JPS597554B2 - Duplicate pipe weld joint processing method - Google Patents

Duplicate pipe weld joint processing method

Info

Publication number
JPS597554B2
JPS597554B2 JP13703179A JP13703179A JPS597554B2 JP S597554 B2 JPS597554 B2 JP S597554B2 JP 13703179 A JP13703179 A JP 13703179A JP 13703179 A JP13703179 A JP 13703179A JP S597554 B2 JPS597554 B2 JP S597554B2
Authority
JP
Japan
Prior art keywords
pipe
stress
pipes
tube
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13703179A
Other languages
Japanese (ja)
Other versions
JPS5662692A (en
Inventor
稔雄 熱田
興右 糸賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP13703179A priority Critical patent/JPS597554B2/en
Publication of JPS5662692A publication Critical patent/JPS5662692A/en
Publication of JPS597554B2 publication Critical patent/JPS597554B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)
  • Heat Treatment Of Articles (AREA)
  • Arc Welding In General (AREA)

Description

【発明の詳細な説明】 この発明は油送管等に供する複重管が単位管相互を接合
した溶接継手部に於て応力腐蝕割れを生じない様に予め
内方管に圧縮残留応力を形成させる技術に属する。
[Detailed Description of the Invention] This invention forms compressive residual stress in the inner pipe in advance to prevent stress corrosion cracking at the welded joint where unit pipes are joined together in a double pipe used for oil pipes, etc. It belongs to the technology of

而して、開示発明はオーステナイト系ステンレス鋼管を
内管に炭素鋼管を外管等にて積層重合した複重管相互を
両者の端部突合部にて溶接々合した該溶接継手部にその
溶接に伴つて形成されている残留応力、就中、内管の引
張残留応力を流体輸送中の応力腐蝕割れが生じ無い様に
処理する方法に関するものであり、特に、該溶接後、溶
接継手部に対して管内部より内圧を印加して弾性限界を
越して塑性変形を付与した後設定応力印加後縮管し、素
材管の降伏応力の差により引張残留応力の形成されてい
た内管には応力腐蝕割れの生ずる限界引張応力が生じな
い圧縮応力を形成させる様にした複重管の溶接継手部処
理方法に係るものである。
Accordingly, the disclosed invention is a method of welding double pipes, each of which is made by stacking an austenitic stainless steel pipe as an inner pipe and a carbon steel pipe as an outer pipe, and welding them together at the abutting parts of their ends. The present invention relates to a method for treating residual stress, especially tensile residual stress in an inner pipe, so as to prevent stress corrosion cracking from occurring during fluid transport. On the other hand, internal pressure was applied from inside the tube to cause plastic deformation beyond the elastic limit, and then the tube contracted after applying a set stress. The present invention relates to a method for treating a welded joint of a double pipe in such a way that a compressive stress that does not reach the critical tensile stress that causes corrosion cracking is generated.

周知の如く、各種プラント配管、油送管、油井管等に於
ては輸送流体が、塩化物、硫化物、酸、アルカリ等の腐
蝕性含有物を有する腐蝕性の場合が多く、又、輸送プロ
セス中の圧損に対処するため昇圧々送される場合が多い
As is well known, the transport fluids used in various plant piping, oil transmission pipes, oil country tubular goods, etc. are often corrosive, containing corrosive substances such as chlorides, sulfides, acids, and alkalis. In order to deal with pressure loss during the process, the pressure is often increased.

従つて、上記輸送配管に於ては耐蝕性、耐圧性等を考慮
して、例えば、内管を耐蝕性の強いオーステナイト系ス
テンレス鋼管にし、該内管に重合した耐圧性の強い炭素
鋼管を外管とした所謂ステンレスクラッド鋼管の二重管
が採用され、物理性、機械性を向上させる様にされてい
る。
Therefore, in consideration of corrosion resistance, pressure resistance, etc., for the above-mentioned transportation piping, for example, the inner tube is made of highly corrosion-resistant austenitic stainless steel tube, and the inner tube is made of polymerized carbon steel tube with strong pressure resistance. A double-pipe tube made of so-called stainless clad steel pipe is used to improve physical properties and mechanical properties.

