JPS5975116A - Electromagnetic flowmeter - Google Patents

Electromagnetic flowmeter

Info

Publication number
JPS5975116A
JPS5975116A JP18448882A JP18448882A JPS5975116A JP S5975116 A JPS5975116 A JP S5975116A JP 18448882 A JP18448882 A JP 18448882A JP 18448882 A JP18448882 A JP 18448882A JP S5975116 A JPS5975116 A JP S5975116A
Authority
JP
Japan
Prior art keywords
fluid
measured
tube
magnetic
electromagnetic flowmeter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18448882A
Other languages
Japanese (ja)
Inventor
Katsumi Fujikawa
冨士川 克美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP18448882A priority Critical patent/JPS5975116A/en
Publication of JPS5975116A publication Critical patent/JPS5975116A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/58Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters

Abstract

PURPOSE:To improve a wear resistance and to eliminate a measurement error by providing a sintered hard alloy or a wear resistant alloy to a liquid contacting part of an inner circumferential surface of a liningless pipe body of an electromagnetic flowmeter. CONSTITUTION:A nonmagnetic sintered hard alloy or a wear resistant nonmagnetic alloy 12b is provided to the liquid contacting part where a fluid 1 to be measured is broght into contact with the inner circumferential surface of the pipe body 12. In case the wear occurs, a sectional area of the body 12 is varied and the measurement error is caused. But in this method, the measurement error can be eliminated.

Description

【発明の詳細な説明】 本発明は電磁流量計に関し、特にライニングレスの電磁
流量計の管体を改良したものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electromagnetic flowmeter, and particularly to an improved tube body of a liningless electromagnetic flowmeter.

従来技術に係る電磁流量計の管体は、通常非磁性で導電
性の円筒状の導管と、この導管の内周面に内張すされた
ライニングとからなる。導電性の被測定流体と接液する
前記ライニングは、前記管体に装着され同時に被測定流
体に接してこの被測定流体中に発生する誘導起電力を取
シ出す電極と前記導管との間を絶縁するものであり、通
常、ゴム、テフロン等の絶縁性部材を用いている。そこ
で、この種の電磁流量針により被測定流体としてモルタ
ル等を測定する場合、ライニングの摩耗が激しいため短
期間のうちに測定不能という事態を招来するばかりでな
く損失も大きなものとなっている。しかしながら、絶縁
性のライニングを必要とする従来技術に係る電磁流量計
でけライニングの材料が限定されてしまい耐摩耗性を向
上せしめるにも限界がある。
The tubular body of a conventional electromagnetic flowmeter usually consists of a non-magnetic, electrically conductive cylindrical conduit, and a lining lined on the inner peripheral surface of the conduit. The lining, which is in contact with the conductive fluid to be measured, is attached to the pipe and connects between the conduit and an electrode that is attached to the pipe body and simultaneously contacts the fluid to be measured to extract an induced electromotive force generated in the fluid to be measured. It is insulated and usually uses an insulating material such as rubber or Teflon. Therefore, when measuring mortar or the like as a fluid to be measured using this type of electromagnetic flow needle, the lining is severely worn, which not only causes a situation where measurement becomes impossible in a short period of time, but also results in large losses. However, in conventional electromagnetic flowmeters that require an insulating lining, the materials for the lining are limited, and there is a limit to the ability to improve wear resistance.

