JPS5975228A - Optical switch - Google Patents

Optical switch

Info

Publication number
JPS5975228A
JPS5975228A JP18547282A JP18547282A JPS5975228A JP S5975228 A JPS5975228 A JP S5975228A JP 18547282 A JP18547282 A JP 18547282A JP 18547282 A JP18547282 A JP 18547282A JP S5975228 A JPS5975228 A JP S5975228A
Authority
JP
Japan
Prior art keywords
thin film
light guide
refractive index
silver
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18547282A
Other languages
Japanese (ja)
Inventor
Naohisa Inoue
直久 井上
Kazuhiko Mori
和彦 森
Masaharu Matano
俣野 正治
Maki Yamashita
山下 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Tateisi Electronics Co
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateisi Electronics Co, Omron Tateisi Electronics Co filed Critical Tateisi Electronics Co
Priority to JP18547282A priority Critical patent/JPS5975228A/en
Publication of JPS5975228A publication Critical patent/JPS5975228A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3137Digital deflection, i.e. optical switching in an optical waveguide structure with intersecting or branching waveguides, e.g. X-switches and Y-junctions
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0147Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on thermo-optic effects

Abstract

PURPOSE:To confine incident light on either breadthwise side of a light guide and to improve an quenching ratio greatly by providing a heat generation and a heat absorption part which use a Peltier effect at both breadthwise end positions of the light guide. CONSTITUTION:A thin film 21 of silver and thin films 22a and 22b of copper are vapor-deposited on an SiO2 film 5 and the thin film 21 of silver is nearly as wide as the light guide 2. The thin films 22a and 22b overlap the thin film 21 of silver. An electric power 23 is connected and a current flows through the path of the copper thin film 22a, silver thin film 21, and copper thin film 22b to cause the Peltier effect. For example, a junction part A therefore serves as the heat generation part and a junction part B serves as the heat absorption part; the junction part A becomes a high-refractive index area and the junction part B becomes a low-refractive index area to confine incident light to the light guide 2 in the side A. The current is changed in direction to switch the propagation light in the light guide 2 to the light guide 3 or 4 efficiently.

Description

【発明の詳細な説明】 (1)発明の分野 この発明は、温度により屈折率が変化する光学材お1に
Y字形に分岐した光導波路を形成し、熱光学効果により
児の伝搬路を切り換える光スィッチに係り、特に消光比
を改善したものに関する。
Detailed Description of the Invention (1) Field of the Invention This invention forms a Y-shaped branched optical waveguide in an optical material whose refractive index changes depending on temperature, and switches the propagation path of the wave by the thermo-optic effect. The present invention relates to optical switches, and particularly to optical switches with improved extinction ratios.

(2)従来技術とその問題点 周知のように、ある神のガラス材料や高分子材litで
は、温度により屈折率が変化する熱光学効果を有するも
のがあり、このような熱光学効果を利用した光スィッチ
が開発されている。
(2) Prior art and its problems As is well known, some divine glass materials and polymeric materials have a thermo-optic effect in which the refractive index changes depending on the temperature. A light switch has been developed.

第1図に示すものはガラス材料にJ:る光スィッチであ
る。同図において、基板1はソーダノI>スからなり、
この基板1にはY字形に分岐した先導波路2.3.4が
イオン交換法によって形成しである。そして、Y字形分
岐点手前の光導波路2を含む基板1表面にはSi 02
膜5が形成され、この5iOzll15上にはアルミニ
ウムからなる発熱用の電極6,7が設けである。この電
極6,7は光導波路2の幅方向両側位置に設【プられ、
またこの電極6,7は一端が共通に接地されている。
What is shown in FIG. 1 is an optical switch made of glass material. In the same figure, the substrate 1 consists of a soda nozzle,
On this substrate 1, a Y-shaped branched leading waveguide 2.3.4 is formed by an ion exchange method. Then, on the surface of the substrate 1 including the optical waveguide 2 in front of the Y-shaped branch point, Si 02
A film 5 is formed, and heating electrodes 6 and 7 made of aluminum are provided on this 5iOzll15. These electrodes 6 and 7 are provided at both sides of the optical waveguide 2 in the width direction.
Further, one end of the electrodes 6 and 7 is commonly grounded.

