JPS5975139A - Method and device for forming x-ray tomographic image - Google Patents

Method and device for forming x-ray tomographic image

Info

Publication number
JPS5975139A
JPS5975139A JP57186390A JP18639082A JPS5975139A JP S5975139 A JPS5975139 A JP S5975139A JP 57186390 A JP57186390 A JP 57186390A JP 18639082 A JP18639082 A JP 18639082A JP S5975139 A JPS5975139 A JP S5975139A
Authority
JP
Japan
Prior art keywords
ray
ray source
data
detection material
projection data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57186390A
Other languages
Japanese (ja)
Inventor
Hideki Morita
秀樹 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP57186390A priority Critical patent/JPS5975139A/en
Publication of JPS5975139A publication Critical patent/JPS5975139A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/419Imaging computed tomograph

Abstract

PURPOSE:To obtain data with less variance in detection sensitivity with simple constitution by recording data on projection and data on the output of an X-ray source in an X-ray detection material which moves in synchronization with the rotation of an X-ray source and forming a tomographic image in accordance with the recorded data. CONSTITUTION:An X-ray source S irradiates a fan beam-like X-ray toward object OBJ and the periphery thereof, and the data on the projection and the data on the output of the X-ray source are recorded in an X-ray detection material SP which rotates in synchronization with the source S. The material SP moves in an arrow direction at every rotation by a slight angle of the source S and records the data for each of the angles in a bar graph. The recorded data is conducted to an image reproducer (not shown), by which a tomographic image is formed. The data on the projection and the data on the output of the X-ray source are simultaneously recorded and therefore the correction of a fluctuation in the output of the X-ray source is made possible without requiring any detector for reference.

Description

【発明の詳細な説明】 本発明は、被検体にX線を照射し被検体を通過したX線
量を検出し、これから被検体の断層面の各部のX線吸収
係数を求め、これに基づいてその被検体の断層像を再構
成するX線断層像作成方法及び装置に関する。
[Detailed Description of the Invention] The present invention irradiates a subject with X-rays, detects the amount of X-rays that have passed through the subject, calculates the X-ray absorption coefficient of each part of the tomographic plane of the subject, and based on this, The present invention relates to an X-ray tomographic image creation method and apparatus for reconstructing a tomographic image of the subject.

従来から、X線を被検体に投則し、被検体を透過したX
線の強度を検出し投影データを得て、コンビコータの助
[づを1ハリでこの投影データから被検体断層面各部の
X線吸収係数を求め、これを基に被検体の断層像を再構
成するX線CT(COml)Llted Tomogr
aphy )が知られている。
Conventionally, X-rays are projected onto a subject, and the X-rays transmitted through the subject are
Detect the intensity of the rays, obtain projection data, use the combination coater to calculate the X-ray absorption coefficient of each part of the tomographic plane of the object from this projection data, and reconstruct the tomographic image of the object based on this. Configuring X-ray CT (COml)Llted Tomogr
aphy) is known.

このようなX線CTにおいて、投影データを得る方式に
は種々のものがある。第1図に示すものは、その中でも
現在量も普及しているファンビーム方式のものである。
In such X-ray CT, there are various methods for obtaining projection data. The one shown in FIG. 1 is of the fan beam type, which is currently widely used.

この方式は、X線源SからX線がファンビーム状に照射
され、被検体OBJを通過したファンビームを256個
或いは512個といった多数のXI!検出器をアレイ状
に配列してなる検出器アレイDETで検出するものであ
り更にX線源Sと検出器アレイDFTとは、被検体OB
 Jを中心に一体となって回転できるように構成され、
これらを、わずかの角庶ずつ回転させながら各角度位冒
で投影データを得るようにしたものである。
In this method, X-rays are emitted from an X-ray source S in the form of a fan beam, and a large number of XI! beams, such as 256 or 512 fan beams, pass through the object OBJ. X-ray source S and detector array DFT are used to detect the object OB.
It is configured so that it can rotate as a unit around J,
These are rotated in small angular increments to obtain projection data at each angular position.

ところで、上記検出器アレイDETは、断層(&ξの解
像度を1−けるために、狭い間隔で数百個の検出器を配
列した構成とイfっているが、良好な画質を得るには、
各検出器アレイの感度にバラツキが少なく、しかも各検
出器が高感度であることを要求されるため、極めて高価
なものとなっている。
By the way, the above-mentioned detector array DET has a configuration in which several hundred detectors are arranged at narrow intervals in order to increase the resolution of the cross section (&ξ) by 1, but in order to obtain good image quality,
Since the sensitivity of each detector array is required to have little variation and each detector is required to have high sensitivity, it is extremely expensive.

