JPS5976646A - Rotary wheel type continuous casting method - Google Patents

Rotary wheel type continuous casting method

Info

Publication number
JPS5976646A
JPS5976646A JP18461082A JP18461082A JPS5976646A JP S5976646 A JPS5976646 A JP S5976646A JP 18461082 A JP18461082 A JP 18461082A JP 18461082 A JP18461082 A JP 18461082A JP S5976646 A JPS5976646 A JP S5976646A
Authority
JP
Japan
Prior art keywords
slab
corner
continuous casting
casting method
rotary wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18461082A
Other languages
Japanese (ja)
Inventor
Minoru Horiguchi
堀口 穣
Tatsushi Aizawa
相沢 達志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18461082A priority Critical patent/JPS5976646A/en
Publication of JPS5976646A publication Critical patent/JPS5976646A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/068Accessories therefor for cooling the cast product during its passage through the mould surfaces

Abstract

PURPOSE:To prevent the internal cracking in the solidified shell of a billet in synchronized rotary wheel type continuous casting by drawing the billet from a moving casting mold then cooling forcibly the part near the corners at the opposite angles of the billet having the interior angle increased by sectional deformation to the angle larger than the interior angle of a normal billet from the outside. CONSTITUTION:Rotary wheel type continuous casting which draws a billet 12 having a solidified surface from the space of the moving casting mold formed of a rotary wheel 8 having a casting groove on the outside circumference and a metallic belt 10 is performed by the following method. The direction of the sectional deformation of the billet 12 which is approved to have the sectional deformation is detected in the section of the above-described casting mold and in the outlet of the casting mold. The two corner parts (for example, the positions 3, 4 shown in the figure) at the opposite angles where the interior angle in each corner part has a tendency toward an increase from the normal angle at the beginning of the casting are forcibly cooled from the outside in the specified section from the outlet of the casting mold. The cooling in the two corner parts is thus accelerated and the formation of the solidified shell in said part is accelerated, whereby the progression of the sectional deformation owing to shrinkage on solidification is ceased. The corner parts are further restored to the normal interior angle to correct the sectional deformation. The internal cracking of the solidified shell is thus prevented.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、外周に鋳込み溝を有する回転輪と金属製ベル
トとによって形成さ2′lまた移動鋳型空間に金属溶湯
を注入1〜、外面が凝固した鋳片を移動鋳型から連続的
に引抜く回転輪式連続鋳造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a rotating mold formed by a rotating ring having a casting groove on its outer periphery and a metal belt. The present invention relates to a rotary wheel continuous casting method in which solidified slabs are continuously pulled out from a moving mold.

〔従来技術〕[Prior art]

回転輪と金属製ベルトを同期回転させて鋳造する同期回
転式連続鋳造設備において製造される鋳片の断面形状は
台形をなしている。かがる鋳造法において、鋳型内及び
二次冷却帯における冷却の不均一や設備の不整などがあ
ると、鋳片の凝固殻成長過程において断面変形を生ずる
。その結果、凝固殻に内部割れが発生し、鋳片品員を低
ドさせる。
BACKGROUND ART The cross-sectional shape of slabs produced in synchronous rotary continuous casting equipment, in which a rotary ring and a metal belt are rotated synchronously for casting, has a trapezoidal cross-sectional shape. In the overcasting method, if there is uneven cooling in the mold or in the secondary cooling zone or improper equipment, cross-sectional deformation will occur during the growth process of the solidified shell of the slab. As a result, internal cracks occur in the solidified shell, resulting in deterioration of the slab member.

内部割れが進展すると凝固殻破断によるブレークアウト
が生じる。
As the internal cracks progress, breakouts occur due to rupture of the solidified shell.

鋳片の断面変形の形態について説明する。The form of cross-sectional deformation of the slab will be explained.

第1図は鋳片断面変形の代表的な形状を示す。Figure 1 shows a typical shape of slab cross-sectional deformation.