このような構成において、電源8または9により電極6
,7の何れか一方を発熱させる。例えば電極6を発熱部
に電極7を非発熱部にして、先導波路2の幅方向に温度
傾斜を生じさせる。その結果、第2図(b)に示すよう
に、先導波路2の幅方向における屈折率の変化幅は発熱
電極6側において最大となり、温度傾斜に対応して非発
熱電極7側に向かい低下する。そして、非発熱電極7側
におtプる屈折率の変化幅は発熱電極6側にお【プるも
のよりも小さいものになる。よって、光導波路2への入
口・1光は発熱電極6側を伝搬し、先導波路に切り換え
導出される。
In such a configuration, the electrode 6 is powered by the power source 8 or 9.
, 7 generates heat. For example, by making the electrode 6 a heat generating part and the electrode 7 a non-heat generating part, a temperature gradient is generated in the width direction of the leading waveguide 2. As a result, as shown in FIG. 2(b), the variation width of the refractive index in the width direction of the leading waveguide 2 is maximum on the side of the heating electrode 6, and decreases toward the side of the non-heating electrode 7 in response to the temperature gradient. . The range of change in the refractive index applied to the non-heating electrode 7 side is smaller than that applied to the heating electrode 6 side. Therefore, one light beam entering the optical waveguide 2 propagates on the heating electrode 6 side, and is switched to the leading waveguide and guided out.

ところが、このような構成の光スィッチにあっては、消
光比が悪くクロストークが大きいという問題点がある。
However, an optical switch having such a configuration has problems in that the extinction ratio is poor and crosstalk is large.

すなわち、第2図(1))に示づ一屈折率分布からも理
解できるように、非発熱部側における屈折率の変化方向
は発熱部側におけるーbのと同方向であるから、光導波
路2への入射光は非発熱部側をも伝搬し、消光比が悪い
のである。
In other words, as can be understood from the refractive index distribution shown in Figure 2 (1)), the direction of change in the refractive index on the non-heat generating part side is the same as the direction -b on the heat generating part side. The light incident on the wave path 2 also propagates on the non-heat generating side, resulting in a poor extinction ratio.

(3)発明の目的 この発明の目的は、光導波路の幅方向両側位置にペルチ
ェ効果による発熱部と吸熱部とを設けることにより、入
射光を光導波路の幅方向の何れか一方側に閉込めて、消
光比を大幅に改善できる光スィッチを提供することにあ
る。
(3) Purpose of the Invention The purpose of the present invention is to confine incident light to either side of the optical waveguide in the width direction by providing a heat generating part and a heat absorbing part due to the Peltier effect on both sides of the optical waveguide in the width direction. Therefore, it is an object of the present invention to provide an optical switch that can significantly improve the extinction ratio.

〈4)発明の構成と効果 この発明は、上記目的を達成するために、温度ににり屈
折率が変化する光学材料にY字形に分岐した光導波路を
形成するとどもに、この先導波路のY字形分岐点の手前
の両側位置にペルヂ■ダ)里を有する異種の導体または
半導体の接合か−)なる発熱部おJ、び吸熱部を段IJ
たことを特徴ど1Jる。1この構成によれば、Y字形分
岐点手前の光導波路の幅方向にi13いて、発熱部側と
吸熱部側とでは屈折率の変化幅は等しく、かつその変化
方向1.13φ向きとなるので、発熱部と吸熱部どの間
に屈1!i率が変化しない領域が形成され、この領域を
境にして発熱部側に高屈折率領域が、吸熱部側に低1j
il 41’i領域がそれぞれ形成される。にって、上
記光導波路の伝搬光は発熱部側の高屈折率領域に閉込め
られ、効率良(一方の分岐導波路に導出でき、消光比が
著しく改善される。
(4) Structure and Effects of the Invention In order to achieve the above object, the present invention forms a Y-shaped branched optical waveguide in an optical material whose refractive index changes with temperature. The exothermic part J and the heat absorbing part made of a junction of different types of conductors or semiconductors with perdition parts on both sides in front of the bifurcation point
It is characterized by 1J. 1 According to this configuration, in i13 in the width direction of the optical waveguide before the Y-shaped branch point, the range of change in the refractive index is equal on the heat generating part side and the heat absorbing part side, and the direction of change is 1.13φ. , between the heat generating part and the heat absorbing part! A region where the i index does not change is formed, and with this region as a border, a high refractive index region is on the heat generating part side and a low refractive index region is on the heat absorbing part side.
il 41'i regions are respectively formed. Therefore, the propagating light of the optical waveguide is confined in the high refractive index region on the side of the heat generating part, and can be efficiently guided to one of the branch waveguides, and the extinction ratio is significantly improved.

(5)実施例の説明 第3図はこの発明に係る実施例駅路を示η。イ1お、第
1図と同一部分には同一符号をイ1しCイの説明を省略
する。
(5) Description of Embodiment FIG. 3 shows an embodiment of the station road according to the present invention. 1) The same parts as in FIG.