又、電離箱などで構成した検出器の使用では大町りとな
ってしまい、これをX線源ど一体的に回転させるど4′
rると、装量自体も大規模な−bのになるという欠点が
あった。
In addition, the use of a detector composed of an ionization chamber or the like will result in large errors, and if this is rotated integrally with the X-ray source, the
However, there was a drawback that the amount itself was large -b.

又、X線源Sの出力(線量)が照m中に変動することが
あるため、従来番よ、第2図に示づように、xm源5I
7)近くに該X線源Sの出力を検出する参照用検出器R
Dを配直し、該参照用検出器RDの出力でもって投影デ
ータを補正していた。しかし、この構成は、装置を複雑
化していた。
In addition, since the output (dose) of the X-ray source S may fluctuate during irradiation, the X-ray source S
7) Reference detector R that detects the output of the X-ray source S nearby
D was rearranged and the projection data was corrected using the output of the reference detector RD. However, this configuration complicates the device.

本発明は、このような欠点を解消するもので、その目的
は、簡単な構造でありながら検出感度のバラツキが少な
い多数の投影データが得られ、これに基づき高解&度の
断層像を作成できるX線断層像作成方法及び装置を提供
することにある。
The present invention aims to eliminate these drawbacks, and its purpose is to obtain a large number of projection data with little variation in detection sensitivity despite its simple structure, and to create high-resolution and accurate tomographic images based on this data. An object of the present invention is to provide a method and apparatus for creating an X-ray tomographic image.

この目的を達成するだめの本発明方法は、被検体の周囲
を、X線源とX線検出材とを一体的に回転させ、X線源
の回転に同期してX線検出材を移動することにより、投
影データ及びX線源出力データをX線検出材上に記録し
、この記録データ及びX線源出力データに基づいて断層
像を作成するようにしたことを特徴とするものである。
The method of the present invention to achieve this objective rotates an X-ray source and an X-ray detection material integrally around a subject, and moves the X-ray detection material in synchronization with the rotation of the X-ray source. Accordingly, the projection data and the X-ray source output data are recorded on the X-ray detection material, and a tomographic image is created based on the recorded data and the X-ray source output data.

又、本発明装置は、被検体及びその周辺に向けてxI!
i1を照射するX線源と、被検体を中心として前記X線
源と一体的に回転すると共に該回転に同期して移動し、
被検体及びその周辺を通過したX線を受けて投影データ
及びX線源出力データとして記録するX線検出材と、該
X線検出材に記録された前記投影データ及びX線源出力
データを読み出す読出し装置と、該読出し装置から出力
された投影データに基づき、且つ前記X線源出力データ
による補止を行いながら断層像を再構成覆る像再生装置
とを具備し!こことを特徴とするものである。
Furthermore, the device of the present invention can be used to direct xI! toward the subject and its surroundings.
an X-ray source that irradiates i1; and an X-ray source that rotates integrally with the X-ray source around the subject and moves in synchronization with the rotation;
An X-ray detection material that receives X-rays that have passed through the subject and its surroundings and records them as projection data and X-ray source output data, and reads out the projection data and X-ray source output data recorded on the X-ray detection material. It is equipped with a readout device and an image reconstruction device that reconstructs a tomographic image based on the projection data output from the readout device and with correction using the X-ray source output data! It is characterized by these points.

以下、図面を用いて本発明方法及び装置を詳細に説明す
る。
Hereinafter, the method and apparatus of the present invention will be explained in detail using the drawings.

第3図は本発明に用いられる投影データ収録部の一実施
例を示す構成図で、同図(イ)はX線源Sの回転面にお
りる平面図、同図(ロ)はイの回転面とは直角な方向か
ら見た側面図である。両図において、SPは従来の検出
器アレイに代わるX線検出材で、従来と同様X線源Sと
一体的に被検体OB Jの周囲を回転できるように構成
されている。この実施例のX線源Sは、被検体及びその
周辺に向【プてファンビーム状のX線を照射するもので
あり、又、X線検出材SPは、第4図に示づ−ように矩
形の平板状で、X線源SがΔθずつ回転してファンビー
ム状のX線を照射するごとに、第3図([1)の矢印で
示すようにビーム面とは直角な方向にΔ×ずつ移動する
ように構成されている。
FIG. 3 is a configuration diagram showing an embodiment of the projection data recording section used in the present invention, in which (a) is a plan view of the X-ray source S on the plane of rotation, and (b) is a plan view of the projection data recording section (a). It is a side view seen from a direction perpendicular to the rotation surface. In both figures, SP is an X-ray detection material that replaces the conventional detector array, and is configured so that it can rotate around the object OB J integrally with the X-ray source S, as in the conventional case. The X-ray source S of this embodiment irradiates a fan beam-shaped X-ray toward the subject and its surroundings, and the X-ray detection material SP is as shown in FIG. Each time the X-ray source S rotates by Δθ and irradiates fan beam-shaped X-rays, the X-ray source S rotates in a direction perpendicular to the beam plane, as shown by the arrow in Fig. 3 ([1)]. It is configured to move by Δ×.

