JPS597525A - Wire-cut electric discharge machining - Google Patents

Wire-cut electric discharge machining

Info

Publication number
JPS597525A
JPS597525A JP57114624A JP11462482A JPS597525A JP S597525 A JPS597525 A JP S597525A JP 57114624 A JP57114624 A JP 57114624A JP 11462482 A JP11462482 A JP 11462482A JP S597525 A JPS597525 A JP S597525A
Authority
JP
Japan
Prior art keywords
machining
wire electrode
wire
workpiece
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57114624A
Other languages
Japanese (ja)
Other versions
JPH0260453B2 (en
Inventor
Takeshi Yatomi
弥冨 剛
Atsushi Aramaki
荒「あ」 淳
Bunpei Makino
牧野 文平
Masahiro Yamamoto
政博 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57114624A priority Critical patent/JPS597525A/en
Publication of JPS597525A publication Critical patent/JPS597525A/en
Publication of JPH0260453B2 publication Critical patent/JPH0260453B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • B23H7/06Control of the travel curve of the relative movement between electrode and workpiece
    • B23H7/065Electric circuits specially adapted therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To enable to work with a desired angle of inclination by a method wherein a taper machining is performed after the correction of the angle of inclination of a wire electrode is made by the angle of inclination corresponding to the difference between the consumed rod diameters of the wire electrode in the direction of the plate thickness of a workpiece. CONSTITUTION:In wire-cut electric discharge machining, when machining is performed under the condition that the wire electrode 1 is held normal to the workpiece 2, the dimensional error E is generated in the direction of the plate thickness of the workpiece 2. Said error is due to the wear of the wire electrode 1 in the feed direction thereof. The taper machining is performed after the correction of the angle of inclination of the wire electrode 1 is made by the angle theta of inclination corresponding to the dimensional error. In order to machine the workpiece 2 in such a manner that the machined surface is parallel to the direction of its plate thickness, the desired machining is accomplished by performing a taper machining under the condition that the wire electrode is inclined by the angle theta.

Description

【発明の詳細な説明】 本発明は、ワイヤカプト放電加工において、ワイヤ電極
の消耗が起因する被加工物の上下寸法誤差を、ワイヤ電
極を被加工物に対して傾斜させて補正する加工方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a machining method in wire cup electrical discharge machining in which vertical dimensional errors of a workpiece caused by wire electrode wear are corrected by tilting the wire electrode with respect to the workpiece. It is.

従来より、ワイヤカット放電加工では加工後に被加工物
の寸法測定をしてみると、上下寸法差が生ずることが多
かった。この場合の処置方法としては、一般にワイヤ電
極の上下ガイド間隔を変える方法もしくは、上下加工液
圧を変える方法、もしくはセカンドカット法により解消
する方法等が知られている。しかし、これらのどの方法
についても、上下寸法差を解消するには他の犠牲が大き
いという欠点を持っている。すなわち、上下ガイド間隔
を変える方法は、通常上下ガイド間隔が小さい程ワイヤ
電極振動が少なく剛性が増し、加工速度・精度共に向上
することが知られているので、相反する場合が生じるこ
ともあるので得策ではない。また上下加工液圧を斐える
方法は、効果的な加工チップの排出を妨げるので好しく
フ)い。さらに、セカンドカ、ソト法による場合は、当
然、加工時間が余分にかかるので経済的にも工程上も好
゛ましくない。
Conventionally, in wire-cut electrical discharge machining, when the dimensions of a workpiece are measured after machining, there are often differences in the upper and lower dimensions. Generally known methods for dealing with this problem include changing the distance between the upper and lower guides of the wire electrode, changing the upper and lower machining fluid pressure, or using a second cut method. However, all of these methods have the disadvantage that other sacrifices are large in order to eliminate the vertical dimension difference. In other words, it is known that the method of changing the upper and lower guide spacing is usually contradictory because it is known that the smaller the upper and lower guide spacing, the less wire electrode vibration occurs and the rigidity increases, improving both machining speed and accuracy. It's not a good idea. Furthermore, the method of varying the upper and lower machining fluid pressures is not preferred because it prevents effective ejection of machining chips. Furthermore, the use of the second mill or sotho method naturally requires additional processing time, which is unfavorable from an economical and process perspective.

