JPS5975577A - Fuel cell assembly - Google Patents

Fuel cell assembly

Info

Publication number
JPS5975577A
JPS5975577A JP57185722A JP18572282A JPS5975577A JP S5975577 A JPS5975577 A JP S5975577A JP 57185722 A JP57185722 A JP 57185722A JP 18572282 A JP18572282 A JP 18572282A JP S5975577 A JPS5975577 A JP S5975577A
Authority
JP
Japan
Prior art keywords
fuel cell
clamping
cell assembly
unit cells
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57185722A
Other languages
Japanese (ja)
Inventor
Hiroshi Hayashi
宏 林
Kazunari Ihara
井原 和成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57185722A priority Critical patent/JPS5975577A/en
Publication of JPS5975577A publication Critical patent/JPS5975577A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To apply a constant clamping force to a fuel cell assembly regardless of operating conditions of the same, by providing clamping boards disposed on both top and bottom faces of the fuel cell assembly, formed of a plurality of unit cells stacked one upon another, and providing clamping forcd between the boards with the use of clamping members having coil springs. CONSTITUTION:A plurality of unit cells, each thereof being formed of a matrix impregnated with phosphoric acid, a pair of electrodes, and an interconnector provided with passage for fluids thereon, are stacked up, and manifolds 4 are provided on the side faces of the cell stack thereby to form a fuel cell assembly 6. Clamping boards 7A, 7B are provided on both top and bottom faces of the cell assembly, clamping rods 13 each thereof being formed of a normally shrunk coil spring 11 and two rods 12 attached to both its ends are inserted through holes provided in the clamping board, and nuts are used for the clamping and fixation. Since the coil springs 11 used are of a low spring constant, even if the fuel cell assembly 6 exhibits great thermal expansions and shrinkages, such displacement amounts can readily be absorbed by the springs. Therefore a constant clamping force is always provided, and reduced efficiency can thus be prevented.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、単位セルを複数個積層してなる燃料電池を締
付保持する締付部材を改良した燃料電池装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a fuel cell device in which a tightening member for tightening and holding a fuel cell formed by stacking a plurality of unit cells is improved.

〔発明の技術的背景〕[Technical background of the invention]

燃料の有しているエネルギーを直接的に電気エネルギー
に変換する装置として、燃料電池装置が知られている。
A fuel cell device is known as a device that directly converts energy contained in fuel into electrical energy.

この燃料電池装置は、通常、電解質を挾んで、多孔質体
の一対の電極が配置される。そして、一方の電極の背面
に液化水素等の流体燃料を接触させ、他力の電極の背面
には液化酸素等の流体酸化剤を接触させて、上記電極間
で電気化学反応を起こさせ、上記電極間から電気エネル
ギーを取り出すようにしたものである。このような燃料
電池装置は、前記燃料と酸化剤が供給される限シ高い変
換効率で風気エネルギーを取り出すことができる。
In this fuel cell device, a pair of electrodes of a porous material is usually arranged with an electrolyte sandwiched therebetween. Then, a fluid fuel such as liquefied hydrogen is brought into contact with the back surface of one electrode, and a fluid oxidizer such as liquefied oxygen is brought into contact with the back surface of the other electrode to cause an electrochemical reaction between the electrodes. Electrical energy is extracted from between the electrodes. Such a fuel cell device can extract wind energy with high conversion efficiency as long as the fuel and oxidizer are supplied.

上述した燃料電池装置において、特に、リン酸を電解質
として用いた具体的な構成例を第1図を参照して説明す
る。第1図において、lは電解質としてリン酸が含浸さ
れたマトリックスである。このマトリックスl V(ば
、その両面を挾むように2枚の電極2が配置され′Cい
る。この電極2は、通常炭素社からなる多孔質体で形成
され触媒が付加されている。更に上記電極2の背面には
、通常、グラファイトと熱硬化性樹脂との混合結着体か
らなる板状のインタコネクタ3が夫々配置されている。
In the above-mentioned fuel cell device, a specific example of a structure in which phosphoric acid is used as an electrolyte will be described with reference to FIG. In FIG. 1, l is a matrix impregnated with phosphoric acid as an electrolyte. Two electrodes 2 are arranged so as to sandwich both sides of this matrix lV (for example).The electrodes 2 are usually made of a porous material made of carbonaceous material, and a catalyst is added thereto. A plate-shaped interconnector 3 usually made of a mixed bond of graphite and thermosetting resin is disposed on the back surface of each of the connectors 2 .