ところで、上記オーステナイト系ステンレス鋼と炭素鋼
とは前記の如く、結果的な輸送管としての好特性は有し
ているものゝ、熱膨張係数の差を有している物理性のた
め、クラッドプロセスの高温熱間圧延時からクラッド鋼
板が冷却常温時に至るまでの混度差に基づく極めて大き
な引張残留応力が形生される。
By the way, as mentioned above, the austenitic stainless steel and carbon steel have good properties as a result of transportation pipes, but due to their physical property that they have a difference in coefficient of thermal expansion, they cannot be used in the cladding process. An extremely large tensile residual stress is generated due to the difference in mixture content between the time of high-temperature hot rolling and the time when the clad steel plate is cooled to room temperature.

ところで、輸送管が現実に置かれる苛酷な使用状態、即
ち、腐蝕性流体輸送に於ては所謂応力腐蝕割れの問題が
生ずる。
By the way, under the severe conditions in which transport pipes are actually used, ie, when transporting corrosive fluids, the problem of so-called stress corrosion cracking occurs.

即ち、理論、実験等によればSUS316で引張残留応
力が10kg/罵i を越すと沸騰塩化マグネシウム中
での応力腐蝕割れは急激に生ずることが判つている。
That is, according to theory and experiments, it has been found that stress corrosion cracking in boiling magnesium chloride rapidly occurs in SUS316 when the tensile residual stress exceeds 10 kg/i.

特に、該引張残留応力が降伏応力に近似する場合程シビ
ア一であることも判つて訃り、実状長距離輸送管等に於
てはSUS3l6で15kg/m1?程度の引張応力が
作用し上記10kg/71t1t2の限界引張応力を越
えるため応力腐蝕割れが早期に現出されることになる。
In particular, it has been found that the tensile residual stress is more severe as it approaches the yield stress, and in actual long-distance transport pipes, SUS3L6 is 15kg/m1? Since a certain tensile stress acts on the steel and exceeds the above-mentioned critical tensile stress of 10 kg/71t1t2, stress corrosion cracking appears at an early stage.

これに対処するに出願人の先願である特願昭54−49
654号(昭和54年4月24日付出願)の発明に於て
はステンレス内張管の二重管に於て内方より所定に拡管
して内外管の降伏応力の差を用いて塑性変形後縮管し、
外管に引張残留応力を内管に圧縮残留応力を付与し、応
力腐蝕割れの限界引張応力を越える引張応力が生じない
様にして二重管及び該二重管を基礎とする複重管の実用
可能性を開発した。
To address this issue, the applicant's earlier patent application filed in 1984-49
In the invention of No. 654 (filed on April 24, 1978), in a double pipe of stainless steel lined pipe, the pipe is expanded from the inside in a predetermined manner and the difference in yield stress between the inner and outer pipes is used to deform the pipe after plastic deformation. tube contraction,
A tensile residual stress is applied to the outer pipe and a compressive residual stress is applied to the inner pipe to prevent the generation of tensile stress exceeding the critical tensile stress for stress corrosion cracking. Developed practical possibilities.

ところで、実使用に供される二重管等の複重管の配管は
上記の様に応力腐蝕割れに対処して製作される管体が工
場、搬送等の制約から所定長さのユニツト管体であるこ
とにより、現実には1対、少くとも後続管体を接続延長
することが必要であり、一般には突合せ溶接手段を介し
て接続延長させている。
By the way, in the piping of double pipes such as double pipes used in actual use, the pipe bodies are manufactured to prevent stress corrosion cracking as described above, but due to constraints such as factories and transportation, unit pipe bodies of a predetermined length are used. Therefore, in reality, it is necessary to connect and extend at least one pair of subsequent tube bodies, which is generally done through butt welding means.