このX線検出材SPは、詳しくは後述するが、例えば輝
尽性螢光体(通常、輝尽性螢光体粉末を適当なバインダ
ーに混ぜてベースに塗布し板状に仕上げることにより製
作される)でなり、上述のような移動を行いつつX線の
照射を受け、第4図に示すように、ΔXの間隔でΔθご
との各ピコ−のデータを縞状に記録できるものである。
This X-ray detection material SP, which will be described in detail later, is manufactured using, for example, a photostimulable phosphor (usually, a photostimulable phosphor powder is mixed with a suitable binder, applied to a base, and finished into a plate shape). It is irradiated with X-rays while moving as described above, and as shown in FIG. 4, data of each pico for each Δθ can be recorded in a striped pattern at intervals of ΔX.

ここで、X線検出材SPへの記録データは、被検体OB
Jを通過したX線の照射により中央部分に書き込まれた
投影データD1と、被検体OBJを通過せずにイの周辺
を通過したX線の照射により、該投影データD1の外側
に書き込まれたX線源出力データD2とから成っている
(第4図参照)。このX線源出力データD2は、X線源
Sの出力を検出し、その変動に伴う投影データD1の変
動を補正するのに用いるデータである。
Here, the data recorded on the X-ray detection material SP is
Projection data D1 written in the central part by the irradiation of the X-rays that passed through J, and projection data D1 written outside of the projection data D1 by the irradiation of the X-rays that passed around the area A without passing through the object OBJ. X-ray source output data D2 (see FIG. 4). This X-ray source output data D2 is data used to detect the output of the X-ray source S and correct fluctuations in the projection data D1 due to the fluctuations thereof.

尚、Δθは通常1°程度であり、又、Δ×は1〜3mm
に選定されるが、X線源S及びX線検出材SPの動きは
、必ずしも間欠的である必要はなく連続であってもよい
Note that Δθ is usually about 1°, and Δ× is 1 to 3 mm.
However, the movement of the X-ray source S and the X-ray detection material SP does not necessarily have to be intermittent and may be continuous.

輝尽性螢光体でなるX線検出材SP(以下、これを単に
螢光体SPと記す)では、被検体OBJを通過したX線
によって残像が形成されるので、この螢光体SPに励起
光を照射し、輝尽発光によって生じた光を検出すること
で、前記投影データD1及びX線源出力Y−タD2を求
めることができる。
In the X-ray detection material SP made of a photostimulable phosphor (hereinafter simply referred to as phosphor SP), an afterimage is formed by the X-rays that have passed through the subject OBJ. The projection data D1 and the X-ray source output Y-data D2 can be obtained by irradiating excitation light and detecting the light generated by stimulated luminescence.

この螢光体SPに記録されIC投影データD1及びX線
源出力データD2を読み出す読出し装置の一例を第5図
に示す。
FIG. 5 shows an example of a reading device for reading out the IC projection data D1 and the X-ray source output data D2 recorded on the phosphor SP.

図において、1は光偏向器(図示せず)と螢光体SPど
の間に配設され光偏向器によって偏向された励起光1−
の入射を受けるダイクロイックミラー、2はこのダイク
ロイックミラー1での透過光が大川りる第1の一方向性
集光素子としての円柱レンズである。この円柱レンズ2
は、螢光体SPの近傍に配設され、大川励起光1−を螢
光体SPの表面付近(表面も含む)に収束させるもので
、例えば、蛍光体S Pの表面でのスポット形状は楕円
となるように光学系は構成され、主走査方向の幅は例え
ば、0.1〜2 mmPij度に、副走査方向の幅はフ
ァンビームの厚さく即15スライス厚)若しくはスライ
ス厚より若干小さく構成される(例えば0.3〜5mm
程度に調整される)。3は光電子増倍管で、螢光体SP
での輝尽発光で生じた光を、円柱レンズ2.ダイクロイ
ックミラー1及びフィルター4を介して受けるものであ
る。
In the figure, reference numeral 1 indicates an excitation light 1- which is disposed between an optical deflector (not shown) and a phosphor SP and is deflected by the optical deflector.
The dichroic mirror 2 receiving the incident light is a cylindrical lens serving as a first unidirectional condensing element through which the light transmitted through the dichroic mirror 1 flows. This cylindrical lens 2
is arranged near the phosphor SP and focuses the Okawa excitation light 1- near the surface (including the surface) of the phosphor SP. For example, the spot shape on the surface of the phosphor SP is The optical system is configured to be an ellipse, and the width in the main scanning direction is, for example, 0.1 to 2 mmPij degree, and the width in the sub-scanning direction is the thickness of the fan beam (ie, 15 slices) or slightly smaller than the slice thickness. configured (e.g. 0.3-5mm
(adjusted to the degree). 3 is a photomultiplier tube with a phosphor SP
The light generated by stimulated luminescence is passed through the cylindrical lens 2. The light is received through a dichroic mirror 1 and a filter 4.