以上のように、?!Il加工物の上下寸法差を解消させ
る従来法は種々の欠点を有しており、他の特性を損なう
ことが多い。
As above? ! Conventional methods for eliminating vertical dimensional differences in Il workpieces have various drawbacks and often impair other properties.

そこで、本発明者は種々の実験から、上記の上下寸法差
はワイヤ電極の消耗が起因しているこ七を発見し、他の
特性を損なわたいよつな補正方法を考え出したのである
Therefore, through various experiments, the inventor of the present invention discovered that the above-mentioned vertical dimension difference was caused by wear of the wire electrode, and devised a method for correcting the loss of other characteristics.

まず、@1図を用いて被加工物の上下寸法差がワイヤ電
極の消耗によるものだという根拠について説明する。
First, using Figure @1, we will explain the basis that the difference in the upper and lower dimensions of the workpiece is due to the wear of the wire electrode.

第1図において、ワイヤ電極(1)は被加工物(2)に
対して垂直を保ち加工した場合の模式図であり、通常ス
トレート加工と呼んでいる。この場合、ワイヤi[(1
)は図中矢印の如く上から下へ送行し、←) 、 (b
)の状態を経て、パンチ側に当たる被加工物(2)を加
工【−たわけである。その時上下寸法差E=lLu−L
dl  が生じることになる。また、ワイヤ電[(1)
のWの範囲が放電加工により消耗した部分を示している
。ここで、本発明者の実験によれば、被加工物(2)の
寸法をLuからLdすなわち上から順に下へある間隔で
寸法測定したところ、装置 イヤ電極(1)の同位相当の直径測定結果とほぼ一致△ した。すなわち、このことは被加工物(2)の加工面は
、ワイヤ電極(1)の消耗面に対して等間隔であり、そ
の形状通りに加工されているということである。
FIG. 1 is a schematic diagram in which the wire electrode (1) is kept perpendicular to the workpiece (2) during processing, which is usually called straight processing. In this case, wire i[(1
) is sent from top to bottom as shown by the arrow in the figure, ←), (b
), the workpiece (2) on the punch side is machined. At that time, the vertical dimension difference E = lLu - L
dl will occur. Also, wire electric [(1)
The range of W indicates the portion consumed by electrical discharge machining. Here, according to the inventor's experiments, when the dimensions of the workpiece (2) were measured from Lu to Ld, that is, at certain intervals from top to bottom, the diameter of the device ear electrode (1) was measured at the same level. The results were almost consistent. That is, this means that the machined surface of the workpiece (2) is equidistant from the consumable surface of the wire electrode (1) and is machined according to its shape.

よって、上下寸法差Eとワイヤ電極径差(加工前と加工
後の加工面と直角方向の径差)はほぼ一致してくる。
Therefore, the vertical dimension difference E and the wire electrode diameter difference (the diameter difference in the direction perpendicular to the machined surface before and after processing) almost match.

次に、第2図、第8図により、上下寸法差の特性につい
て説明する。
Next, the characteristics of the vertical dimension difference will be explained with reference to FIGS. 2 and 8.

第2図において、(a)は被加工物(2)の上下寸法差
E= l Lu −Ld lを表わしていて、(至)で
はEi縦軸に、また面積加工速度FBを横軸にして両者
の関係を表わしている。(9)かられかるように、Fs
の増大と共にEは増大し、しかもほぼ比例している。一
般に加工速度を増せば、ワイヤ電極の消耗が増すことは
周知のことであるので、(ロ)のように消耗が上下寸法
差を大きく支配していることがわかるはずである。
In Figure 2, (a) represents the vertical dimensional difference E = l Lu - Ld l of the workpiece (2), and (to) Ei is plotted on the vertical axis, and area machining speed FB is plotted on the horizontal axis. It represents the relationship between the two. (9) Fs
As E increases, E increases almost proportionally. It is generally known that as the processing speed increases, the wear of the wire electrode increases, so it should be understood that wear largely dominates the vertical dimensional difference as shown in (b).