一方、最近管体の円周面を絶縁性とするためのライニン
グを必要としない電磁流量計が発表されている。このラ
イニングレスの電磁流量計を第1図に示す。同図に示す
ように、流量を測定する被測定流体lが流通する非磁性
で導電性の管体2上には、磁界Bと直交する位置に測定
1j極3,3aが設けらnている。さらに測定電極3.
3a’(i7囲んでリング状の給電端子4,4aが設け
られている。測定電極a、aahエポキシ樹脂等の絶縁
材6,6af介して管体2に装着されてhる。帰還によ
シ利得が1にされた増幅器5,5aは夫々測定電極3,
3aにより検出された誘導電圧を給電端子4,4aに与
えている。このため給電端子4,4aばそnぞれ測定電
極3,3aと等電位となシ、かつ4,4a間には大きな
電流が流れ、管壁上には電位降下が発生する。管体2の
肉厚が均一なら給電端子4.4a間の電位分布は管内周
の長さにつき直線的となる。流体lの管内壁付近の誘導
電圧の分布は、磁界Bが場所に拘らず均一であシかっ流
扛が管内断面につき一様流である時には内周長さにつき
正弦状となることが知ら九ている。
On the other hand, recently, an electromagnetic flowmeter has been announced that does not require a lining to insulate the circumferential surface of the tube. This liningless electromagnetic flowmeter is shown in Figure 1. As shown in the figure, measurement poles 3 and 3a are provided at positions orthogonal to a magnetic field B on a non-magnetic and conductive tube body 2 through which a fluid to be measured whose flow rate is to be measured flows. . Furthermore, measurement electrode 3.
3a' (i7 Surrounding ring-shaped power supply terminals 4, 4a are provided. Measurement electrodes a, AAH are attached to the tube body 2 through insulating materials 6, 6af such as epoxy resin. Amplifiers 5 and 5a with a gain of 1 are connected to measuring electrodes 3 and 5a, respectively.
The induced voltage detected by 3a is applied to power supply terminals 4, 4a. For this reason, the power supply terminals 4, 4a are not at the same potential as the measuring electrodes 3, 3a, and a large current flows between them, causing a potential drop on the tube wall. If the wall thickness of the tube body 2 is uniform, the potential distribution between the power supply terminals 4.4a will be linear with respect to the length of the inner circumference of the tube. It is known that the distribution of the induced voltage near the inner wall of the pipe of fluid L is uniform regardless of the location of the magnetic field B, and that when the flow is uniform across the cross section of the pipe, it becomes sinusoidal over the inner circumference length. ing.

従って給電端子4,4aの位置を適当に選べば管体2の
内周上のすべての点で管壁上の電位分布と被測定流体l
中の誘導電圧の分布とを近似的に等しくすることが出来
る。よって管体2の内壁が導電性であっても管体2と被
測定流体]との間の電流の出入がないので測定電極3,
3aにより取出し増幅器5,5aを経て端子6,6aよ
り得られる電圧は通常のライニングを有する場合と同じ
誘導電圧と々る。
Therefore, if the positions of the power supply terminals 4 and 4a are appropriately selected, the potential distribution on the tube wall and the measured fluid l at all points on the inner circumference of the tube body 2 can be adjusted.
It is possible to make the distribution of the induced voltage in the inside approximately equal. Therefore, even if the inner wall of the tube body 2 is conductive, there is no current flowing between the tube body 2 and the fluid to be measured.
The voltage obtained from the terminals 6, 6a via the output amplifiers 5, 5a by 3a is the same induced voltage as in the case with a normal lining.

このように管内壁に絶縁性を与えるためのライニングが
不要になnば、ライニングの変形、破損等のトラブルが
防止出来て電磁流量計の信頼性を高めることが可能とな
るが、上述の場合にも管体2の材料として通常ステンレ
スが用いらnており、耐摩耗性の点で問題が残るものと
なっている。
In this way, if there is no need for a lining to provide insulation to the inner wall of the pipe, troubles such as deformation and damage of the lining can be prevented and the reliability of the electromagnetic flowmeter can be increased, but in the above case Also, stainless steel is usually used as the material for the tube body 2, and there remains a problem in terms of wear resistance.

本発明は、上記従来技術に鑑み、ライニングレスの電磁
流量計で、しかも耐摩耗性も向上せしめ得る′vlfp
流量計全提供することを目的とする。かかる目的を達成
する本発明はライニングレスの電磁流量計において、そ
の管体の内周面である被測定流体との接液面には非磁性
の超硬合金若しくは非磁性の耐摩耗性合金が臨むように
した点をその技術思想の基礎とするものである。
In view of the above-mentioned prior art, the present invention provides a liningless electromagnetic flowmeter with improved wear resistance.
Our aim is to provide a complete range of flowmeters. The present invention, which achieves the above object, is a liningless electromagnetic flowmeter, in which a non-magnetic cemented carbide or a non-magnetic wear-resistant alloy is used on the inner peripheral surface of the tube, which is the surface that comes into contact with the fluid to be measured. This approach is the basis of its technical philosophy.