このインタコネクタ3における電極2と接する各面には
、互いに形成方向が直交した流体流通溝31.3Bが形
成されている。
Fluid circulation grooves 31.3B are formed on each surface of the interconnector 3 in contact with the electrodes 2, the directions of which are perpendicular to each other.

上記マトリックス1.電極2.インタコネクタ3は、密
着積層されて単位セルを構成する。
Above matrix 1. Electrode 2. The interconnectors 3 are closely laminated to form a unit cell.

この単位セルのインタコネクタ3の流体流通溝3A、3
Bは、互いに直交する方向に形成されその縁部の開口部
から燃料或いは酸化剤の流体が流入する。この場合、単
位セルの一方のインタコネクタ3の流体流通溝3Aには
流体燃料を流通し、他方のインタコネクタ3の流体流通
路3Bには流体酸化剤を流通するようにしている。
Fluid circulation grooves 3A, 3 of interconnector 3 of this unit cell
B are formed in directions perpendicular to each other, and the fuel or oxidant fluid flows into the openings at the edges thereof. In this case, fluid fuel is allowed to flow through the fluid flow groove 3A of one interconnector 3 of the unit cell, and fluid oxidizer is allowed to flow through the fluid flow path 3B of the other interconnector 3 of the unit cell.

また単位セルは気密積層され、且つ上記流体流通路、9
A 、、9Bは互いに直交した方向に形成されているの
で、流体燃料と、流体酸化剤とは混合しない構成となっ
ている。
Further, the unit cells are stacked airtight, and the fluid flow path, 9
Since A, 9B are formed in directions perpendicular to each other, the fluid fuel and the fluid oxidizer do not mix.

上記のように構成された単位セルは複数個積層され、燃
料電池を構成する。この燃料電池の各面には、第2図に
示すマニホルPが当てかわれる。第2図において、4A
は燃料供給用パイプ5Aが設けられた燃料供給用マニホ
ルドである。4Bは前記燃料供給用マニホルド4AK対
向して設置され、溶料排出用のパイプ5Bが設ケラれた
燃料排出用マニホルドである。4Cは上記マニホルド4
に、48Vこ対し7直交方向に設置され、酸化剤供給用
のパイプ5Cが設けられた酸化剤供給用マニホルドであ
る。4Dは、前記酸化剤供給用マニホルド4Cに対向し
て設置され、酸化剤排出用のパイプ5Dが設けられた酸
化剤排出用マニホルドである。
A plurality of unit cells configured as described above are stacked to form a fuel cell. A manifold P shown in FIG. 2 is assigned to each side of this fuel cell. In Figure 2, 4A
is a fuel supply manifold provided with a fuel supply pipe 5A. 4B is a fuel discharge manifold installed opposite to the fuel supply manifold 4AK and provided with a solvent discharge pipe 5B. 4C is the above manifold 4
This is an oxidizing agent supply manifold installed in a direction perpendicular to the 48V voltage and provided with an oxidizing agent supplying pipe 5C. 4D is an oxidant discharge manifold that is installed opposite to the oxidant supply manifold 4C and is provided with an oxidant discharge pipe 5D.

単位セルが多数個積層された燃料電池は、その各面にマ
ニホルド4が当てがわれ、第3図に示すような締付部材
によυ締(=Jけられる。第3図において6は、燃料電
池であり、この燃料電池6の側面にはマニホルド4が当
てらt1更に上、下面には締付板7A、7Bが当てられ
ている。この締付板7A、7Bの縁部には貫通孔が設け
られ、この貫通孔にはロッド8が挿通されている。また
上前ロッド8の端部には皿バネ9が装着され、この皿バ
ネ9は?シト10で締付けられることによシ上記締付板
7A、7Bは内方向に可動する。これによシ燃料電池6
は上、下方向に締付けられる。
A fuel cell in which a large number of unit cells are stacked has a manifold 4 applied to each side thereof, and is tightened by a tightening member as shown in FIG. 3. In FIG. 3, 6 is This is a fuel cell, and a manifold 4 is placed on the side surface of the fuel cell 6, and clamping plates 7A and 7B are placed on the upper and lower surfaces of the fuel cell 6.The edges of the clamping plates 7A and 7B are provided with penetrating holes. A hole is provided, and a rod 8 is inserted into the through hole.A disc spring 9 is attached to the end of the upper front rod 8, and the disc spring 9 is tightened with a seat 10 to provide a shock absorber. The clamping plates 7A and 7B are movable inwardly.
is tightened upward and downward.