次に、第3図は軸に関しては第2図と同じであるが、同
図ではワイヤ電極の送り速度を5iiT5りで示しであ
る。各々の送行速度については、第2図と同様の結果で
あるが、着目すべきところはWSIからV/Ssまでの
開化である。すなわち同図は、同加工速度で比較した場
合、ワイヤ電極の送り速度が速い捏上下寸法差が少ない
ことを示している。
Next, FIG. 3 is the same as FIG. 2 regarding the axis, but in this figure, the feeding speed of the wire electrode is indicated by 5iiT5. The results for each feed speed are similar to those in FIG. 2, but what should be noted is the development from WSI to V/Ss. In other words, the figure shows that when compared at the same processing speed, the difference in the upper and lower dimensions of kneading is smaller when the wire electrode feed speed is faster.

また送り速度が速い程消耗が少なくなることは当然のこ
となので、同図もまた消耗が上下寸法差を大きく支配し
ていることがわかる。
Furthermore, since it is a matter of course that the faster the feed speed is, the less the wear is, it can be seen from the figure that the wear largely dominates the difference in the vertical dimension.

以上のように、上下寸法差はワイヤ電極の消耗によるも
のが大であることに着目して、木発−で。
As mentioned above, we focused on the fact that the difference in the vertical dimension is largely due to the wear and tear of the wire electrodes, and decided on Kihatsu.

は加工速度が増大しても寸法精度を損かわないどころか
、より向上させる方法を提供するものである。
This provides a method that does not impair dimensional accuracy even when processing speed increases, but rather improves it.

第4図に本発明による実施方法の原理を示しである。FIG. 4 shows the principle of the implementation method according to the present invention.

まず妊)に示すように、被加工物の板厚をHとすると、
上下寸法差がEであるので、加工面には同図で示される
θなる角度のテーパ面が形成されているわけである。こ
のように同一加工条件で本加工に入る前のテスト加工等
で、あらかじめθを求めておく。次に(b)で示される
ように、本加工においてワイヤ電極(1)を鉛直方向に
対してθだけ傾斜させてテーパ加工を行うことにより、
同図左側の被加工物(2)(必要な形状側)のようにほ
ぼ上下寸法差E=t9を得ることができるわけである。
First, as shown in Figure 1), if the thickness of the workpiece is H, then
Since the vertical dimension difference is E, a tapered surface having an angle θ shown in the figure is formed on the machined surface. In this way, θ is determined in advance by test machining or the like before starting the main machining under the same machining conditions. Next, as shown in (b), in the main processing, the wire electrode (1) is inclined by θ with respect to the vertical direction to perform taper processing.
As shown in the workpiece (2) on the left side of the figure (necessary shape side), it is possible to obtain approximately the vertical dimension difference E=t9.

また、本加工方法を行わせるテーバカット装置について
は一般のものと変わらず特別なものではないつこのよう
にして、被加工物の真のストレート加工を打つtことに
なるわけである。
Furthermore, the taper cutting device used to carry out this processing method is no different from the general ones and is not special.In this way, true straight processing of the workpiece can be performed.

次に、本発明方法の実用トの実施例を第5図に示す。第
5図に示す表で縦に面積加工速度Fs(m)。
Next, a practical example of the method of the present invention is shown in FIG. In the table shown in FIG. 5, the area machining speed Fs (m) is shown vertically.