この読出し装置において、主走査は励起光りを第5図の
紙面に垂直な方向に移動することにより行い、副走査は
螢光体SPを第5図の上方に移動することによって行う
。これにより、螢光体SPの全面にわたって励起光りが
照射されることになり、各走査スポットにおける輝尽発
光で生じた光は、円柱レンズ2により一方向の収束を受
けた後、ダイクロイックミラー1によって励起光と分離
され、フィルター4を経て光電子増倍管3に入射する。
In this reading device, main scanning is performed by moving the excitation light in a direction perpendicular to the paper plane of FIG. 5, and sub-scanning is performed by moving the phosphor SP upward in FIG. As a result, the entire surface of the phosphor SP is irradiated with excitation light, and the light generated by stimulated luminescence at each scanning spot is converged in one direction by the cylindrical lens 2, and then by the dichroic mirror 1. It is separated from the excitation light and enters the photomultiplier tube 3 through the filter 4.

これにより、螢光体SPに記録された投影データが電気
信号として光電子増倍管3から出力される。
As a result, the projection data recorded on the phosphor SP is output from the photomultiplier tube 3 as an electric signal.

尚、フィルター4は、螢光体SP裏表面反射した後、円
柱レンズ2を透過し、ダイクロイックミラー1で反則し
て光電子増倍管3に向かう励起光の存在(螢光体SPで
の反射励起光のほとんどは、ダイクロイックミラー1を
透過するため、この存イ「は僅かである)を考慮して設
けたもので、励起光を完全に連断するためのものである
。従って、波長をλ、透過率1、励起光の波長Aとした
とき、フィルター4の特性曲線F及びダイクロイックミ
ラー1の特性曲線りは、例えば第6図の如きものとなる
。この励起光の波長△と、輝尽発光による光の分光スペ
クトルの主たる部分の波長は、輝尽発光の光を分離する
上から、十分離れている必要がある。
The filter 4 is configured to detect the presence of excitation light that is reflected from the back surface of the phosphor SP, transmitted through the cylindrical lens 2, reflected by the dichroic mirror 1, and directed toward the photomultiplier tube 3 (reflected excitation on the phosphor SP). Most of the light passes through the dichroic mirror 1, so the presence of the dichroic mirror 1 is very small. , the transmittance is 1, and the wavelength of the excitation light is A, the characteristic curve F of the filter 4 and the characteristic curve of the dichroic mirror 1 are as shown in FIG. 6, for example. The wavelengths of the main portions of the spectra of the light emitted from the emitted light need to be sufficiently far apart from each other in order to separate the light from the stimulated emitted light.

励起光としてl−18−N(!ガスレーザーの出力ビー
ムを用いる場合に、この励起光からの分離が容易な波長
の光を輝尽発光する蛍光体としては、例えば、特開昭4
8−804.87号記載のBa S。
When using the output beam of a l-18-N (!gas laser) as the excitation light, examples of phosphors that stimulate light at a wavelength that can be easily separated from the excitation light include, for example, Japanese Unexamined Patent Publication No. 4
BaS described in No. 8-804.87.

4:AX(但しAはDV、Tb及び王mのうち少なくと
も1種であり、Xは0.001≦×〈1モル%である)
で表わされる螢光体、特開昭48−80488M記載(
7)M(+ 804 :AX  <但シ△ハHO及びD
Vのうちの少なくとも1種であり、×は0.001≦×
≦1モル%である)で表わされる螢光体、特開昭48−
80489号記載の5r804:△× (但しΔはTm
、Tb及びl)y+7)うちの少なくとも1種であり、
Xは0.001≦×〈1モル%である)で表わされる螢
光体、特開昭51−29889号記載のNa 2804
 、 Ca SQ4.3r 804及び3a S04等
にMn、Dy及びTbのうち少なくとも1種を添加した
螢光体、特開昭52−30487号記載のBe O,L
i F。
4: AX (However, A is at least one of DV, Tb, and King m, and X is 0.001≦×<1 mol%)
A phosphor represented by
7) M(+804 :AX <However, △ha HO and D
is at least one type of V, and × is 0.001≦×
≦1 mol %), JP-A-48-
5r804 described in No. 80489: △× (However, Δ is Tm
, Tb and l)y+7),
A phosphor represented by X is 0.001≦×<1 mol%, Na 2804 described in JP-A No. 51-29889
, Ca SQ4.3r 804 and 3a S04, etc., added with at least one of Mn, Dy and Tb, Be O, L described in JP-A No. 52-30487
iF.