〔背景技術の問題点〕[Problems with background technology]

上記締付板7A、7B、ロッド8、皿バネ9、ビルト1
0からなる締付部材は、積層された複数の単位セルの形
状を保持し、各単位セル間の電気的接触抵抗値を低減す
るために、また単位セルの強度を考慮し所定の締付力が
生じるように構成されなければならない。一方燃料電池
装置を通常定格で運転すると、燃料電池6は200℃近
辺まで温度上昇し、また締付部材は100℃近辺まで温
度上昇する。また燃料電池6の熱膨張係数は5 X 1
0’/℃であシ、通常、鉄鋼材で製作される締付部材の
熱膨張係数は1.2,1.7X1o−’y℃であり、運
転時に燃料電池6は10刈C3だけ膨張し、締付部材は
1.7 X 1σ3だけ膨張し、燃料電池6の方が大き
く膨張してしまう。
The above tightening plates 7A, 7B, rod 8, disc spring 9, built 1
The tightening member made of zero is applied with a predetermined tightening force in order to maintain the shape of a plurality of stacked unit cells and to reduce the electrical contact resistance value between each unit cell, and in consideration of the strength of the unit cells. must be configured so that it occurs. On the other hand, when the fuel cell device is operated at a normal rating, the temperature of the fuel cell 6 rises to around 200°C, and the temperature of the tightening member rises to around 100°C. Also, the thermal expansion coefficient of the fuel cell 6 is 5 x 1
0'/°C, the thermal expansion coefficient of the clamping member usually made of steel is 1.2, 1.7X1o-'y°C, and the fuel cell 6 expands by 10 C3 during operation. , the tightening member expands by 1.7×1σ3, and the fuel cell 6 expands more.

ところが皿バネ9はバネ定θが大きいため、燃料電池装
置の運転状態に応じ燃料電池6の締付圧力は大きく変動
してしまう。燃料電池6の膨張を、皿バネ9からなる締
付部材が吸収しきれないで、締付圧力が大きくなった場
合は、単位セル夫々を圧壊しまうことがあった。
However, since the disc spring 9 has a large spring constant θ, the tightening pressure of the fuel cell 6 varies greatly depending on the operating state of the fuel cell device. If the tightening member made of the disc spring 9 cannot absorb the expansion of the fuel cell 6 and the tightening pressure increases, each unit cell may be crushed.

また、締付圧力が小さい場合は、燃料電池6をなす多数
の単位セル間の電気抵抗値が増大し、電圧降下が大きく
なシ出力される電気エネルギーの損失が大きくなる。
Further, if the tightening pressure is small, the electrical resistance value between the many unit cells forming the fuel cell 6 increases, and the voltage drop becomes large and the loss of the output electrical energy becomes large.

また、皿バネ9は、多数枚を直列配置もしくは並列配置
することにより、所定の締付圧力を得るようにしている
。ところが製作時に皿バネ9を配置するのに時間を要し
てしまう欠点があった。
Moreover, a predetermined tightening pressure is obtained by arranging a large number of disc springs 9 in series or in parallel. However, there is a drawback that it takes time to arrange the disc spring 9 during manufacturing.

〔発明の目的〕[Purpose of the invention]

本発明は上記欠点を除去するためになされたもので、そ
の目的とするところは、構成が簡単にして運転状態の変
化に対し燃料電池の締付圧力を一定に保持し、もって出
力される電気エネルギーの効率低下を防止し、且つ燃料
電池をなす単位セルを損傷しない燃料電池装置を提供す
ることにある。
The present invention has been made in order to eliminate the above-mentioned drawbacks, and its purpose is to maintain a constant tightening pressure of the fuel cell against changes in operating conditions by simplifying the structure, and thereby to output electricity. It is an object of the present invention to provide a fuel cell device that prevents a decrease in energy efficiency and does not damage unit cells forming a fuel cell.

〔発明の概要〕[Summary of the invention]

本発明による燃料電池装置は、単位セルを複数個積層し
てなる燃料電池の単位セル積層方向の両端面側に締付部
材を夫々設置し、との各締付部材は、コイルバネを有し
てなる構成とすることにより、上記目的を達成するよう
にしたものである。
In the fuel cell device according to the present invention, clamping members are respectively installed on both end faces in the stacking direction of the unit cells of a fuel cell formed by stacking a plurality of unit cells, and each clamping member has a coil spring. By having the following configuration, the above object is achieved.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を図面を参照して説明する。第4
図は本発明による燃料電池装置の一実施例を示す断面構
成図である。
An embodiment of the present invention will be described below with reference to the drawings. Fourth
The figure is a cross-sectional configuration diagram showing an embodiment of a fuel cell device according to the present invention.