鋳片12は、鋳型から引抜かれた段階では、外側だけが
凝固し、内側はまだ溶融している。1は凝固殻、2は未
凝固部を示している。断面変形した鋳片は、回転輪の鋳
込み溝の底に位置する側の変形が特にはげしい。第1図
では鋳片の鋳込み溝の底に位置する側(図の上面側)が
右の方へ移動した状態を示している。点線で示したのが
正常な鋳片の断面である。断面変形によって、鋳片の各
コーナの内角はαl〉α2.βlくβ2となっている。
When the slab 12 is pulled out from the mold, only the outside is solidified and the inside is still molten. 1 indicates a solidified shell, and 2 indicates an unsolidified portion. The slab with cross-sectional deformation is particularly severely deformed on the side located at the bottom of the casting groove of the rotating wheel. FIG. 1 shows a state in which the side of the slab located at the bottom of the casting groove (the top side in the figure) has moved to the right. The dotted line shows the cross section of a normal slab. Due to cross-sectional deformation, the internal angle of each corner of the slab becomes αl>α2. βl is β2.

鋳片が断面変形すると一方の対角のコーナの内面α1.
β2は鋳造初期の内角即ち正常な鋳片が得られるときの
内角よりも大きくなる。この部分の凝固殻の厚さは他方
のコーナ部の凝固殻の厚さよりも小さい。
When the slab undergoes cross-sectional deformation, the inner surface α1 of one diagonal corner.
β2 is larger than the internal angle at the initial stage of casting, that is, the internal angle when a normal slab is obtained. The thickness of the solidified shell in this part is smaller than the thickness of the solidified shell in the other corner part.

鋳造当初のコーナの内角は夫々α1−α2゜β1−β2
である。それが凝固の進行に伴って断面変形しα1.>
α2.βlくβ2となったものである。このように断面
変形する結果、α1側の凝固殻の内面側に引張応力が発
生し、その応力が許容限界を越えると凝固殻の内面側よ
り内部割れ3が発生する。鋳片の下面側についても同様
にβ2側の凝固殻の内面側に引張応力が発生し、その応
力が許容限界をこえると凝固殻1の内面側よシ内部割れ
4が発生する。特にβ2側の部分はコーナ形状が鋭角で
、丸味がないことにより、凝固時の鋳造組織が規則的に
発達するため、クラックが伝播し易く、表面に達すると
ブレークアウトを発生させ、操業停止を招くことになる
The internal angles of the corners at the time of casting are α1-α2゜β1-β2, respectively.
It is. As the solidification progresses, the cross section deforms and α1. >
α2. β1 becomes β2. As a result of this cross-sectional deformation, tensile stress is generated on the inner surface of the solidified shell on the α1 side, and when the stress exceeds an allowable limit, internal cracks 3 occur from the inner surface of the solidified shell. Similarly, on the lower surface side of the slab, tensile stress is generated on the inner surface of the solidified shell on the β2 side, and when the stress exceeds the allowable limit, internal cracks 4 occur on the inner surface of the solidified shell 1. Particularly on the β2 side, the corner shape is acute and there is no roundness, so the cast structure develops regularly during solidification, making it easy for cracks to propagate and cause breakouts when they reach the surface, resulting in a shutdown of the operation. I will invite you.

凝固初期における凝固殻の断面変形は、鋳片の冷却の不
均一、設備機器の不整例えば切片曲げ矯正機構の不整合
やピンチローラの調整不十分等、および溶湯注入条件の
不適などが原因して生じる。
Cross-sectional deformation of the solidified shell in the early stage of solidification is caused by uneven cooling of the slab, irregularities in the equipment, such as misalignment of the section bending straightening mechanism, insufficient adjustment of the pinch rollers, etc., and inappropriate molten metal injection conditions. arise.

切片は、移動鋳型から引抜いたのち、通常、表面に冷却
水を噴射して冷却するが、鋳片全面に−・様に冷却水を
噴射しても凝固殻の内部割れを防止することはできない
After the slab is pulled out from the movable mold, it is usually cooled by spraying cooling water onto the surface, but even if cooling water is sprayed over the entire surface of the slab, internal cracks in the solidified shell cannot be prevented. .