さりながら、第1図に示す様にオーステナイト系ステン
レス鋼管1を内管とし炭素鋼管2を外とした2重管3,
3を溶接した継手部4に於ては溶接時の高温状態から常
温状態に冷却されるまでには上記継手部4を中心に軸方
向対称に外管2及び内管1には該継手部を最高値に長さ
方向に漸減する様に圧縮残留応力σP,引張残留応力σ
,が残留形成分布されている。
Meanwhile, as shown in Fig. 1, a double pipe 3 with an austenitic stainless steel pipe 1 as the inner pipe and a carbon steel pipe 2 as the outer pipe,
3 is welded to the outer tube 2 and the inner tube 1, the outer tube 2 and the inner tube 1 are axially symmetrical about the joint 4 until the joint 4 is cooled from the high temperature state during welding to the normal temperature state. Compressive residual stress σP and tensile residual stress σ gradually decrease to the maximum value in the length direction.
, is distributed as residual formation.

而して、該内管の引張残留応力は降伏応力に近似する程
大きいものであることも判つている。
It has also been found that the tensile residual stress of the inner tube is so large that it approaches the yield stress.

又、前記の如く、油送管等に於ては輸送中の圧損をカバ
ーするため高圧輸送を行うためSUS3l6では15k
9/Mm2程度O引張応力が作用しその点からも簡単に
応力腐蝕割れの限界引張応力の10k9/罵1を越えて
しまう。従つて、管体一般部が応力腐蝕割れ対処がなさ
れている場合であつても継手部4を中心とする部分に応
力腐蝕割れが生じ易い引張残留応力が形成されていると
該継手部4から割れが早期に発生する欠点がある。
In addition, as mentioned above, oil pipes, etc. are transported under high pressure to cover pressure loss during transport, so SUS3L6 has a pressure of 15k.
A tensile stress of about 9/Mm2 is applied, which easily exceeds the critical tensile stress of 10k9/Mm2 for stress corrosion cracking. Therefore, even if stress corrosion cracking has been taken care of in the general part of the pipe, if tensile residual stress that is likely to cause stress corrosion cracking is formed in the area around the joint 4, the joint 4 will be damaged. The disadvantage is that cracks occur early.

これに対処するに前記先願の拡管法を溶接後の全長に亘
つて行うことは装置的に困難であり、又、部分的に急冷
することも考えられるが、同じく装置的に難しいのと材
質悪化の不利点がある。
To deal with this, it is difficult in terms of equipment to carry out the tube expansion method of the earlier application over the entire length after welding, and it is also possible to rapidly cool parts of the pipe, but it is also difficult in terms of equipment and due to the material quality. There are disadvantages of deterioration.

この発明の目的は上記二重管等の複重管の一般部の応力
腐蝕割れ対処可能な対処管の溶接継手部に発生する稼動
中の応力腐蝕割れの問題点に鑑み、応力腐蝕割れ対処を
なした複重管相互を突合せ溶接々合した後、管端開口部
より拡管装置を挿入して溶接継手部にセツトし該継手部
を拡管し弾性限界を越えて塑性変形し該定径方向歪の後
縮管する様にし降伏応力の差を用いて前記引張応力が残
留していた内管に最終的に限界応力腐蝕割れ引張応力よ
り低い稼動引張応力しか作用しない様に圧縮残留応力を
形成させ、又、外側層管には引張残留応力を形成させる
様にして管全長に亘つて応力腐蝕割れが生じない様にし
、管の輸送能力を維持し得る様にした優れた複重管溶接
継手部処理方法を提供せんとするものである。次に上記
目的Vc溢うこの発明の実施例を第2図以下の図面に従
つて説明すれば以下の通りである。
The purpose of this invention is to take measures against stress corrosion cracking in the general parts of double-walled pipes, etc. In view of the problem of stress corrosion cracking that occurs in the welded joints of pipes during operation, After butt welding the double pipes together, a tube expansion device is inserted through the tube end opening and set at the weld joint, expanding the joint and plastically deforming it beyond its elastic limit to eliminate the radial strain. After the tube shrinks, the difference in yield stress is used to create a compressive residual stress so that only an operating tensile stress lower than the critical stress corrosion cracking tensile stress finally acts on the inner tube where the tensile stress remains. In addition, an excellent double pipe welded joint is created in which tensile residual stress is formed in the outer layer pipe to prevent stress corrosion cracking from occurring over the entire length of the pipe, thereby maintaining the transport capacity of the pipe. This paper aims to provide a processing method. Next, an embodiment of the present invention which fulfills the above-mentioned object Vc will be described below with reference to FIG. 2 and the following drawings.