第4図において、単位セルを複数個積層してなる燃料電
池6の側面にはマニホルド4が取付けられ、上、下部に
は、締付板7A、7Bが設置されている。この締付板7
A、7Bの端部には貫通孔が設けられ、この貫通孔には
、常閉のコイル・々ネ11の両端部に口、ド12が取付
けられでなる締付ロッド13のネソ切りされた端部が挿
通して設置されている。そして上記締付ロッド13の端
部はボルト10にで締付けら5ル、締付板7A 、7B
は内方向に口J動され、燃料室池奄締付けられる。
In FIG. 4, a manifold 4 is attached to the side surface of a fuel cell 6 formed by stacking a plurality of unit cells, and clamping plates 7A and 7B are installed at the upper and lower parts. This tightening plate 7
Through-holes are provided at the ends of A and 7B, and in these through-holes, openings and doors 12 are attached to both ends of a normally closed coil spring 11, and a tightening rod 13 is cut out. The end is inserted and installed. The ends of the tightening rod 13 are tightened with bolts 10 and tightening plates 7A and 7B.
is moved inward and the fuel chamber is tightened.

次に以上のように構成された本実施例の作用について述
べる。即ち、従来、締付手段として用いた皿バネ9に比
較して、本実施例におけるコイルバネ11は、バネ定数
が1/100−1/1000程度である。従って燃料電
池6が大幅に熱膨張或いは収縮したとしても、上記バネ
定数値が低いコイルバネ11を用いているので、変位分
は容易に吸収される。またこのコイルバネ1ノは、単体
にて所定のバネ圧を発生し得るので、燃料電池6と締付
部材とを組立てる際ニ汀、作業が容易である。
Next, the operation of this embodiment configured as above will be described. That is, compared to the disc spring 9 conventionally used as a tightening means, the coil spring 11 in this embodiment has a spring constant of about 1/100 to 1/1000. Therefore, even if the fuel cell 6 undergoes significant thermal expansion or contraction, the displacement can be easily absorbed because the coil spring 11 having a low spring constant value is used. Further, since the coil spring 1 can generate a predetermined spring pressure by itself, it is easy to assemble the fuel cell 6 and the tightening member.

なお本発明は上記実施例に限定されるものではない。例
えば第4図に示すコイルバネ1ノの代シに2つのコイル
バネを直列連結することによシ、熱膨張による変位は一
層吸収しゃすくなる。この他に本発明は、その要旨を変
更しない範囲で種々変形して実施できる。
Note that the present invention is not limited to the above embodiments. For example, by connecting two coil springs in series instead of one coil spring as shown in FIG. 4, displacement due to thermal expansion can be more easily absorbed. In addition, the present invention can be implemented with various modifications without changing the gist thereof.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、単位セルを複数個
積層してなる燃料電池を、コイルバネを有した締付部材
によシ締付けるようにしたので、構成は簡単となシ、運
転状態の変化に対し燃料電池の締付圧力を一定に保持し
、もって出力される電気エネルギーの効率低下を防止し
、且つ燃料電池をなす単位セルを損傷しない燃料電池装
置を提供できる。
As explained above, according to the present invention, a fuel cell formed by stacking a plurality of unit cells is tightened by a tightening member having a coil spring. It is possible to provide a fuel cell device that maintains the clamping pressure of the fuel cell constant against changes, thereby preventing a decrease in the efficiency of the output electrical energy, and not damaging the unit cells forming the fuel cell.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、燃料電池を示す斜視図、第2図はマニホルド
が設置された燃料電池を示す斜視図、第3図は従来の燃
料電池装置を示す断面構成図、第4図は本発明による燃
料電池装置の一実施例を示す断面構成図である。 1・・・マトリックス、2・・・を極1.9−・・イン
クコネクタ、3に、3B・・・流体流通体、4 A +
 4 B e4C,4D・・・マニホルド、5A 、 
5B 、 5C。 5D・・・パイプ、6・・・燃料電池、7に、7B・・
・締付板、8・・・ロッド、9・・・皿バネ、ノ 0・
・・ホ゛ルト、1ノ・・・コイルバネ、12 口1.ド
、13・・・締付ロッ ド。 出願人代理人  弁理士 鈴 江 武 彦牙1図 牙2v!J D 牙3 図 牙4図
FIG. 1 is a perspective view showing a fuel cell, FIG. 2 is a perspective view showing a fuel cell with a manifold installed, FIG. 3 is a cross-sectional configuration diagram showing a conventional fuel cell device, and FIG. 4 is a diagram according to the present invention. FIG. 1 is a cross-sectional configuration diagram showing an example of a fuel cell device. 1...Matrix, 2... to pole 1.9-...ink connector, 3, 3B...fluid flow medium, 4 A +
4 B e4C, 4D... Manifold, 5A,
5B, 5C. 5D...pipe, 6...fuel cell, 7, 7B...
・Tightening plate, 8...Rod, 9...Disc spring, 0.
...Holt, 1 piece...Coil spring, 12 ports 1. 13...Tightening rod. Applicant's agent Patent attorney Takeshi Suzue Hikoga 1 Zuga 2v! J D Fang 3 Illustrated Fang 4