〔発明の目的〕[Purpose of the invention]

本発明の目的は、同期回転式連続鋳造において、凝固殻
に内部割れが発生するのを防止した回転輪式連続鋳造方
法を提供することにあるう〔発明の概要〕 本発明は、鋳片を移動鋳型から引抜いたのち、断面変形
によって正常な鋳片が得られるときよりも内角が増加し
た対角のコーナ部近傍を外部から強制的に冷却するもの
である。
An object of the present invention is to provide a rotary wheel continuous casting method that prevents internal cracks from occurring in the solidified shell in synchronous rotary continuous casting. After being pulled out from the movable mold, the vicinity of the diagonal corners, where the internal angle is larger than when a normal slab is obtained due to cross-sectional deformation, is forcibly cooled from the outside.

本発明者は、鋳片断面変形発生機構の解析、断面変形と
内部割れとの関係及び鋳片断面内の各部における凝固殻
形成状況の調査から次のことを見い出しだ。即ち、鋳型
区間及び鋳型出口において断面変形の認められた切片に
ついて、切片の断面変形の方向を検知し、コーナ部の内
角が鋳造当初の正常な内角より増加傾向にある対角の2
コ一ナ部に対し、鋳型出口から一定区間、強制冷却を行
ない、該2コ一ナ部の冷却を促進することにより、該2
コ一ナ部分の凝固殻の形成を促進させ、凝固収縮によシ
、断面変形の進行を止め、更に正常な内角に戻すことに
よって断面変形を修正し、内部割れの発生を防止できる
ことを見出した。コーナ部の内角が鋳造当初の正常な内
角よりも増加したコーナ部における凝固殻厚さは、正常
な鋳片が得られるときのコーナ部の凝固殻厚さより小さ
くなつている。従って、凝固殻厚さの小さいコーナ部を
強冷却し、凝固殻厚さを増大させて、断面変形を修正す
るものである。
The inventors of the present invention have discovered the following from an analysis of the generation mechanism of slab cross-sectional deformation, a relationship between cross-sectional deformation and internal cracking, and an investigation of the formation of solidified shells in various parts of the slab cross section. In other words, the direction of cross-sectional deformation of the section is detected for a section in which cross-sectional deformation has been observed in the mold section and the mold exit, and the interior angle of the corner section is found to be two diagonal corners where the interior angle tends to increase from the normal interior angle at the beginning of casting.
The two corner parts are forcedly cooled in a certain section from the mold outlet to promote cooling of the two corner parts.
It was discovered that by promoting the formation of a solidified shell in the inner corner, preventing solidification shrinkage, stopping the progress of cross-sectional deformation, and returning it to a normal internal angle, cross-sectional deformation can be corrected and the occurrence of internal cracks can be prevented. . The solidified shell thickness at the corner portion, where the internal angle of the corner portion is larger than the normal internal angle at the time of casting, is smaller than the solidified shell thickness at the corner portion when a normal slab is obtained. Therefore, the corner portion where the solidified shell thickness is small is strongly cooled to increase the solidified shell thickness and correct the cross-sectional deformation.

鋳片断面は台形であり、通常菱形に変形する。The cross section of the slab is trapezoidal and usually deforms into a diamond shape.

このため、4コーナのうち対角の2コーナが一対となっ
て内角が増加又は減少する。内角の増加した対角の2コ
一ナ部分は鋳型から離れて鋳型との接触が不十分となる
ため冷却効果が小さくなり、凝固殻厚さが小さくなる。
Therefore, two diagonal corners among the four corners form a pair, and the interior angle increases or decreases. The diagonal two-corner portion with increased internal angles is separated from the mold and does not come into sufficient contact with the mold, resulting in a reduced cooling effect and a reduced solidified shell thickness.

従って、コーナ部の強制冷却は必ず、凝固のおくれだ対
角の2コーナについて行なわなければ十分な効果を上げ
ることができない。
Therefore, the forced cooling of the corner portions must be performed on the two diagonal corners where solidification is delayed in order to obtain a sufficient effect.