向、第1図と同一態様部分については同一符号を用いて
説明するものとする。第2図に複重管、実施態様として
二重管の内管内に所定拡管装置を挿入し、溶接継手部に
セツトし拡管していくと拡管応力σに対して径方向に歪
が増加し、その歪量ξは外管に於て降伏応力が小である
ため0B曲線と緩やかで、これに対し内管は0A曲線と
降伏応力の小に比例して急カーブを画く。
In the following, parts having the same features as those in FIG. 1 will be described using the same reference numerals. Fig. 2 shows a double-walled pipe.As an embodiment, when a specified tube expansion device is inserted into the inner pipe of the double-walled pipe, set at the welded joint, and expanded, the strain increases in the radial direction with respect to the pipe expansion stress σ. The amount of strain ξ is as gentle as the 0B curve in the outer tube because the yield stress is small, whereas the inner tube has a steep curve in proportion to the 0A curve and the small yield stress.

而して、弾性限界を越えて塑性変形させ、実験及び理論
に基づく歪設定値ξ.に達したところで拡管応力印加を
停止して縮管プロセスに移行させる。
Then, plastic deformation is performed beyond the elastic limit, and the strain set value ξ is determined based on experiments and theory. When this is reached, the application of tube expansion stress is stopped and the tube shrinking process begins.

そこで、両管は応力、歪量を減少していき、最終的に設
定歪量、即ち、内管に対して前記設定圧縮残留応力一σ
1−10k9/M7f7−が形成される様な歪量ξ。
Therefore, the stress and strain in both tubes are reduced, and finally the set strain amount is reached, that is, the set compressive residual stress - σ
The amount of strain ξ such that 1-10k9/M7f7- is formed.

を、そして外管には対応する引張残留応力+ξ8が形成
される様にする。この様にして降伏応力の差を利用して
溶接時の内管の引張残留応力を除去するばかりでなく、
稼動に先立つて圧縮残留応力を付与して訃くことが出来
る。
, and a corresponding tensile residual stress +ξ8 is formed in the outer tube. In this way, the difference in yield stress is used not only to remove the tensile residual stress in the inner tube during welding, but also to
It is possible to apply compressive residual stress prior to operation.

而して、該予付与圧縮残留応力、例えば、上記一10k
9/Ml2は予めξ.を決めることによつて得られるし
、所定に選定可能である。
The pre-applied compressive residual stress, for example, the above-mentioned 10k
9/Ml2 is ξ. It can be obtained by determining , and can be selected in a predetermined manner.

かくして、得られた二重管はその一般部は勿論のこと、
溶接継手部も予め、例えば、−10k9/Miの圧縮残
留応力を形成されているため油送管態様等に於て、例え
ば、15k9/Ml2の引張応力が印加される様に昇圧
輸送されても差引5kg/77!iの引張応力しか内管
には作用せず、前記応力腐蝕.割れの限界引張応力の1
0k9/Miには達さないため応力腐蝕割れが全長に亘
つて発生することがない。
In this way, the obtained double pipe has not only its general part, but also
The welded joint is also pre-formed with a compressive residual stress of, for example, -10k9/Mi, so even if it is transported under pressure so that a tensile stress of, for example, 15k9/Ml2 is applied in the form of an oil pipe, etc. Minus 5kg/77! Only tensile stress of i acts on the inner tube, and the stress corrosion. 1 of the critical tensile stress for cracking
Since it does not reach 0k9/Mi, stress corrosion cracking does not occur over the entire length.

実施態様としては液圧拡管、機械拡管等の手段が適宜採
用可能であるが、第3図に示す実施例は液圧拡管の態様
であり、オーステナイト系ステンレス鋼管を内管1とし
炭素鋼管を外管2とした所定形成のユニツト長クラツド
鋼管二重管3を所定個数連結するに相互に突合せ溶接を
継手部4に行う。
Although means such as hydraulic pipe expansion and mechanical pipe expansion can be adopted as appropriate, the embodiment shown in Fig. 3 is a hydraulic pipe expansion mode, in which an austenitic stainless steel pipe is used as the inner pipe 1 and a carbon steel pipe is used as the outer pipe. When a predetermined number of unit length clad steel double pipes 3 having a predetermined shape as pipes 2 are connected, butt welding is performed to each other at a joint portion 4.

