acoustic noise detection results will be recorded. In reality, however, the traveling body 5 is charged into the auxiliary pipe 6 from the charging port, recovered from the collection port located at an appropriate distance from the charging port, and the records of the automatic recording device 11 are analyzed. By doing so, the leakage defect portion of the pipeline 1 can be accurately known.

本発明による検出方法に使用される走行体5は本実施例
では、外側に検知素子4が取付けられ、且つ第3図に示
すような速度計9、積分器10及び自動記録装置11を
内蔵した本体12、該本体12から3方向に各延出する
脚部13及び各脚部13先端に取付けられる車輪14と
からなり、走行体5は前記,駆動用バツテリ一を動力源
として前記車輪14を介して副管6内面を自走し得るよ
うになつている。
In this embodiment, the traveling body 5 used in the detection method of the present invention has a detection element 4 attached to the outside, and has a built-in speedometer 9, an integrator 10, and an automatic recording device 11 as shown in FIG. The traveling body 5 consists of a main body 12, legs 13 extending in three directions from the main body 12, and wheels 14 attached to the tips of each leg 13, and the traveling body 5 drives the wheels 14 using the driving battery as a power source. It is designed to be able to run on the inner surface of the auxiliary pipe 6 by itself.

なお、検知方法の他の実施例としては、副管6内部を液
体又は気体の適当な充填物で満し、検知素子4をパイプ
ライン1の前記外壁aに非接触の状態にし、副管6内の
充填液を介して高周波音響雑音を検知するような構成と
することも可能である。
In addition, as another embodiment of the detection method, the inside of the sub-pipe 6 is filled with a suitable filling of liquid or gas, the detection element 4 is brought into a non-contact state with the outer wall a of the pipeline 1, and the sub-pipe 6 is It is also possible to adopt a configuration in which high-frequency acoustic noise is detected through the filling liquid inside.

また、この場合には、走行体5を前記充填液を利用して
副管6内を圧送せしめるようにしてもよい。以上のよう
な実施例によれば、検知素子4がパイプライン1の外壁
aに直接接触せしめられ、或いは、外壁aに直接対向せ
しめられるので、減衰のあまりない高周波音響雑音を検
知することができる。
Further, in this case, the traveling body 5 may be forced to be fed through the auxiliary pipe 6 using the filling liquid. According to the embodiments described above, the detection element 4 is brought into direct contact with the outer wall a of the pipeline 1, or is directly opposed to the outer wall a, so that it is possible to detect high-frequency acoustic noise that is not significantly attenuated. .

以上述べたような本発明のパイプラインの漏洩欠陥部検
出方法によれば、パイプライン1に、該パイプライン1
の外壁aの一部が内壁の一部をなすように添設された副
管6内で、高周波音響雑音を検知する検知素子4を備え
た走行体5を移動せしめ、かかる移動途中前記検知素子
4によりパイプライン欠陥部からの流体漏洩によつて生
ずる高周波音響雑音を検知し、かかる検知結果に基づき
漏洩欠陥部を検知するようにしたので、パイプライン自
体には検知装置を装入する必要がなく、このため、パイ
プライン内部流体のシール性に対する配慮やそのための
付帯的な装置・設備を必要とすることなく、しかもライ
ン内流体圧力を低下せしめる等の措置を取ることなく、
走行体方式により漏洩欠陥部を適切に検知することがで
き、また特に副管内を移動する走行体を利用して検知を
行うため、従来難しかつた埋設パイプラインや輸送対象
が天然ガスや石油のような燃焼性が高い流体であるパイ
プラインの漏洩検知についても容易且つ安全に適用する
ことができ、しかも検知素子が減衰の少い高周波音響雑
音を検知することができるので、きわめて精度良く漏洩
欠陥部を検出することができる等、工業上すぐれた利用
価値がある。
According to the pipeline leakage defect detection method of the present invention as described above, the pipeline
A traveling body 5 equipped with a detection element 4 for detecting high-frequency acoustic noise is moved within a sub-pipe 6 attached so that a part of the outer wall a forms a part of the inner wall, and during the movement, the detection element 4, the high-frequency acoustic noise caused by fluid leakage from pipeline defects is detected, and leakage defects are detected based on the detection results, so it is not necessary to install a detection device in the pipeline itself. Therefore, there is no need to consider the sealing performance of the fluid inside the pipeline, or any incidental equipment or equipment for that purpose, and there is no need to take measures such as reducing the fluid pressure inside the line.
The traveling body method allows for proper detection of leakage defects, and in particular, detection is performed using a traveling body that moves within the sub-pipe, so it is possible to detect leakage defects in buried pipelines or for transporting natural gas or oil, which was previously difficult to do. It can be easily and safely applied to detect leaks in pipelines, which are highly flammable fluids such as fluids.Moreover, since the detection element can detect high-frequency acoustic noise with little attenuation, it can be used to detect leak defects with extremely high accuracy. It has excellent industrial utility value, such as being able to detect parts.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の漏洩欠陥部検出方法の実施に使用される
装置を示す縦断面図である。 第2図は本発明によるパイプラインの漏洩欠陥部検出方
法の実施に使用される装置を示す縦断面図である。第3
図は第2図に示す走行体が備えた検知及び記録機構を概
略的に示す説明図である。図において、1はパイプライ
ン、4は検知素子、5は走行体、6は副管、aは外壁を
各示す。
FIG. 1 is a longitudinal cross-sectional view showing an apparatus used to implement a conventional leakage defect detection method. FIG. 2 is a longitudinal cross-sectional view showing an apparatus used to carry out the method for detecting leakage defects in pipelines according to the present invention. Third
The figure is an explanatory diagram schematically showing a detection and recording mechanism included in the traveling body shown in FIG. 2. In the figure, 1 is a pipeline, 4 is a detection element, 5 is a traveling body, 6 is a sub pipe, and a is an outer wall.