断面変形の方向や変形量を定量的に検出することによυ
、コーナ部分の強制冷却の程度を調節し連続鋳造中、自
動的に鋳片の断面変形を修正し、内部割れの発生を防止
することができる。
By quantitatively detecting the direction and amount of cross-sectional deformation, υ
By adjusting the degree of forced cooling of the corner portion, it is possible to automatically correct the cross-sectional deformation of the slab during continuous casting and prevent the occurrence of internal cracks.

特に丁コーナ部分の局部冷却は断面変形を修正する効果
の外に、鋳片のブレークアウトが下コーナに多いことか
ら、この部分を局部急冷することにエリ、ブレークアウ
トを防止する効果が非常に太きい。
In particular, localized cooling at the bottom corners not only has the effect of correcting cross-sectional deformation, but since breakouts of slabs are common at the bottom corners, localized rapid cooling of these areas is extremely effective in preventing breakouts. Thick.

なお、局部冷却方法は通常コーナスプレー水を使用する
が、さらに強冷却するには直接水流による水噴射を行な
う。
Incidentally, the local cooling method usually uses corner spray water, but for even stronger cooling, direct water jet is used.

局部冷却は鋳片光面に直接冷却水を噴射する直接冷却と
すべきである。鋳片に直接冷却水を噴射すると冷却効果
が大きいばかりでなく酸化皮膜も生成しにくい。更に鋳
片に酸化皮膜が存在しても冷却水によって剥離させるこ
とができるので常に新[〜い冷却水によって鋳塊表面が
冷却されることになる。
Local cooling should be direct cooling in which cooling water is injected directly onto the light surface of the slab. Injecting cooling water directly onto the slab not only has a great cooling effect, but also makes it difficult to form an oxide film. Furthermore, even if an oxide film exists on the slab, it can be removed by cooling water, so the surface of the slab is always cooled by fresh cooling water.

鋳片のコーナ内角が大きい側を強制冷却中、他方の対角
のコーナは冷却しないことが望ましい。
While the side of the slab with the larger internal corner angle is being forcedly cooled, it is desirable that the other diagonal corner is not cooled.

冷却する場合は冷却水の量を強制冷却側にくらべて著し
く少なくすべきである。
When cooling, the amount of cooling water should be significantly smaller than that for forced cooling.

内角の大きいコーナ部の強制冷却と一緒に鋳片の各面の
冷却を行なうことは非常に望ましい。この方法が凝固殻
を成長させるのに最も効果がある。
It is highly desirable to perform forced cooling of the corners with large internal angles as well as cooling each side of the slab. This method is most effective for growing solidified shells.

本発明以外の方法、たとえば第1図の上面側の左右のコ
ーナ部を強制冷却しても凝固殻の内部割れを防止するこ
とはできない。第1図の下面側の左右のコーナ部を強制
冷却してもやはり凝固殻の内部割れを防止することはで
きない。
Even if a method other than the present invention is used, for example, forced cooling of the left and right corner portions on the upper surface side in FIG. 1, internal cracking of the solidified shell cannot be prevented. Even if the left and right corners of the lower surface of FIG. 1 are forcibly cooled, internal cracking of the solidified shell cannot be prevented.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例について述べる。第2図及び第3
図において、溶湯5はタンデイツ/ユ6、ノズル7を介
して、@製の回転輪8と案内ローラ9にて緊張された金
属ベルト10にて形成される移動鋳型空間に注入され凝
固して鋳片12が形成される。回転輪8の円周のうち鋳
型区間りが鋳型空間を形成しており、鋳型に注入された
溶湯5は鋳型区間りで一次冷却され外面が凝固していく
Examples of the present invention will be described below. Figures 2 and 3
In the figure, molten metal 5 is injected through a tandate/yu 6 and a nozzle 7 into a moving mold space formed by a rotating ring 8 and a metal belt 10 tensioned by a guide roller 9, solidified, and cast. Piece 12 is formed. The mold section of the circumference of the rotary ring 8 forms a mold space, and the molten metal 5 poured into the mold is primarily cooled in the mold section and its outer surface solidifies.