周、各二重管3の応力腐蝕割れ対処はなされている。而
して、該溶接々合した二重管3,3については一方の、
即ち、管長の短い方の開口部5より内管1より設定径だ
け僅少の断面U字型のセツトリング6を挿入して溶接継
手部4VC適宜セツトする。
Measures have been taken to prevent stress corrosion and cracking of the circumference and each double pipe 3. Therefore, regarding the welded double pipes 3, 3, one of the
That is, a setting ring 6 having a U-shaped cross section and a set diameter slightly smaller than the inner pipe 1 is inserted through the opening 5 of the shorter pipe length, and the weld joint 4VC is appropriately set.

そして、該セツトリング6の内腔7に予め装着した硬質
のリング状ゴムチユーブ8はその内部が該セツトリング
6を貫通して耐圧ホース9を介して図示しない油圧シリ
ンダに接続され、セツト後該油圧シリンダを作動させて
油圧を該ゴムチユープ8f1C作用させ直接内管1の継
手部4に拡管応力を印加させ、該内管1と外管2に拡管
作用を与ぼす。この様にして該継手部4が拡管されてい
くと内外管1,2は降伏点の相違により前記第2図の応
力歪曲線を画いて弾性限界を越えて塑性変形を起こし、
歪ゲージ10により両者の歪量は経時的に測定される。
The inside of a hard ring-shaped rubber tube 8, which is installed in the inner cavity 7 of the settling ring 6 in advance, passes through the settling ring 6 and is connected to a hydraulic cylinder (not shown) via a pressure hose 9. The cylinder is operated to apply hydraulic pressure to the rubber tube 8f1C to directly apply tube expansion stress to the joint portion 4 of the inner tube 1, thereby exerting a tube expansion action on the inner tube 1 and the outer tube 2. As the joint portion 4 is expanded in this manner, the inner and outer tubes 1 and 2 undergo plastic deformation exceeding their elastic limit, following the stress-strain curve shown in FIG. 2, due to the difference in their yield points.
The strain gauge 10 measures the amount of strain in both over time.

而して、前記の如く、予め設定された歪量ξ.に達する
と圧油送給を停止し両管1,2を縮管させる。
Thus, as described above, the preset distortion amount ξ. When reaching this point, the pressure oil supply is stopped and both pipes 1 and 2 are contracted.

そして、該縮管プロセスに於て前記の様に該設定歪量ξ
.の選定付与により最終的に内管1に設定圧縮残留応力
ξ。
Then, in the tube shrinking process, the set strain amount ξ is
.. The compressive residual stress ξ is finally set in the inner tube 1 by selecting ξ.

が、又、外管2に引張残留応力ξ3が形成されること\
なる。又、第4図に示す実施例は継手部4に対する機械
的拡管手段セツトに基づく態様であり、油圧シリンダ1
1に対してトング12を介して周設された分割リング1
3は縮少状態にて端部5より継手部4に挿入セツトされ
、図示しない油圧ポンプより耐圧ホース9を介して圧油
を送給させて該油圧シリンダを作動させトング12を縮
少させて分割リング13をして均等に継手部4を内方か
ら拡管し、その弾性限界を越えての塑性変形及び設定歪
量ξ.に於ける拡管停止、縮管等の操作は上記実施例と
変らず、又、内管に応力腐蝕割れを起こさせない圧縮残
留応力を形成させるのも同様である。
However, a tensile residual stress ξ3 is also formed in the outer tube 2\
Become. Further, the embodiment shown in FIG. 4 is an embodiment based on a mechanical tube expansion means set for the joint portion 4, and the hydraulic cylinder
A split ring 1 is provided around the ring 1 through a tongue 12.
3 is inserted into the joint part 4 from the end part 5 in the contracted state, and pressurized oil is supplied from a hydraulic pump (not shown) through the pressure hose 9 to operate the hydraulic cylinder to retract the tongue 12. The split ring 13 is used to evenly expand the joint part 4 from the inside, and the plastic deformation beyond its elastic limit and the set strain amount ξ. The operations such as stopping expansion and contracting the tube are the same as in the above embodiment, and the formation of compressive residual stress that does not cause stress corrosion cracking in the inner tube is also the same.