横にワイヤtlEmの送り速度WS(n)を挙げ、上下
寸法差E(mn)を全て示しである。大小関係は表の下
方に示しである。このように上下寸法差は被加工物の板
厚、加工条件によらず、はぼ面積加工速度とワイヤ電極
径送り速度によって支配されると言える。このことにつ
いて、もう少し詳細に説明する。第1図、第2図、第8
図で、上下寸法差はワイヤ電極の加工面に面した箇所の
消耗によるものだと述べた。そして消耗は、元来ワイヤ
電極の単位長さが、単位時間に受ける放電数すなわち単
位長さ当た9の電流密度によって決まるものである。し
かるに面積加工速度が加工冒流にほぼ比例すると言われ
ていることを考え合わせれば、#1は、消耗と面積加工
速度が1対1の関係にあると言っても過言ではない。
The feeding speed WS(n) of the wire tlEm is listed next to it, and the vertical dimension difference E(mn) is all shown. The size relationship is shown below the table. In this way, it can be said that the vertical dimensional difference is controlled by the surface area processing speed and the wire electrode diameter feed speed, regardless of the thickness of the workpiece or processing conditions. This will be explained in more detail. Figure 1, Figure 2, Figure 8
In the figure, it was stated that the difference in the vertical dimension is due to wear and tear on the part of the wire electrode facing the machined surface. The consumption is originally determined by the number of discharges that a unit length of the wire electrode receives per unit time, that is, the current density of 9 per unit length. However, considering that it is said that the area machining speed is approximately proportional to the machining flow, it is no exaggeration to say that in #1, there is a one-to-one relationship between the wear and the area machining speed.

このような理由で求めたデータが第5図のものであり、
板厚、加工条件を変えて行った種々の実験でも大差なく
ほぼ1つの表にまとめられろうさて、実用上は第5図が
あれば本加工のときのテーバ角度θは板厚をHとして図
中のように表わされるわけである。
The data obtained for this reason is shown in Figure 5.
Various experiments conducted with different plate thicknesses and processing conditions can be summarized in one table without much difference.In practice, if we have Figure 5, the Taber angle θ during main processing can be calculated using the plate thickness as H. It is expressed like this.

本実施例1に実用した結果、上下寸法はほぼ数廁以内に
納まったのである。当然のことであるが、より厳密に高
精度加工を行いたい場合は各加工条件で、1回テスト加
工し、それに基づいてテーバ角度を定めることも可能で
ある。
As a result of practical use in Example 1, the vertical dimensions were approximately within several meters. Of course, if you want to perform more precise high-precision machining, it is also possible to perform test machining once under each machining condition and determine the Taber angle based on that.

しかし、もつと簡易的にやりたい場合は、第6図の実施
例を行うと良い。
However, if you want to simplify the process, it is better to use the embodiment shown in FIG.

すなわち、本加工に入るまえに直線加工(助走線でも可
)を行い、図のようにワイヤ電!(1)の直径Du 、
 Ddを各々測定して、図中の式によりテーバ角度θを
求めて本加工に用いる方法であるつ図中Sが被71LI
 I物(2)の加工面に面している方向を示し、fはワ
イヤ[fll (1)の加工進行方向であり、’bFi
加工進行方向とは逆の背に当たる部分である。
In other words, before starting the main machining, perform straight line machining (a run-up line is also possible), and wire wire as shown in the figure. (1) Diameter Du,
This method is used in the main processing by measuring each Dd and calculating the Taber angle θ using the formula in the figure.
Indicates the direction facing the machined surface of the I object (2), f is the direction of progress of the process of the wire [fll (1), and 'bFi
This is the part that corresponds to the back in the opposite direction to the direction of machining progress.

DIl 、 J’:Jdの測定はS方向で行いマイクロ
メータ等で十分である。またDuについては新品のワイ
ヤ電極径と同じと考えて良い。
DIl, J': Jd is measured in the S direction, and a micrometer or the like is sufficient. Further, Du can be considered to be the same as the diameter of a new wire electrode.

さらに同図より被加工物(2)の上下面に形成される加
工溝の幅を測定し、その差からE′を求めても良い。
Furthermore, the widths of the machining grooves formed on the upper and lower surfaces of the workpiece (2) may be measured from the same figure, and E' may be determined from the difference.