外面が凝固した鋳片12は、ガイドO−ラ群13及びナ
イフ14により水平に矯正されつつ、ピンチローラ15
によって連続的に引抜かれる。ガイドローラ群13以降
の区間では鋳片12の4面に面スプレーノズルによる二
次冷却が行なわれる。
The slab 12 whose outer surface has solidified is straightened horizontally by the guide O-ra group 13 and the knife 14, and is then moved by the pinch roller 15.
is continuously pulled out. In the section after the guide roller group 13, secondary cooling is performed on the four sides of the slab 12 by surface spray nozzles.

鋳片の断面変形を修正するだめの強制冷却装置は鋳型区
間り直後に設置する。第2図では、かかる強制冷却装置
は鋳片上コーナ局部冷却装置16及び鋳片下コーナ局部
冷却装置17からなる。
A forced cooling device to correct the cross-sectional deformation of the slab is installed immediately after the mold section. In FIG. 2, such a forced cooling system consists of a slab upper corner local cooling system 16 and a slab lower corner local cooling system 17.

強制冷却装置の設置位置はできるだけ鋳型に近い方がよ
い。設置区間は断面変形の程度によるが、通常鋳型出口
からピンチローラ15までで十分である。断面変形量(
第4図の■と■の差)が約10mmを越えたり、−造速
度が増加した場合にはピンチローラ15以降もコーナ局
部冷却を行なうことが望ましい。
It is better to install the forced cooling device as close to the mold as possible. Although the installation section depends on the degree of cross-sectional deformation, it is usually sufficient to extend from the mold outlet to the pinch roller 15. Amount of cross-sectional deformation (
When the difference between ■ and ■ in FIG. 4 exceeds about 10 mm or when the manufacturing speed increases, it is desirable to locally cool the corners after the pinch roller 15 as well.

第4図は鋳型区間を通過した鋳片12の断面を示す。こ
の鋳片は図の上面が右側へ変形しているうこのため、上
コーナスプレー18及びトコ−ナスプレー19により、
強制冷却し、強制冷却した部分の凝固殻の成長を促進さ
せ、断面変形を修正するっコーナスプレー冷却水量は主
として断面変形量、鋳片4コーナの表面温度、鋳造速度
などの測定値により決定し、対角の2コ一ナ部分に噴射
される。さらにそれらの因子の変動に対応して、−節さ
れる。尚、このときも面スプレーノズ7し11による冷
却は継続して行なうことが望ましい。鋳片の変形方向が
第4図に示したのと反対の方向であったならば、コーナ
スプレー18’、19’によって強制冷却を行なう。
FIG. 4 shows a cross section of the slab 12 that has passed through the mold section. Since the upper surface of this slab is deformed to the right in the figure, the upper corner spray 18 and top corner spray 19
The amount of cooling water used in the corner spray to forcefully cool, promote the growth of the solidified shell in the forcedly cooled area, and correct cross-sectional deformation is determined mainly by measured values such as the amount of cross-sectional deformation, the surface temperature of the four corners of the slab, and the casting speed. , is injected to the diagonal two-coin portion. Furthermore, the - clause is applied in response to variations in these factors. At this time as well, it is desirable to continue cooling by the surface spray nozzles 7 and 11. If the direction of deformation of the slab is opposite to that shown in FIG. 4, forced cooling is performed by corner sprays 18', 19'.

第5図は鋳片12の凝固進行過程における断面変形の進
行とその修正過程を示したものである。
FIG. 5 shows the progression of cross-sectional deformation in the solidification process of the slab 12 and its correction process.