以下本発明の実施例を図面に基づき詳細に説明する。な
お、従来技術と同一部分には同一番号を付し重複する説
明は省略する。また、第2図〜第6図は何れも第1図と
同様のライニングレスの電磁流量計の管体である。
Embodiments of the present invention will be described in detail below based on the drawings. Note that parts that are the same as those in the prior art are given the same numbers and redundant explanations will be omitted. Moreover, all of FIGS. 2 to 6 show a tube body of a liningless electromagnetic flowmeter similar to that shown in FIG. 1.

第2図に示すように、本実施例の管体12は、ステンレ
ス等の非磁性で導電性の円筒状の導管12aと、この導
管12aの内部に挿入された非磁性で導電性の円筒状の
超硬合金(タングステンカーバイドとコバルトとの焼結
合金)スリーブ12bとからなる。このとき超硬合金ス
リーブ12bはその端部が欠は易いので、図中の左端は
前記導管12aの左端部内周面から突出する突部12c
に図中左側から当接してこれに保護され、図中の右端は
導管12Hの右端部に刻設される凹部12dに図中右側
から嵌入・嵌着される着脱自在なリング12eKfi接
してこnに保護される。したがって、組立ての際には超
硬合金スリーブ12b’に導管12aの右側がら前記突
部12cに当接するまで導管12aに挿入し、その後リ
ング12eji前記凹部12dに嵌入・嵌着する。
As shown in FIG. 2, the tubular body 12 of this embodiment includes a non-magnetic and conductive cylindrical conduit 12a made of stainless steel or the like, and a non-magnetic and conductive cylindrical conduit inserted into the conduit 12a. The sleeve 12b is made of a cemented carbide (a sintered alloy of tungsten carbide and cobalt). At this time, since the end of the cemented carbide sleeve 12b is easily chipped, the left end in the figure is a protrusion 12c protruding from the inner peripheral surface of the left end of the conduit 12a.
A removable ring 12eKfi is in contact with and is protected from the left side in the figure, and the right end in the figure is in contact with a removable ring 12eKfi that is inserted and fitted from the right side in the figure into a recess 12d carved in the right end of the conduit 12H. protected. Therefore, during assembly, the cemented carbide sleeve 12b' is inserted into the conduit 12a from the right side of the conduit 12a until it abuts the protrusion 12c, and then the ring 12eji is fitted into the concave part 12d.

第3図は本発明の第2の実施例を示す。同図に示すよう
に、非磁性で導電性の超合金スリーブ22aの両端にフ
ランジ22b、22cを嵌着し両者の境界をロー付けし
て管体22を形成しても良く、この場合には前記実施例
における導管12aを省略し得る。このとき、第4図に
示すように、超硬合金スリーブ32aに一体的にフラン
ジ部32b、32C’e形成しても良く、この場合には
フランジ部32b、32cの端面にリング状の角当シ防
止用の保護板32d、32eを夫々当接・固着せしめて
管体32とする。第5図は超硬合金スリーブ42bの外
周面との間に密閉空間43を形成し、この密閉空間43
内に励磁コイル44を収納し得るよう四部42C全設け
た導管42a内に前記超硬合金スリーブ42bを挿入し
て両端部をロー付は固着して管体42を形成した実施例
である。
FIG. 3 shows a second embodiment of the invention. As shown in the figure, the tube body 22 may be formed by fitting flanges 22b and 22c onto both ends of a non-magnetic and conductive superalloy sleeve 22a and brazing the boundaries between the two. The conduit 12a in the previous embodiment can be omitted. At this time, as shown in FIG. 4, flange portions 32b and 32C'e may be formed integrally with the cemented carbide sleeve 32a. In this case, ring-shaped corner abutments may be formed on the end surfaces of the flange portions 32b and 32c. The tube body 32 is formed by abutting and fixing protective plates 32d and 32e for preventing damage. In FIG. 5, a sealed space 43 is formed between the outer peripheral surface of the cemented carbide sleeve 42b, and this sealed space 43
In this embodiment, the tube body 42 is formed by inserting the cemented carbide sleeve 42b into a conduit 42a having all four parts 42C and brazing or fixing both ends to accommodate the excitation coil 44 therein.