M(!2SO4及びCa F2等の螢光体、特開昭53
−39277号記載のLi 2 B407 :CU及び
Li ?B40? :Cu 、△q等の螢光体、米国特
許第3859527号記載のSrS:Ce、5111、
SrS:Ell、Sm、La2O2S:Eu。
M(!2 Fluorophores such as SO4 and Ca F2, JP-A-53
Li2B407 described in No.-39277: CU and Li? B40? :Cu, △q, etc., SrS:Ce, 5111 described in US Pat. No. 3,859,527,
SrS: Ell, Sm, La2O2S: Eu.

Sn+及び(Zn、Cd )S:Mn、X(但しXはハ
ロゲン)で表わせられる螢光体、特開昭55−1214
2号記載の7nS:Cu、Pb螢光体、一般式が3aQ
−x△1zo3 :Eu(但し0゜8≦×≦10)で表
わされるアルミン酸バリウム螢光体、及び一般式がM″
Q−x si 02  :A(イEIL/M” +aM
g、Ca 、Sr 、、7n 、Cd 又LtBaであ
り、AはCc 、 Tb 、 Fu 、 Tm 、 P
b 。
Phosphor represented by Sn+ and (Zn, Cd)S:Mn, X (where X is halogen), JP-A-55-1214
7nS described in No. 2: Cu, Pb phosphor, general formula is 3aQ
-x△1zo3: Barium aluminate phosphor represented by Eu (however, 0°8≦×≦10) and whose general formula is M″
Q-x si 02 :A(IEIL/M” +aM
g, Ca, Sr,, 7n, Cd or LtBa, A is Cc, Tb, Fu, Tm, P
b.

TQ、 Bi及びMnのうら少なくとも1種であり、×
(よ0.5≦×≦2.5である)で表わされるアルカリ
土類金属ヰ酸塩系螢光体、fi間昭55−12143号
記載の一般式が(B a I−x−y MQXCaV)
FX:aEu”(但しXは[3r及びCQの中の少なく
とも1つであり、X、y及びaはぞれぞれ0<x+y≦
0.6、×■≠0及び10”≦a≦5X 10−2なる
条件を満たす数である)で表わされるアルカリ土類弗化
ハ[]グン化物螢光体、特開昭55−121/14号記
載の一般式が1nOX:x△(但しLnはl−a 、Y
、G(I及びL−uの少なくとも1つを、XはCQ及び
/又はBrを、ΔはCe及び/又は王すを、×はQ<x
 <0.1を満足する数字を表わす)で表わされる螢光
体、特開昭55−1214Fl記載の一般式が(BaI
−xMX”)FX:yΔ(但しMllはMa 、 Ca
 、 Sr 。
At least one of TQ, Bi and Mn, ×
An alkaline earth metal salt phosphor represented by )
FX:aEu” (where X is at least one of [3r and CQ, and X, y and a are each 0<x+y≦
0.6, ×■≠0 and 10"≦a≦5 The general formula described in No. 14 is 1nOX:x△ (where Ln is 1-a, Y
, G (at least one of I and Lu, X is CQ and/or Br, Δ is Ce and/or King, × is Q<x
<0.1), the general formula described in JP-A-55-1214F1 is (BaI
-xMX”)FX:yΔ(However, Mll is Ma, Ca
, Sr.

7n及びCQのうちの少なくとも1つを、XはCG、S
r及びrのうちの少なくとも1つを、AはEu、Tb、
Ce、Tm、DV、Pr、1−1c、Nd 、Yb及び
I三rのうちの少なくとも1つを、×及びyはO≦×≦
0.6及びO≦y≦0,2なる条件で)tだす数字を表
わす)で表わされる螢光体を挙げることかできる。これ
らは何れもHe −Neガスレーザー光に比べて短波長
の発光スペクトルを持つ。従って、フィルター4として
カラーフィルターを用いることにより、光電子増倍管3
への励起光の入射を遮断することができる。
7n and CQ, X is CG, S
At least one of r and r, A is Eu, Tb,
At least one of Ce, Tm, DV, Pr, 1-1c, Nd, Yb and I3, x and y are O≦×≦
0.6 and O≦y≦0,2). All of these have emission spectra with shorter wavelengths than He-Ne gas laser light. Therefore, by using a color filter as the filter 4, the photomultiplier tube 3
It is possible to block excitation light from entering.

又、グイクロイックミラー2としては、輝尽売先による
光と励起光に対する透過1反則の特性が逆で、しかも波
長ににる特性変化が鋭いものを用いることが、光エネル
ギー効率の点で好ましい。
In addition, in terms of light energy efficiency, it is advantageous to use a guichroic mirror 2 that has opposite transmission characteristics for the excitation light and excitation light, and that has a sharp change in characteristics depending on the wavelength. preferable.