縦軸の断面変形率は、第4図に示す対角線長さの差1−
IIを正常な鋳片の対角線長さで割シ、100を掛けて
求めたものである。点線は鋳片上面1コーナ冷却法によ
る。−例を示し、実線は本発明による鋳片対角2コ一ナ
局部冷却法を用いた場合の断面変形の修正効果の一例を
示したものである。1コーナスプレー冷却では、断面変
形率は徐々に減少するが、5チ前後が限度である。その
ま\コーナ強制冷却を続けても凝固進行に伴い凝固殻厚
さの剛性が増すため、断面変形修正は停滞する。断面変
形率5−前後では凝固殻の内部割れを防止することがで
きない。鋳片下面側のブレークアウトは鋳型区間り直後
に発生するだめ、この方法では防止することができない
The cross-sectional deformation rate on the vertical axis is the difference in diagonal length shown in Figure 4, 1-
It was calculated by dividing II by the diagonal length of a normal slab and multiplying by 100. The dotted line indicates the one-corner cooling method for the top surface of the slab. - An example is shown, and the solid line shows an example of the cross-sectional deformation correction effect when using the diagonal two-coin slab local cooling method according to the present invention. In one-corner spray cooling, the cross-sectional deformation rate gradually decreases, but the limit is around 5 inches. Even if forced corner cooling is continued, the cross-sectional deformation correction will stagnate because the rigidity of the solidified shell thickness will increase as solidification progresses. When the cross-sectional deformation rate is around 5-5, internal cracking of the solidified shell cannot be prevented. Breakout on the bottom side of the slab cannot be prevented by this method because it occurs immediately after the mold section is completed.

これに対して、本発明の対角2コーナスプレー冷却を鋳
凰区間り直後から実施した場合には、断面変形率が約6
%あったものが、断面変形がはV修正されていることが
判る。(実線I)、)1コーナスプレー冷却法と同じよ
うに鋳片強制冷却区間を過ぎてから対角の2:!ff−
す局部冷却法を適用しても急激に断面変形が減少し、は
y完全に修正することができ、非常に効果の大きいこと
が判る。(実線++)、) 凝固殻の内部割れは断面変形率を約2チ以ドに抑えるこ
とによりその発生を防止することができる。本発明によ
り内部割れのない断面形状に修正することができた。
On the other hand, when the diagonal two-corner spray cooling of the present invention is carried out immediately after the casting section, the cross-sectional deformation rate is approximately 6.
%, but it can be seen that the cross-sectional deformation has been corrected by V. (Solid line I), ) 1 Just like the corner spray cooling method, after passing the slab forced cooling section, the diagonal 2:! ff-
It can be seen that even if the local cooling method is applied, the cross-sectional deformation is rapidly reduced and y can be completely corrected, which is very effective. (Solid line ++) Internal cracks in the solidified shell can be prevented by suppressing the cross-sectional deformation rate to about 2 inches or less. According to the present invention, it was possible to correct the cross-sectional shape without internal cracks.