以上のように、加工後の被加工物の上下寸法差をテーバ
角度により補正する種々の実施例について説明し、でき
たが、ストレート加工を可能にするだけでなく、実際の
テーバ加工においても消耗から起因してくる角度誤差を
同様にして補正した角度も以って本加工すれば、より正
確な所望角度を持った形状ができることは言うまでもな
い。また本発明は、加工速度をいかに増大させても寸法
精度が非常に高く維持できるという大きな効果を有して
いるわけで、その実施効果は極めて大である。
As mentioned above, various examples of correcting the vertical dimension difference of the workpiece after machining using the Taber angle have been explained and completed. It goes without saying that if the main processing is performed using an angle in which the angular error caused by the above is similarly corrected, a shape with a more accurate desired angle can be obtained. Furthermore, the present invention has the great effect that dimensional accuracy can be maintained at a very high level no matter how much the processing speed is increased, so the effects of its implementation are extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

゛第1図は被加工物の上下寸法差とワイヤ電極消耗を表
わす模式図、第2図、第8図はワイヤ電極消耗の特性を
示すグηフ、第4図は本発明方法の原理図、第5図は本
発明の実用的なデータ表を示した実施例図、第6図は本
発明の簡易方式を示す実施例図である。 図中、(1)はワイヤ電極、(2)は被加工物であZ・
。 なお図中、同一符号は同一または相当部分を示す。 代理人 葛野信− 第4 E = ILLL−L−L I 楊θ・ 鴫 ((Lン (b)
゛Figure 1 is a schematic diagram showing the vertical dimension difference of the workpiece and wire electrode wear, Figures 2 and 8 are graphs showing the characteristics of wire electrode wear, and Figure 4 is a diagram of the principle of the method of the present invention. , FIG. 5 is an embodiment diagram showing a practical data table of the present invention, and FIG. 6 is an embodiment diagram showing a simplified method of the present invention. In the figure, (1) is a wire electrode, (2) is a workpiece, and
. In the drawings, the same reference numerals indicate the same or corresponding parts. Agent Makoto Kuzuno - 4th E = ILLL-L-L I Yang θ・Yu ((Ln(b)

Claims (3)

【特許請求の範囲】[Claims] (1)送行するワイヤ電極と被加工物との微少間隙で、
加工液を媒体として加工電源により連続的に放電を行わ
せ、上記ワイヤ電極を上記被加工物に対して所望の角度
だけ傾斜させるテーバカット装置を備えたツイヤカット
放電加工機の加工方法において、上記ワイヤ*Wの消耗
分を、上記ワイヤ電極の上記被加工物に対する傾斜角度
により補正することを特徴としたワイヤカット放電加工
方法。
(1) In the minute gap between the feeding wire electrode and the workpiece,
In the machining method of a Tsuya-cut electrical discharge machine equipped with a taber cut device that causes a machining power supply to continuously generate electric discharge using a machining fluid as a medium and inclines the wire electrode at a desired angle with respect to the workpiece, the wire* A wire-cut electrical discharge machining method characterized in that the consumption of W is corrected by an inclination angle of the wire electrode with respect to the workpiece.
(2)  ワイヤ電極の消耗分による被加工物の寸法誤
差を前もってデータ化された傾斜角度補正値に基づいて
テーバ加工を行い所望の寸法もしくけ傾斜角度を得るこ
とを特徴とする特許請求の範囲第1項記載のワイヤカッ
ト放電加工方法。
(2) The scope of claims characterized in that the dimensional error of the workpiece due to wear of the wire electrode is performed based on the tilt angle correction value, which is converted into data in advance, to obtain the desired size and tilt angle. The wire cut electrical discharge machining method according to item 1.
(3)  ワイヤ電極の加工進行方向と直角方向の消耗
分もしくは前加工時の被加工物の上下寸法差もしくは上
下加工溝幅の差により、傾斜角度補正値請求めて、これ
に基づいてテーバ加工を行い所望の寸法もしくは傾斜角
度を得ることを特徴とする特許請求の範囲第1項記載の
ワイヤカット放電加工方法。
(3) Based on the consumption of the wire electrode in the direction perpendicular to the machining progress direction, the difference in the vertical dimensions of the workpiece during previous machining, or the difference in the width of the machining groove between the top and bottom, the inclination angle correction value is requested, and Taber machining is performed based on this. 2. The wire-cut electric discharge machining method according to claim 1, wherein a desired dimension or inclination angle is obtained by performing the following steps.
JP57114624A 1982-07-01 1982-07-01 Wire-cut electric discharge machining Granted JPS597525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57114624A JPS597525A (en) 1982-07-01 1982-07-01 Wire-cut electric discharge machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57114624A JPS597525A (en) 1982-07-01 1982-07-01 Wire-cut electric discharge machining