かかる4つの実施例では何nも超硬合金スリーブ12b
、22へ、32ん、42bを使用したが、こnらの伏シ
に耐摩耗性合金を使用しても良い。第6図はこの実施例
に係る管体52を示し、非磁性で導電性の円筒状の導管
52aの内周面にステライl−(商品名;コバルト、ク
ローム、タングステンを主体とした耐摩耗性合金)52
bを溶着したものである。
In four such embodiments, a number n of cemented carbide sleeves 12b
, 22, 32, and 42b are used, but a wear-resistant alloy may be used for these. FIG. 6 shows a tube body 52 according to this embodiment, in which the inner circumferential surface of a non-magnetic and conductive cylindrical conduit 52a is coated with Stellai l- (trade name; wear-resistant material mainly made of cobalt, chromium, and tungsten). Alloy) 52
b is welded.

斜上の5つの実施例における被測定流体1との接液面は
超硬合金スリーブ12b、22机。
The surfaces in contact with the fluid to be measured 1 in the five diagonal embodiments are the cemented carbide sleeves 12b and 22.

32に、42b若しくはステライト52bの内周面とな
っている。
32 and 42b or the inner circumferential surface of stellite 52b.

々か、前記超硬合金スリーブ12 b、  22 a*
32a、42bはプラスチック類の導管の内周面に挿入
しても良く、この場合には管体の軽量化全針シ得る。
respectively, the cemented carbide sleeves 12b, 22a*
The needles 32a and 42b may be inserted into the inner peripheral surface of a plastic conduit, and in this case, the weight of the tube body can be reduced.

以上実施例とともに具体的に説明したように、本発明に
よれはライニングレスの電磁流置引の管体の内周面の接
液部には超硬合金若しくけ側摩耗性合金が臨むようにし
たので、耐摩耗性を向上せしめることができる。したが
って、摩耗が発生すると管体の断面積が変化してそれが
6111定訴差となっていたが、この測定誤差′fr、
除去することができる。寸た、従来被測定流体が高圧で
あると管体が膨張して管体の断面積が変化して七nが測
定誤差となっていたが、超硬合金及び1lii1摩耗性
合金は硬いため膨張量も押えることができその分測定誤
差も少なくなる。更に、超硬合金及び耐摩耗性合金!−
を薄肉で強度大であるため高圧流体の測定に向く。因に
、従来のステンレス鋼で高圧流体を保持すると管体の肉
厚が厚くなり、電磁流量計は測定原理上管体外周よ勺石
l界を加えるが、管体が肉厚となると渦電流用失が増大
し磁界発生のための励磁電流の損失が増大する。更に、
管体の接液面には異物がf」着し易く、この場合にはド
ライバ等でかき落しているが、本発明の場合にに管体の
接液111ン・キズ付けることなく前記作業ヲ行なうこ
とができる。
As specifically explained above in conjunction with the embodiments, according to the present invention, the cemented carbide or the abrasive alloy on the swing side faces the liquid-contacted part of the inner peripheral surface of the liningless electromagnetic flow pipe. Therefore, wear resistance can be improved. Therefore, when wear occurs, the cross-sectional area of the tube changes, resulting in a 6111 fixed error, but this measurement error 'fr,
Can be removed. In the past, when the fluid to be measured was under high pressure, the tube expanded and the cross-sectional area of the tube changed, resulting in a measurement error of 7n, but cemented carbide and abrasive alloys are hard, so they expand. The amount can also be reduced, and measurement errors can be reduced accordingly. Furthermore, cemented carbide and wear-resistant alloy! −
Because it is thin and strong, it is suitable for measuring high-pressure fluids. Incidentally, when conventional stainless steel is used to hold high-pressure fluid, the wall thickness of the tube becomes thicker, and electromagnetic flowmeters apply a magnetic field around the outer circumference of the tube due to the measurement principle, but thicker tubes cause eddy currents. The power consumption increases and the loss of excitation current for generating the magnetic field increases. Furthermore,
Foreign matter tends to adhere to the liquid-contact surface of the pipe body, and in this case, it is scraped off with a screwdriver, but in the case of the present invention, the above work can be done without damaging the liquid-contact surface of the pipe body. can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はライニングレスの電磁流置割を示す横断面図、
第2図〜第6図は本発明の第1〜第5の実施例に係る管
体を夫々示す縦断面図である。 図  面  中、 lは被測定流体、 2.12,22,32,42.52は管体、3.3aは
測定電極、 4.4aは給電端子、 12b、22a、32a、42bは超硬合金スリーブ、 52bはステライト(耐摩耗性合金)である。 特許出願人 株式会社 北辰電機製作所 代   理   人 弁理士光石士部 (他1名) 第1図 第2図    第3図 第4図 第6図 第5図
Figure 1 is a cross-sectional view showing a liningless electromagnetic flow arrangement;
2 to 6 are longitudinal sectional views showing tube bodies according to first to fifth embodiments of the present invention, respectively. In the drawing, l is the fluid to be measured, 2.12, 22, 32, 42.52 are tube bodies, 3.3a is a measurement electrode, 4.4a is a power supply terminal, 12b, 22a, 32a, 42b are cemented carbide The sleeve 52b is Stellite (a wear-resistant alloy). Patent Applicant Hokushin Electric Manufacturing Co., Ltd. Representative, Patent Attorney Shibe Mitsuishi (and 1 other person) Figure 1 Figure 2 Figure 3 Figure 4 Figure 6 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 被測定流体を流すための導電性の管体と、この管体に磁
界を印加するための磁界発生手段と、前記被測定流体中
に発生する誘導起電力を取り出すため前記管体に備見ら
れた測定電極と、少くと本前記測定電極付近において前
記誘導起電力と略等しい電位分布を前記管体に形成する
給電手段とを具備する電磁流量針において、前記管体の
内周面である被測定流体との接液面には非磁性の超硬合
金若しくは非磁性の耐摩れ性合金が臨むようにしたこと
を特徴とする電磁流量計。
A conductive tube for flowing the fluid to be measured, a magnetic field generating means for applying a magnetic field to the tube, and a magnetic field generator provided in the tube for extracting the induced electromotive force generated in the fluid to be measured. In the electromagnetic flow needle, the electromagnetic flow needle is equipped with a measuring electrode, and a power feeding means that forms a potential distribution substantially equal to the induced electromotive force in the tubular body at least in the vicinity of the measuring electrode. An electromagnetic flowmeter characterized in that a non-magnetic cemented carbide or a non-magnetic wear-resistant alloy faces the surface that comes into contact with the fluid to be measured.
JP18448882A 1982-10-22 1982-10-22 Electromagnetic flowmeter Pending JPS5975116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18448882A JPS5975116A (en) 1982-10-22 1982-10-22 Electromagnetic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18448882A JPS5975116A (en) 1982-10-22 1982-10-22 Electromagnetic flowmeter