このような特性のものは、誘電体多層膜コーティングに
より容易に得られる。
Such characteristics can be easily obtained by dielectric multilayer coating.

このようにして螢光体SPから読み出された投影データ
D1及びX線源出力データD2は、例えば第7図に示す
像再生装置に導かれる。第7図において、11は光電子
増倍管3で読み出した投影データD1及びX線源出力デ
ータD2をディジタル信号に変換するアナログ・ディジ
タル変換器で、その出力は]ンビコータの中央処即装置
(以下、CPUと記す)12を介して、又はダイレクト
メモリアクセス(DMA)方式により直接的に、データ
メモリ13に導かれ、メモリ13内の投影データ記憶領
域及びX線源出力データ記憶領域に格納される。14は
断層像を再構成するための例えばフーリエ変換法、逐次
近似法1重畳積分法或いはパックプロジェクション法等
のいずれかを用いた再構成プログラムが記憶されたプロ
グラムメモリである。CPU12は、図示しない入力装
置からプログラムスタート信号や各種の情報を受けてこ
のプログラムを実行し、メモリ13に記憶された投影デ
ータD1及びX線源出力データo2を使用して演算によ
り被検体OBJの断層像を再構成する。このようにして
求められた再構成画像データは、メモリ13の画像デー
タ記憶領域に格納され、必要に応じてこれを読み出し、
表示装置15にて表示することができる。
The projection data D1 and the X-ray source output data D2 read out from the phosphor SP in this manner are led to, for example, an image reproducing device shown in FIG. In FIG. 7, reference numeral 11 denotes an analog-to-digital converter that converts the projection data D1 read out by the photomultiplier tube 3 and the X-ray source output data D2 into digital signals, and its output is converted into the central processing unit of the microcoater (hereinafter referred to as , CPU) 12 or directly by a direct memory access (DMA) method, to a data memory 13 and stored in a projection data storage area and an X-ray source output data storage area in the memory 13. . A program memory 14 stores a reconstruction program using, for example, a Fourier transform method, a successive approximation method, a single convolution method, or a pack projection method for reconstructing a tomographic image. The CPU 12 receives a program start signal and various information from an input device (not shown), executes this program, and calculates the object OBJ using projection data D1 and X-ray source output data o2 stored in the memory 13. Reconstruct the tomographic image. The reconstructed image data obtained in this way is stored in the image data storage area of the memory 13, and read out as necessary.
It can be displayed on the display device 15.

尚、投影データ検出から断層像再構成までは必ずしも同
一装置内において処理される必要はなく、投影データの
記録された検出プレートSPを別に設けた仙の装置に移
してそこで再構成処理を施すようにしてもよい。
It should be noted that the processes from projection data detection to tomographic image reconstruction do not necessarily need to be processed within the same device; instead, the detection plate SP on which the projection data is recorded may be transferred to a separate device and the reconstruction processing performed there. You can also do this.

ヌ、投影データD1及びX線源出力アータD?の記録媒
体として、矩形の板状のX線検出材SPを示したが、ド
ラム状のもの等どのような形状のxi検出月であっても
よい。ただし、この場合には、X線検出材の駆動機構、
投影データD1及びX線源出力データD2の位置補正等
、ハードウェア及びソウトウエアの一部変更が必要とな
る場合がある。
, projection data D1 and X-ray source output data D? Although a rectangular plate-shaped X-ray detection material SP is shown as the recording medium, it may be of any shape such as a drum-shape. However, in this case, the drive mechanism of the X-ray detection material,
It may be necessary to partially change the hardware and software, such as position correction of the projection data D1 and the X-ray source output data D2.

更に、X線検出材SPは輝尽性螢光体に限る必要はなく
、記録後何らかの手段でこれを読み出すことのできるよ
うな伯の記録媒体を用いることもできる。
Furthermore, the X-ray detection material SP need not be limited to a photostimulable phosphor; any recording medium from which the information can be read out by some means after recording may be used.

又、X線源出力データD?を記録媒体の片側にのみ書き
込むように構成してもJ:い。
Also, X-ray source output data D? It is also possible to configure the recording medium so that it is written only on one side of the recording medium.

以1−説明した本発明方法及び装置によれば、次のよう
な効果が冑られる。
According to the method and apparatus of the present invention described in Section 1 below, the following effects can be achieved.

(1)複数個のバラツキを有す検出素子を用いないので
、一つのピコ−にわたって検出感度はほぼ一様である。
(1) Since a plurality of detection elements with variations are not used, the detection sensitivity is almost uniform over one pico.