Publications (2)

Publication Number Publication Date
JPS597525A true JPS597525A (en) 1984-01-14
JPH0260453B2 JPH0260453B2 (en) 1990-12-17

Family

ID=14642508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57114624A Granted JPS597525A (en) 1982-07-01 1982-07-01 Wire-cut electric discharge machining

Country Status (1)

Country Link
JP (1) JPS597525A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1428602A3 (en) * 2002-10-24 2005-11-16 Fanuc Ltd Wire electric discharge machine
JP2014237191A (en) * 2013-06-07 2014-12-18 株式会社ミツトヨ Discharge processing method
EP3354404A1 (en) * 2017-01-26 2018-08-01 Fanuc Corporation Numerical controller for controlling a wire electric discharge machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5642819B2 (en) * 2013-02-19 2014-12-17 ファナック株式会社 Wire electric discharge machine having taper angle correction function using contact detector and taper angle correction method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU213995A1 (en) * 1965-08-12 1976-06-05 The method of electrospark obtaining reverse cones and inclinations by a non-profiled electrode-wire

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU213995A1 (en) * 1965-08-12 1976-06-05 The method of electrospark obtaining reverse cones and inclinations by a non-profiled electrode-wire

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1428602A3 (en) * 2002-10-24 2005-11-16 Fanuc Ltd Wire electric discharge machine
JP2014237191A (en) * 2013-06-07 2014-12-18 株式会社ミツトヨ Discharge processing method
EP3354404A1 (en) * 2017-01-26 2018-08-01 Fanuc Corporation Numerical controller for controlling a wire electric discharge machine
US10549369B2 (en) 2017-01-26 2020-02-04 Fanuc Corporation Numerical controller

Also Published As

Publication number Publication date
JPH0260453B2 (en) 1990-12-17

Similar Documents

Publication Publication Date Title
JP2802006B2 (en) EDM equipment
CN102814563B (en) Wire electric discharge machine for taper-machining tilted workpiece
US20150051727A1 (en) Cutting tool machining method and a wire electric discharge machine
WO2011145390A1 (en) Processing object retainer, wire electric discharge processing device, thin sheet production method, and semiconductor wafer production method
JPH08243846A (en) Device and method for wire electric discharge machining
US4471199A (en) EDM Of a roll using segmented electrode short-circuited in the rough machine step
JP2016013586A (en) Manufacturing method for cutting tool and cutting tool
JPS597525A (en) Wire-cut electric discharge machining
JPH0553565B2 (en)
JP2010240761A (en) Wire-cut electro-discharge machining method
JPH0160377B2 (en)
US3849271A (en) Electrochemical drilling
CN115319196A (en) Reaming control method and device
US2778924A (en) Apparatus and method for producing flat surfaces
Song et al. V-grooving using a strip EDM
Van Riel et al. Exploratory study of wire based ECM finishing of 316L stainless steel, implemented within a hybrid wire EDM-ECM platform
JPS62282822A (en) Conductive work holder for wire-cut electric discharge machine
US2797299A (en) Method of forming serrations at the back of the blade of cutting elements
WO2015145569A1 (en) Machining path calculation device, control device, and wire electric discharge machine
JP2006130657A (en) Wire electric discharge machine
CN113523461B (en) Electrode and processing method thereof
JP3732290B2 (en) Electric discharge machining apparatus and electric discharge machining method
JP3659179B2 (en) High-accuracy drilling method by die-cutting micro-EDM
JPH06143037A (en) Wire electric discharge machining method
US20210078088A1 (en) End mill