向、この発明の実施例は上記態様に限られるものでない
ことは勿論であり、二重管に限らず、三重管も可能であ
り、拡管手段も種々採用可能である。上記の様にこの発
明によれば、複数積層管が各各降伏点の異なるものから
重合され、設定ユニツト長の管が溶接継手を介して接合
延長されている場合、管内部より該溶接継手部に対して
拡管応力を印加し、弾性限界を越えて塑性変形させ、設
計応力腐蝕割れ限界引張力以下の稼動引張力が内管に作
用する様に該内管に圧縮残留応力が形成される様に拡管
歪を与えて拡管を停止し、降伏応力の差に基づいて内管
と外管を縮管して上記圧縮残留応力を該内管に形成する
様にしたことにより、上記の如く複重管が油送管等に供
されて稼動された場合、圧送圧を印加されて稼動引張応
力が作用しても常に応力腐蝕割れの限界引張応力以下に
引張力を抑制々御することが出来、該溶接継手部に応力
腐蝕割れが生ずる訃それが無い優れた効果がある。
However, it goes without saying that the embodiments of the present invention are not limited to the above embodiments, and are not limited to double pipes, but also triple pipes, and various pipe expansion means can be employed. As described above, according to the present invention, when a plurality of laminated pipes are polymerized from pipes having different yield points, and the pipes of a set unit length are joined and extended via a welded joint, the welded joint is accessed from the inside of the pipe. A compressive residual stress is formed in the inner tube so that an operating tensile force below the design stress corrosion cracking limit tensile force acts on the inner tube. By applying expansion strain to the tube to stop the tube expansion, and then contracting the inner tube and outer tube based on the difference in yield stress to form the compressive residual stress in the inner tube, the double overlap as described above is achieved. When the pipe is operated as an oil pipe, etc., even if a pumping pressure is applied and the operating tensile stress is applied, the tensile force can always be kept below the critical tensile stress for stress corrosion cracking. There is an excellent effect in that there is no possibility of stress corrosion cracking occurring in the welded joint.

特に、ユニツト複重管が応力腐蝕割れ処理がなされてい
る場合、全長に亘つて応力腐蝕割れが生じない効果があ
る。
In particular, when the unit duplex pipe is subjected to stress corrosion cracking treatment, there is an effect that stress corrosion cracking does not occur over the entire length.

而して、ステンレスクラツド鋼材による複重管、就中、
オーステナイト系ステンレスクラツド鋼材による複重管
の場合、製鋼プロセスで不可避的に形成される潜在引張
残留応力をも除去し、天燃ガス、石油等塩化物、硫化物
、酸、アルカリ等の腐蝕性含有物を有する流体輸送に於
ても応力腐蝕割れが生ぜず、ステンレスクラツド鋼管の
本来的良好特性である耐蝕性、好溶接性、良加工性のメ
リツトを生かせる効果がある。
Therefore, double pipes made of stainless clad steel materials, especially,
In the case of double-walled pipes made of austenitic stainless clad steel materials, the latent tensile residual stress that is inevitably formed during the steel manufacturing process is also removed, and corrosive substances such as natural gas, petroleum chlorides, sulfides, acids, alkalis, etc. Stress corrosion cracking does not occur even when transporting fluid containing substances, and the advantages of corrosion resistance, good weldability, and good workability, which are the inherent good characteristics of stainless steel clad pipes, can be utilized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は二重管の突合せ溶接継手部の残留応力分布説明
図、第2図以下はこの発明の実施例の説明図であり、第
2図は圧縮残留応力形成歪応力関係説明図、第3,4図
は拡管手法の概略説明図である。 1 ・・・・・・内管、2・・・・・・外管、3・・・
・・・複重管、4・・・・・・継手部、一σA ・・・
・・・圧縮残留応力。
Fig. 1 is an explanatory diagram of residual stress distribution in a butt-welded joint of a double pipe, Fig. 2 and the following are explanatory diagrams of embodiments of the present invention, and Fig. 2 is an explanatory diagram of compressive residual stress formation strain-stress relationship. Figures 3 and 4 are schematic illustrations of the tube expansion method. 1...Inner pipe, 2...Outer pipe, 3...
...Double pipe, 4...Joint part, -σA...
...Compressive residual stress.