このため、良好な画質の断層像を得ることができる。Therefore, a tomographic image with good image quality can be obtained.

(2)従来に比べて、参照用検出器が不要になる。(2) Compared to the past, a reference detector is not required.

このため、装置の構成が簡単になる。This simplifies the configuration of the device.

(3)検出器部分を単一のプレートで構成することも可
能であり、この点からも装置の小形軽量化を図れる。
(3) It is also possible to configure the detector portion with a single plate, and from this point of view as well, the device can be made smaller and lighter.

(4)投影データ等の搬影系は、検出器からの信号を取
り出す信号線及び電源等の配線が全く不要となり、極め
て簡単な構成となる。
(4) The image transport system for transmitting projection data, etc., does not require any wiring such as a signal line for extracting a signal from the detector and a power source, resulting in an extremely simple configuration.

(5)従来のものは投影データ等の検出から断層像再構
成までを同一場所で行っていたが、本発明方法及び装置
によれば、投影データ等の記録されたX綿栓110Aを
別の場所に移動し、そこで断層像再構成を行うことが可
能である。
(5) In the conventional method, everything from detection of projection data etc. to tomographic image reconstruction was performed at the same place, but according to the method and apparatus of the present invention, the X cotton plug 110A with recorded projection data etc. It is possible to move to a location and perform tomographic image reconstruction there.

(6)X線検出材の送り方向に連続的に投影データが記
録されるので、実質的には、従来の検出器をIMiめて
微小間隙に並べたのに等しく、高解像度の断層像を得る
ことが可能になり、又、高解像度が得られる割には従来
のものほど高価格とはならない。
(6) Since projection data is continuously recorded in the feeding direction of the X-ray detection material, it is essentially equivalent to arranging conventional detectors in an IMi space in a minute gap, and can produce high-resolution tomographic images. Furthermore, although high resolution can be obtained, the price is not as high as that of the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はファンビーム方式のCTの説明図、第2図は従
来のX線CTにおける参照用検出器の配置を示す説明図
、第3図は本発明にて用いられる投影データ収録部の一
実施例を示す構成図、第4図はX線検出材」−の投影デ
ータ記録状態を示す説明図、第5図は本発明装置の一部
である読出し装置の一実施例を示す説明図、第6図はダ
イクロイックミラー及びフィルターの透過率特性を示す
説明図、第7図は本発明装置の一部である像再生装置の
一実施例を示す説明図である。 S・・・X線tm      OBJ・・・被検体SP
・・・X線検出材   3・・・光電子増倍管11・・
・AD変換器  12・・・CPU13.64・・・メ
モリ 15・・・表示装置特許出願人  小西六写真工
業株式会社代  理  人   弁理士  井  島 
 藤  冶−17、、、 革1図 第4図 第5図 M6図
Fig. 1 is an explanatory diagram of fan beam CT, Fig. 2 is an explanatory diagram showing the arrangement of reference detectors in conventional X-ray CT, and Fig. 3 is an illustration of the projection data recording unit used in the present invention. 4 is an explanatory diagram showing the projection data recording state of the X-ray detection material; FIG. 5 is an explanatory diagram showing an embodiment of the reading device which is a part of the device of the present invention; FIG. 6 is an explanatory diagram showing transmittance characteristics of a dichroic mirror and a filter, and FIG. 7 is an explanatory diagram showing an embodiment of an image reproducing device which is a part of the apparatus of the present invention. S...X-ray tm OBJ...Object SP
...X-ray detection material 3...Photomultiplier tube 11...
・AD converter 12...CPU 13.64...Memory 15...Display device Patent applicant Roku Konishi Photo Industry Co., Ltd. Representative Patent attorney Ijima
Osamu Fuji-17... Leather Figure 1 Figure 4 Figure 5 Figure M6

Claims (5)