Claims (1)

【特許請求の範囲】[Claims] 1 パイプラインに、該パイプラインの外壁の一部が内
壁の一部をなすように添設された副管内で、高周波音響
雑音を検知する検知素子を備えた走行体を移動せしめ、
かかる移動途中、前記検知素子によりパイプライン欠陥
部からの流体漏洩によつて生ずる高周波音響雑音を検知
し、かかる検知結果に基づき漏洩欠陥部を検知するよう
にしたことを特徴とするパイプラインの漏洩欠陥部検出
方法。
1. Moving a traveling body equipped with a detection element that detects high-frequency acoustic noise within a sub-pipe attached to a pipeline such that a part of the outer wall of the pipeline forms a part of the inner wall,
During the movement, the detection element detects high-frequency acoustic noise caused by fluid leakage from a pipeline defect, and the leakage defect is detected based on the detection result. Defect detection method.
JP54152916A 1979-11-28 1979-11-28 Pipeline leakage defect detection method Expired JPS59777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54152916A JPS59777B2 (en) 1979-11-28 1979-11-28 Pipeline leakage defect detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54152916A JPS59777B2 (en) 1979-11-28 1979-11-28 Pipeline leakage defect detection method

Publications (2)

Publication Number Publication Date
JPS5676025A JPS5676025A (en) 1981-06-23
JPS59777B2 true JPS59777B2 (en) 1984-01-09

Family

ID=15550942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54152916A Expired JPS59777B2 (en) 1979-11-28 1979-11-28 Pipeline leakage defect detection method

Country Status (1)

Country Link
JP (1) JPS59777B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626563B2 (en) * 1986-07-10 1994-04-13 株式会社新素材総合研究所 Medical container and manufacturing method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100866762B1 (en) 2006-08-09 2008-11-03 호서대학교 산학협력단 Mobile Device for Detecting Gas Leakage
CN112483907B (en) * 2020-11-10 2022-02-11 深圳市祥为测控技术有限公司 Pipeline leakage detection system and method
CN112944225A (en) * 2021-01-29 2021-06-11 湖南元想科技有限公司 Online leakage-detecting water supply pipeline system and online leakage monitoring method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626563B2 (en) * 1986-07-10 1994-04-13 株式会社新素材総合研究所 Medical container and manufacturing method thereof

Also Published As

Publication number Publication date
JPS5676025A (en) 1981-06-23

Similar Documents

Publication Publication Date Title
US5532587A (en) Magnetic field analysis method and apparatus for determining stress characteristics in a pipeline
US6561032B1 (en) Non-destructive measurement of pipe wall thickness
AU2009261918B2 (en) Apparatus and method to locate an object in a pipeline
CN2411484Y (en) Corrosion defect detection device for underground on-service long distance pipeline
US20190072522A1 (en) System and Method for Detecting and Characterizing Defects in a Pipe
CA2630050A1 (en) Pulsed eddy current pipeline inspection system and method
US6339953B1 (en) Pipe leakage detection
US4419892A (en) Method for determination of internal pipeline or tubing corrosion
US3483734A (en) Pipeline pigging apparatus
CN209264625U (en) A kind of buried metal pipeline Indirect testing device based on weak magnetic detection technique
JPH0894481A (en) Gas leak detection method for embedded pipe
US3496457A (en) Signal normalization apparatus for pipeline logging
JPS59777B2 (en) Pipeline leakage defect detection method
GB1567166A (en) Apparatus and method for the non-destructive testing of ferromagnetic material
JPS6225229A (en) Inspection pig for pipeline
GB2327759A (en) Pipeline leak detector system
JP2002022695A (en) Method for detecting coating film damage position of embedded coated piping
JPS59776B2 (en) Pipeline leakage defect detection method
CA1072654A (en) Pipeline limit dent detector
JP2002005893A (en) Method for judging defect and method for calibrating sensor in apparatus for inspecting inside of pipe
CN112178358A (en) Three-dimensional ultrahigh-definition pipeline magnetic flux leakage internal detector
JPS6138536A (en) Device for inspecting pipeline by pig
JP3568084B2 (en) Detection method of vertical seam position of pipe using leakage magnetic flux pig
JPH08101168A (en) Running monitoring system for conduit pipe inspection pig
JP2001349873A (en) Data processing method in in-tube inspection device