Claims (1)

【特許請求の範囲】[Claims] 一対の電極の面間に電解質を介在し、前記一方の電極の
背面側il?:#f、体燃料を流通させ、且つ他方の電
極の背面側IC流体酸化剤を流通させて成シ、両町1対
の電極間に電気エネルギーを出力する単位セルを複数個
積層してなる燃料電池装置において、前記単位セル積層
方向の両端面間に締付部材を設置し、との各締付部材は
コイルバネを有して成ることを特徴とする燃料電池装置
An electrolyte is interposed between the surfaces of the pair of electrodes, and the rear side of the one electrode is il? : #f, a fuel made by stacking a plurality of unit cells that output electric energy between a pair of electrodes, formed by circulating body fuel and circulating an IC fluid oxidizer on the back side of the other electrode. A fuel cell device, wherein a tightening member is installed between both end faces in the stacking direction of the unit cells, and each of the tightening members has a coil spring.
JP57185722A 1982-10-22 1982-10-22 Fuel cell assembly Pending JPS5975577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57185722A JPS5975577A (en) 1982-10-22 1982-10-22 Fuel cell assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57185722A JPS5975577A (en) 1982-10-22 1982-10-22 Fuel cell assembly

Publications (1)

Publication Number Publication Date
JPS5975577A true JPS5975577A (en) 1984-04-28

Family

ID=16175709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57185722A Pending JPS5975577A (en) 1982-10-22 1982-10-22 Fuel cell assembly

Country Status (1)

Country Link
JP (1) JPS5975577A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0249360A (en) * 1988-08-10 1990-02-19 Sanyo Electric Co Ltd Stacked fuel cell
JP2009009912A (en) * 2007-06-29 2009-01-15 Nissan Motor Co Ltd Assembling system and assembling method for fuel cell, and fuel cell assembled by the same assembly method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0249360A (en) * 1988-08-10 1990-02-19 Sanyo Electric Co Ltd Stacked fuel cell
JP2009009912A (en) * 2007-06-29 2009-01-15 Nissan Motor Co Ltd Assembling system and assembling method for fuel cell, and fuel cell assembled by the same assembly method

Similar Documents

Publication Publication Date Title
JP3489181B2 (en) Unit cell of fuel cell and method of manufacturing the same
US5547777A (en) Fuel cell having uniform compressive stress distribution over active area
US6207310B1 (en) Fuel cell with metal screen flow-field
US5484666A (en) Electrochemical fuel cell stack with compression mechanism extending through interior manifold headers
US5945232A (en) PEM-type fuel cell assembly having multiple parallel fuel cell sub-stacks employing shared fluid plate assemblies and shared membrane electrode assemblies
US6218039B1 (en) Clamping apparatus and method for a fuel cell
US20050186462A1 (en) PEM fuel cell stack with floating current collector plates
US4853301A (en) Fuel cell plates with skewed process channels for uniform distribution of stack compression load
MXPA97002720A (en) Fuel batteries that use a platelet technology for the handling of an integrated fluid
JPS62136772A (en) Fule cell
JP2566757B2 (en) Fuel cell
JP2003086232A (en) Fuel cell stack
WO1995028010A1 (en) Electrochemical fuel cell stack with compact, centrally disposed compression mechanism
US20080199751A1 (en) Bipolar plate for an air breathing fuel cell stack
JPH0837012A (en) Solid polymer electrolyte type fuel cell
JPS5975577A (en) Fuel cell assembly
JP3420508B2 (en) Polymer electrolyte fuel cell
JPS6093765A (en) Fuel cell
JP3672274B2 (en) Flat solid electrolyte fuel cell
JPH08138699A (en) Solid polyelectrolyte fuel cell
JPS5975576A (en) Fuel cell
JPH0249640Y2 (en)
JPH06333582A (en) Solid polyelectrolyte fuel cell
JPH0822837A (en) Solid polymer electrolyte fuel cell
JPH06333581A (en) Solid poly electrolyte fuel cell