同図においで、Si 02膜5上には銀<Ag)の薄膜
21と、銅(OL+>の薄膜22a、22bが蒸γ1形
成されている。銀薄膜21は光導波路2ど略等幅になさ
れ、また銅薄膜22a、22bは一部が銀WJI膜21
の両端部分で重なっている。従ってこの車なり部分(接
合部分)△、Bは光導波路2の幅方向両側位置に形成さ
れる。
In the figure, a thin film 21 of silver (Ag) and thin films 22a and 22b of copper (OL+) are formed on the SiO2 film 5 by evaporation. The copper thin films 22a and 22b are partially covered with the silver WJI film 21.
overlap at both ends. Therefore, the curved portions (joint portions) Δ and B are formed at both sides of the optical waveguide 2 in the width direction.

銀と銅はペルチェ効果を有する異種導体であり、接合部
分A、Bの何れかがペルチェ効果による発熱部となり、
他方が吸熱部となる。つまり、図のように銅1膜22a
、22b間に電源23を接続し、銅vj模22a 、 
銀1膜21.銅薄膜22b(7)経路に何れかの方向で
電流を流ずとペルチェ効果が!1:じ、例えば接合部分
Aが発熱部で接合部分Bが吸熱部となる。また上記経路
に流す電流を逆向ぎにすれば接合部分Aが吸熱部で接合
部分Bが発熱部どなる。
Silver and copper are different conductors that have a Peltier effect, and either junction A or B becomes a heat generating part due to the Peltier effect.
The other side becomes the heat absorbing part. In other words, as shown in the figure, the copper 1 film 22a
, 22b, connect the power supply 23 between the copper vj model 22a,
Silver 1 film 21. If no current flows in any direction through the copper thin film 22b (7) path, the Peltier effect will occur! 1: For example, the joint part A is the heat generating part and the joint part B is the heat absorbing part. Furthermore, if the current flowing through the above path is reversed, the joint part A becomes a heat absorbing part and the joint part B becomes a heat generating part.

以上の構成において、例えば接合部分Aを発熱部に、接
合部分Bを吸熱部にすると、先導波路2の幅方向にお【
プる屈折率変化分布は第4図(b)に示すようになる。
In the above configuration, for example, if the joining part A is made into a heat generating part and the joining part B is made into a heat absorbing part,
The refractive index change distribution is as shown in FIG. 4(b).

すなわち、幅方向中央位置に屈折率が変化しない領域が
形成され、この領域を境にして接合部分A側が高屈折領
域に、また接合5一 部分B側が低屈折率領域になる。その結束、光導波路2
への入射光は接合部分A側に略閉込めI)ねる。
That is, a region in which the refractive index does not change is formed at the center position in the width direction, and with this region as a boundary, the side of the joint portion A becomes a high refractive index region, and the side of the part B of the joint 5 becomes a low refractive index region. Its unity, optical waveguide 2
The incident light is almost confined to the joint part A side.

よって、上記経路に流す電流の向きを切り操えることで
、光導波路2の伝搬光は光導波路3まlこは4に効率良
く切換導出できる。
Therefore, by controlling the direction of the current flowing through the path, the propagating light of the optical waveguide 2 can be efficiently switched and guided to the optical waveguide 3 or 4.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光スイッチを示づ゛概略斜視図、第2図
(a )は第1図に示すA−A矢視断面図、第2図(b
)はY字形分岐点手前の光導波路の幅方向における屈折
率変化を示す概略分布図、第3図はこの発明の一実施例
に係る光スイッチを示J概略斜視図、第4図(a )は
第3図に示すB−8矢視断面図、第4図(11)はY字
形分岐点手前の光導波路の幅方向にお()る屈折率変化
を示す概略分布図である。 1・・・・・・・・・・・・・・・・・・・・・基板(
光学材料)2.3.4・・・・・・・・・光導波路21
・・・・・・・・・・・・・・・・・・銀薄膜22a、
22b・・・銀薄膜 6− Δ、B・・・・・・・・・・・・・・・接合部分特許出
願人 立石電機株式会社 7一
Figure 1 is a schematic perspective view of a conventional optical switch, Figure 2 (a) is a sectional view taken along the line A-A shown in Figure 1, and Figure 2 (b) is a schematic perspective view of a conventional optical switch.
) is a schematic distribution diagram showing the refractive index change in the width direction of the optical waveguide before the Y-shaped branch point, FIG. 3 is a schematic perspective view of an optical switch according to an embodiment of the present invention, and FIG. 4 (a) is a sectional view taken along arrow B-8 shown in FIG. 3, and FIG. 4 (11) is a schematic distribution diagram showing a change in refractive index in the width direction of the optical waveguide before the Y-shaped branch point. 1・・・・・・・・・・・・・・・・・・・・・ Board (
Optical material) 2.3.4... Optical waveguide 21
・・・・・・・・・・・・・・・ Silver thin film 22a,
22b...Silver thin film 6- Δ, B......Joint portion patent applicant Tateishi Electric Co., Ltd. 71