【特許請求の範囲】[Claims] (1)被検体の周囲を、X線源とX線検出材とを一体的
に回転させ、前記X線源の回転に同期して前記X綿栓1
10オを移動することにより、投影データ及びX線源出
力データをX線検出材」−に記録し、前記投影データ及
びX線源用ツノデータの記録されたX線検出材に基づい
てrIi層像を作成するX線IfJi層像作成方法。
(1) The X-ray source and the X-ray detection material are rotated integrally around the subject, and the X-cotton plug 1 is rotated in synchronization with the rotation of the X-ray source.
The projection data and the X-ray source output data are recorded on the X-ray detection material by moving the A method for creating an X-ray IfJi layer image.
(2)前記X線検出材が輝尽性螢光体であり、且つ該X
線検出材の中央に前記投影データを書き込み、該投影デ
ータの少なくとも片側に前記X線源出力データを書き込
むようにしたことを特徴とする特許請求の範囲第1項記
載のX線断層像作成方法。
(2) The X-ray detection material is a photostimulable fluorophore, and
The method for creating an X-ray tomographic image according to claim 1, characterized in that the projection data is written in the center of the radiation detection material, and the X-ray source output data is written in at least one side of the projection data. .
(3)被検体及びその周辺に向けてX線を照射するX線
源と、被検体を中心として前記X線源と一体的に回転す
ると共に該回転に同期して移動し、被検体及びその周辺
を通過したX線を受(プて投影データ及びX線源出力デ
ータとして記録するX線検出材ど、該X線検出材に記録
された前記投影データ及びX線源出力データを読み出り
一読出し装置と、該読出し装置から出力された投影デー
タに基づき、dつ前記X線源出力データによる補正を行
いながら断層像を再構成する像再生装置とを具備したこ
とを特徴とするX II断層像作晟装置。
(3) An X-ray source that irradiates X-rays toward the subject and its surroundings; an X-ray source that rotates integrally with the X-ray source around the subject and moves in synchronization with the rotation; An X-ray detection material that receives X-rays passing through the surrounding area and records them as projection data and X-ray source output data, and reads out the projection data and X-ray source output data recorded on the X-ray detection material. X II characterized in that it is equipped with a reading device and an image reproducing device that reconstructs a tomographic image based on the projection data output from the reading device while performing correction using the d X-ray source output data. Tomographic imaging device.
(4)前記X線検出材が輝尽性螢光体であることを特徴
とする特許請求の範囲第3項記載のX線断層像作成装置
(4) The X-ray tomographic image creation apparatus according to claim 3, wherein the X-ray detection material is a photostimulable phosphor.
(5)前記X線源はファンビーム状にX線を照則し、該
X線源と一体的に回転する前記X線検出材はファンビー
ム平面と直角な方向に移動するように構成したことを特
徴とする特許請求の範囲第3項又は第4項記載のX線断
層像作成装置。
(5) The X-ray source illuminates X-rays in the form of a fan beam, and the X-ray detection material, which rotates integrally with the X-ray source, is configured to move in a direction perpendicular to the fan beam plane. An X-ray tomographic image creation apparatus according to claim 3 or 4, characterized in that:
JP57186390A 1982-10-22 1982-10-22 Method and device for forming x-ray tomographic image Pending JPS5975139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57186390A JPS5975139A (en) 1982-10-22 1982-10-22 Method and device for forming x-ray tomographic image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57186390A JPS5975139A (en) 1982-10-22 1982-10-22 Method and device for forming x-ray tomographic image

Publications (1)

Publication Number Publication Date
JPS5975139A true JPS5975139A (en) 1984-04-27

Family

ID=16187551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57186390A Pending JPS5975139A (en) 1982-10-22 1982-10-22 Method and device for forming x-ray tomographic image

Country Status (1)

Country Link
JP (1) JPS5975139A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010026787A1 (en) * 2008-09-03 2010-03-11 コニカミノルタエムジー株式会社 Medical image information acquisition device, medical image generation system and method for generating medical image

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5412585A (en) * 1977-06-29 1979-01-30 Emi Ltd Medical radiant ray camera

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5412585A (en) * 1977-06-29 1979-01-30 Emi Ltd Medical radiant ray camera

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010026787A1 (en) * 2008-09-03 2010-03-11 コニカミノルタエムジー株式会社 Medical image information acquisition device, medical image generation system and method for generating medical image

Similar Documents

Publication Publication Date Title
JPS5914842A (en) Arbitrary tomographic method and apparatus
US4683377A (en) Subtraction processing method and apparatus for radiation images
JP2571129B2 (en) Radiation image diagnostic equipment
JPS5975139A (en) Method and device for forming x-ray tomographic image
JPH0533375B2 (en)
US5898184A (en) Reading of Information in radiation emitted from storage media
JPS6187466A (en) Method of reading radiant ray picture information
JPH0588451B2 (en)
JPS63189853A (en) Recording and reading method for radiation image
JPH0552625B2 (en)
JPH0259964B2 (en)
JPS5937936A (en) X-ray tomographic image forming method and apparatus
JPS62251738A (en) Radiographic image information recorder
JPH05207998A (en) Radiation image reader
JPS59103652A (en) Medical display apparatus
JP2588153B2 (en) Radiation image reproduction method
JPH03265841A (en) Radiophotograph photographing device
JPH02247637A (en) Radiograph reader
JP3845725B2 (en) Information recording method and information recording apparatus
JPH0556061B2 (en)
JPS61162037A (en) Method and apparatus for reading radiation picture information
JPH0782538B2 (en) Method and apparatus for energy subtraction of radiation image
JPH0445181B2 (en)
JPH0454933B2 (en)
JPH04186484A (en) Radiation image reader