鋳片断面変形の検出は、目視の外に公知の手段例えば差
動変圧器による直接測定、テレビカメラやレーザー光線
の如く非接触による変位量の測定などによシ、その変形
量及び変形方向を検知して行なうことができる。それに
鋳片表面温度、鋳造速度を加味して鋳片コーナ局部冷却
水量を決定し、且つ強制冷却区間も決定する。コーナス
プレー冷却水量は断面変形量にもよるが面スプレー水量
のおよそ5〜100倍が望ましい。
The deformation of the slab cross section can be detected by not only visual inspection but also by known means such as direct measurement using a differential transformer, non-contact measurement of displacement such as a television camera or laser beam, etc., to detect the amount and direction of deformation. You can do it by doing this. The amount of local cooling water at the corner of the slab is determined by taking into account the surface temperature of the slab and the casting speed, and the forced cooling section is also determined. The amount of cooling water in the corner spray is preferably about 5 to 100 times the amount of water in the surface spray, although it depends on the amount of cross-sectional deformation.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、鋳型区間において
一旦発生した鋳片の断面変形を修正して正常な形状の鋳
片とすることができる。このため、鋳片凝固殻に発生す
る内部割れを防止することができる。
As described above, according to the present invention, the cross-sectional deformation of the slab once generated in the mold section can be corrected and the slab can have a normal shape. Therefore, internal cracks occurring in the solidified slab shell can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は断面変形した鋳片の代表的な形状を示す断面図
、第2図は本発明の一実施例による同期回転式連続鋳造
装置の断面図、第3図は第2図の■−■断面図、第4図
は本発明による断面変形修正装置を示す断面図、第5図
は鋳片の断面変形率が修正される過程を示すグラフであ
る。 1・・・凝固殻、2・・・未凝固部、8・・・回転輪、
10・・・金属ベルト、12・・・鋳片、16・・・鋳
片上コーナ局部冷却装置、17・・・鋳片下コーナ局部
冷却装置、18・・・上コーナスプレー、19・・・下
コーナスプレ第 II¥1 第 2 図 第 3  図 第 4 図 第 5 図 243−
Fig. 1 is a cross-sectional view showing a typical shape of a slab with cross-sectional deformation, Fig. 2 is a cross-sectional view of a synchronous rotary continuous casting apparatus according to an embodiment of the present invention, and Fig. 3 is a cross-sectional view of Fig. 2. (2) Cross-sectional view, FIG. 4 is a cross-sectional view showing the cross-sectional deformation correction device according to the present invention, and FIG. 5 is a graph showing the process of correcting the cross-sectional deformation rate of the slab. 1... Solidified shell, 2... Unsolidified part, 8... Rotating ring,
DESCRIPTION OF SYMBOLS 10... Metal belt, 12... Slab, 16... Slab upper corner local cooling device, 17... Slab lower corner local cooling device, 18... Upper corner spray, 19... Lower Corner play No. II¥1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 243-

Claims (1)

【特許請求の範囲】 1、外周に鋳込み溝を有する回転輪と前記鋳込み溝の開
口部を所定の長さに亘って覆う金属製ベルトによって形
成された移動鋳型空間に、金属溶湯を注入し、表面が凝
固した鋳片を前記移動鋳型から連続的に引抜く回転輪式
連続鋳造方法において、前記移動鋳型から引抜いた鋳片
の前記鋳込み溝底側コーナの内角が大きい方およびそれ
と対角のコーナ部近傍を外部から強制冷却することを特
徴とする回転輪式連続鋳造方法。 2、特許請求の範囲第1項において、前記鋳片の前記コ
ーナ部近傍に冷却水を直接噴射して強制冷却することを
特徴とする回転輪式連続鋳造方法。 3゜特許請求の範囲第2項において、前記鋳片の断面変
形量と前記コーナ部近傍へ噴射する冷却水の量との関係
に基づいて前記冷却水の量を調整することを特徴とする
回転輪式連続鋳造方法。 4、外周に釣込み溝を有する回転輪と前記鋳込み溝の開
口部を所定の長さに亘って・覆う金属製ベルトによって
形成された移動鋳型空間に、金属溶湯を注入し、表面が
凝固した鋳片を前記移動鋳型から連続的に引抜き、前記
引抜いた鋳片の前記鋳込み溝底側コーナの内角が大きい
方およびそれと対角のコーナ部近傍を外部から強制冷却
する回転輪式連続鋳造方法において、前記鋳片のコーナ
部を除く面を前記コーナ部近傍よシも弱く冷却すること
を特徴とする回転輪式連続鋳造方法。 5、特許請求の範囲第4項において、前記鋳片のコーナ
を除く面に冷却水を直接噴射することを特徴とする回転
輪式連続鋳造方法。    、モ・、七6、特許請求の
範囲第4項において、前記鋳片のコーナを除く各面をは
マ均等に冷却することを特徴とする回転輪式連続鋳造方
法っ 7、特許請求の範囲第4項において、前記鋳片を前記移
動鋳型から引抜いたのち直ちに前記コーナ部近傍の冷却
を開始することを特徴とする回転輪式連続鋳造方法。
[Claims] 1. Injecting molten metal into a moving mold space formed by a rotating ring having a casting groove on its outer periphery and a metal belt that covers the opening of the casting groove over a predetermined length; In a rotary ring continuous casting method in which a slab with a solidified surface is continuously pulled out from the moving mold, the casting groove bottom corner of the slab pulled out from the moving mold has a larger internal angle and the corner diagonal thereto. A rotating wheel type continuous casting method characterized by forced cooling of the area around the part from the outside. 2. A rotary wheel continuous casting method according to claim 1, characterized in that cooling water is directly injected into the vicinity of the corner of the slab for forced cooling. 3. The rotation according to claim 2, wherein the amount of cooling water is adjusted based on the relationship between the amount of cross-sectional deformation of the slab and the amount of cooling water injected to the vicinity of the corner portion. Ring continuous casting method. 4. Molten metal is poured into a moving mold space formed by a rotating wheel having a fishing groove on the outer periphery and a metal belt that covers a predetermined length of the opening of the casting groove, and the surface solidifies. In a rotary wheel continuous casting method, in which a slab is continuously pulled out from the movable mold, and a portion of the pulled slab that has a larger internal angle at the bottom corner of the casting groove and the vicinity of a diagonal corner thereof are forcibly cooled from the outside. . A rotary wheel continuous casting method, characterized in that the surface of the slab other than the corner portion is cooled weakly even in the vicinity of the corner portion. 5. The rotary wheel continuous casting method according to claim 4, characterized in that cooling water is directly injected onto the surface of the slab other than the corners. , Mo., 76. Claim 4, A rotary wheel continuous casting method characterized in that each surface of the slab except for the corners is uniformly cooled.7, Claim 7. 5. The rotary wheel continuous casting method according to item 4, wherein cooling of the vicinity of the corner portion is started immediately after the slab is pulled out from the movable mold.
JP18461082A 1982-10-22 1982-10-22 Rotary wheel type continuous casting method Pending JPS5976646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18461082A JPS5976646A (en) 1982-10-22 1982-10-22 Rotary wheel type continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18461082A JPS5976646A (en) 1982-10-22 1982-10-22 Rotary wheel type continuous casting method