Publications (1)

Publication Number Publication Date
JPS5975116A true JPS5975116A (en) 1984-04-27

Family

ID=16154047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18448882A Pending JPS5975116A (en) 1982-10-22 1982-10-22 Electromagnetic flowmeter

Country Status (1)

Country Link
JP (1) JPS5975116A (en)

Similar Documents

Publication Publication Date Title
US8286503B2 (en) Electromagnetic flowmeter having a measuring tube with varying cross section and wall thickness
US5280727A (en) Electromagnetic flow measuring tube and method of making same
JP2574655B2 (en) Electromagnetic flow meter type detector
CA1211636A (en) Capacitively coupled magnetic flowmeter
EP0770856B2 (en) Electromagnetic flowmeter
JPH09126846A (en) Manufacture of measuring pipe of electromagnetic flow rate sensor
US7908932B2 (en) Magneto-inductive measuring transducer
GB2068122A (en) Electromagnetic flowmeters
JP4063739B2 (en) Magnetic induction flow measuring device
JPH10197301A (en) Measuring pipe for electromagnetic flowmeter
JPS5975116A (en) Electromagnetic flowmeter
JP2004354227A (en) Electrode structure of electromagnetic flowmeter
JP3443007B2 (en) Electromagnetic flow meter
JP2590920Y2 (en) Electromagnetic flow meter
WO2009096360A1 (en) Electromagnetic flow meter
JPS588449B2 (en) electromagnetic flow meter
JPS6014173Y2 (en) electromagnetic flowmeter transmitter
JP2545656B2 (en) Manufacturing method of electrode for electromagnetic flow meter
JPS61269021A (en) Flange connection type electromagnetic flowmeter
JPH04198816A (en) Electromagnetic flow meter
JPH08136307A (en) Electrostatic capacity type electromagnetic flowmeter
JP3340355B2 (en) Measuring tube for electromagnetic flow meter
JP3163610B2 (en) Electromagnetic flow meter
JPH0127054Y2 (en)
JPS5975117A (en) Electromagnetic flowmeter