Claims (1)

【特許請求の範囲】[Claims] 1 降伏点の異なる複数の管を積層して成る複重管相互
をその端部にて接合している溶接継手部の溶接残留応力
を処理する方法において、上記複重管相互を溶接した継
手部に対し内圧を印加して局部的に拡管し、弾性限界を
越えて拡管させたる後、該複重管相互の降伏応力の差に
基づいて溶接引張残留応力を有していた内管溶接継手部
に圧縮残留応力を生ぜしめる様にしたことを特徴とする
複重管溶接手部処理方法。
1. In a method for handling welding residual stress at a welded joint where double pipes made by stacking a plurality of pipes with different yield points are joined at their ends, the joint where the double pipes are welded together. After applying internal pressure to locally expand the pipe and expanding it beyond the elastic limit, the inner pipe welded joint had a welding tensile residual stress based on the difference in yield stress between the duplex pipes. A double pipe welding hand treatment method characterized in that compressive residual stress is generated in the double pipe welding part.
JP13703179A 1979-10-25 1979-10-25 Duplicate pipe weld joint processing method Expired JPS597554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13703179A JPS597554B2 (en) 1979-10-25 1979-10-25 Duplicate pipe weld joint processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13703179A JPS597554B2 (en) 1979-10-25 1979-10-25 Duplicate pipe weld joint processing method

Publications (2)

Publication Number Publication Date
JPS5662692A JPS5662692A (en) 1981-05-28
JPS597554B2 true JPS597554B2 (en) 1984-02-18

Family

ID=15189222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13703179A Expired JPS597554B2 (en) 1979-10-25 1979-10-25 Duplicate pipe weld joint processing method

Country Status (1)

Country Link
JP (1) JPS597554B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11969819B2 (en) 2013-04-26 2024-04-30 Vactronix Scientific, Llc Adaptive guide bushing for laser tube cutting systems
US10259080B1 (en) 2013-04-26 2019-04-16 Vactronix Scientific, Llc Adaptive guide bushing for laser tube cutting systems

Also Published As

Publication number Publication date
JPS5662692A (en) 1981-05-28

Similar Documents

Publication Publication Date Title
US6409226B1 (en) “Corrugated thick-walled pipe for use in wellbores”
EP0071261B1 (en) Corrosion-resistant, multiple-wall pipe structure and method
GB2074914A (en) Method of joining a sleeve to a pipe
US3068562A (en) Method of making pressure vessels
US4627146A (en) Method of producing pipe joints
EP3237790B1 (en) Improving the bending behaviour of mechanically-lined rigid pipe
US351263A (en) Method of and means for coupling pipes
US4769892A (en) Pipe joining method
US4683014A (en) Mechanical stress improvement process
JPS597554B2 (en) Duplicate pipe weld joint processing method
JPWO2020175343A1 (en) Metal tube and manufacturing method of metal tube
EP0099714B1 (en) Method for bending pipes
US4612071A (en) Mechanical stress improvement process
JPS6328685B2 (en)
CA2307488C (en) Corrugated thick-walled pipe for use in wellbores
Sriskandarajah et al. Integral buckle arrestors for deepwater rigid pipelines installed by reeling method
RU2683099C1 (en) Pipelines manufacturing method
JPS5950430B2 (en) Clad pipe manufacturing method
JPS5838618A (en) Manufacture of double pipe having reinforced inner pipe end
JPS58120722A (en) Improving method for residual stress of pipe or pipe-like vessel
JPS623683B2 (en)
JPS6154489B2 (en)
JPS62104634A (en) Double pipe production
JPS6137318A (en) Production of double pipe
JPS5881522A (en) Lined pipe line and its manufacture