Publications (1)

Publication Number Publication Date
JPS5976646A true JPS5976646A (en) 1984-05-01

Family

ID=16156227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18461082A Pending JPS5976646A (en) 1982-10-22 1982-10-22 Rotary wheel type continuous casting method

Country Status (1)

Country Link
JP (1) JPS5976646A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007002655A (en) * 2005-05-27 2007-01-11 Shimizu Corp Joining structure of pile head and its construction method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007002655A (en) * 2005-05-27 2007-01-11 Shimizu Corp Joining structure of pile head and its construction method

Similar Documents

Publication Publication Date Title
US3563298A (en) Method of continuously casting bars for preventing distortion during solidification of the bars
JPS5976646A (en) Rotary wheel type continuous casting method
JP3089608B2 (en) Continuous casting method of beam blank
JPH0366980B2 (en)
JPS625702B2 (en)
JPH06339762A (en) Method and device for controlling cutting of continuously cast slab
JPH09122861A (en) Method for secondarily cooling continuously cast slab
JPH10128510A (en) Method for continuously casting steel
JPS61219454A (en) Method for preventing flawing at corner of steel ingot
JPH06335756A (en) Continuous casting method
JP2867894B2 (en) Continuous casting method
JP3265230B2 (en) Continuous casting equipment
JPH0337810Y2 (en)
JPH07124712A (en) Continuous casting mold
JPS58205659A (en) Continuous casting method of rotary wheel type
JPH02290651A (en) Method and apparatus for continuously casting cast strip
JP2720135B2 (en) Slab cutting control method in continuous casting
JP2720692B2 (en) High-speed casting end method in continuous casting
JPH01271037A (en) Method for casting strip by twin roll type continuous casting machine
JPH0760424A (en) Continuous casting method
JPS63126651A (en) Belt type continuous casting method
JPH07284897A (en) Continuous casting method and its apparatus
JPS61296942A (en) Molten steel level control device of continuous casting device for thin sheet
JPH0390251A (en) Manufacture of irregular shaped strip
JP2006035248A (en) Continuous casting equipment and continuous casting method