Claims (1)

【特許請求の範囲】[Claims] (1)温度により屈折率が変化づ−る光学材料にY字形
に分岐した光導波路を形成するとともに、この光導波路
のY字形分岐点の手前の両側位置にペルヂ1効果を有η
る異種の導体または半導体の接合からなるR熱部および
吸熱部を段【プたことを特徴とりる光スイッチ。
(1) Forming a Y-shaped branched optical waveguide in an optical material whose refractive index changes with temperature, and creating a Pelzi 1 effect on both sides of the Y-shaped branching point of this optical waveguide.
An optical switch characterized by having a stepped heat-absorbing part and a heat-absorbing part made of a junction of different types of conductors or semiconductors.
JP18547282A 1982-10-22 1982-10-22 Optical switch Pending JPS5975228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18547282A JPS5975228A (en) 1982-10-22 1982-10-22 Optical switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18547282A JPS5975228A (en) 1982-10-22 1982-10-22 Optical switch

Publications (1)

Publication Number Publication Date
JPS5975228A true JPS5975228A (en) 1984-04-27

Family

ID=16171363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18547282A Pending JPS5975228A (en) 1982-10-22 1982-10-22 Optical switch

Country Status (1)

Country Link
JP (1) JPS5975228A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996033441A1 (en) * 1995-04-18 1996-10-24 Akzo Nobel N.V. Fast switching asymmetric thermo-optical device
EP0981064A1 (en) * 1998-08-14 2000-02-23 Lucent Technologies Inc. Waveguide structure using polymer material and method
US6163633A (en) * 1997-05-28 2000-12-19 Nec Corporation Optical waveguide switch having peltier junction control elements
KR100326046B1 (en) * 1999-06-21 2002-03-07 윤종용 Thermo-optic switch and method of forming the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996033441A1 (en) * 1995-04-18 1996-10-24 Akzo Nobel N.V. Fast switching asymmetric thermo-optical device
US6163633A (en) * 1997-05-28 2000-12-19 Nec Corporation Optical waveguide switch having peltier junction control elements
EP0981064A1 (en) * 1998-08-14 2000-02-23 Lucent Technologies Inc. Waveguide structure using polymer material and method
US6856734B1 (en) 1998-08-14 2005-02-15 Triquint Technology Holding Co. Waveguide structure using polymer material and method
KR100326046B1 (en) * 1999-06-21 2002-03-07 윤종용 Thermo-optic switch and method of forming the same

Similar Documents

Publication Publication Date Title
US5892863A (en) Silica optical circuit switch and method
JP3512712B2 (en) Thermo-optic switch, method of manufacturing the same, and method of changing optical line using the same
JPS5975228A (en) Optical switch
CN116540377A (en) On-chip integrated superlens with electric control zooming function
US6684013B2 (en) Optical waveguide device to be optically poled, method of manufacturing optical waveguide device to be optically poled, and method of optically poling optical waveguide device
JPS58171024A (en) Optical control type optical switch
JP3236426B2 (en) Optical coupler
JPS6086530A (en) Waveguide type optical switch
JPH05164926A (en) Optical branching and coupling unit
JPS6124687B2 (en)
JP3471314B2 (en) Light switch
JPS63256928A (en) Optical waveguide switch
JPS5897028A (en) Optical waveguide switch
JPS60249117A (en) Waveguide type optical element
JPS6039206B2 (en) Branch type optical modulator
JPS6285228A (en) Y-branch selective optical waveguide
JPS5928132A (en) Optical switch
JP2643927B2 (en) Manufacturing method of optical branching / optical coupling circuit
JPH04204523A (en) Optical waveguide device
JPS59185313A (en) Optical deflector
JPS5971032A (en) Thin film optical deflection element
JPS5922028A (en) Optical switch
Feng et al. Analysis of X-intersecting waveguide switches with a large branching angles ranging from 2° to 12°
JPH0379691B2 (en)
CA2241828C (en) Thermo-optical switch