JPS5974987A - Yeast developable vector plasmid utilizing promotor for gene controlling glycolytic enzyme and method for utilizing the same - Google Patents

Yeast developable vector plasmid utilizing promotor for gene controlling glycolytic enzyme and method for utilizing the same

Info

Publication number
JPS5974987A
JPS5974987A JP57184292A JP18429282A JPS5974987A JP S5974987 A JPS5974987 A JP S5974987A JP 57184292 A JP57184292 A JP 57184292A JP 18429282 A JP18429282 A JP 18429282A JP S5974987 A JPS5974987 A JP S5974987A
Authority
JP
Japan
Prior art keywords
gene
yeast
pgk
peptide
utilizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57184292A
Other languages
Japanese (ja)
Inventor
Takehiro Oshima
大島 武博
Masaharu Tanaka
正治 田中
Hiroshi Nakazato
紘 中里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suntory Ltd
Original Assignee
Suntory Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suntory Ltd filed Critical Suntory Ltd
Priority to JP57184292A priority Critical patent/JPS5974987A/en
Publication of JPS5974987A publication Critical patent/JPS5974987A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts

Abstract

PURPOSE:To produce the aimed useful peptide in high yield, by utilizing a promoter of an operon controlling 3-phosphoglycerokinase. CONSTITUTION:A plasmid containing a promoter for a gene controlling 3-phosphoglycerokinase (PGK) and the aimed peptide is prepared, and a yeast transformed by the above-mentioned plasmid is cultivated. alpha-Neoendorphin (alphaNE) gene is used as the aimed peptide gene, and the aimed substance (alphaNE) is produced as a PGK-alphaNE hybrid protein from the sequence such as PGK promoter- PGK structure gene-alphaNE gene. A gene capable of coding the aimed gene, e.g. a peptide such as interferon, is added to a site at a distance of a suitable base sequence from the position of the PGK promoter, and the aimed peptide can be directly produced.

Description

【発明の詳細な説明】 本発明は酵母サツカロマイセスの解糖系酵素の1つであ
る3−ホスホグリセロキナーゼ(以下PGKと略称する
)を支配している遺伝子(オペロン)のプロモーターと
有用な目的ペプチド遺伝子とを結合した酵母菌のベクタ
ーに関する。更に、本発明は上記PGKを支配している
オペロンのプロモーターを利用して、有用な目的ペプチ
ドを高収率で酵母から生産する方法に関する。
Detailed Description of the Invention The present invention provides a promoter of a gene (operon) controlling 3-phosphoglycerokinase (hereinafter abbreviated as PGK), which is one of the glycolytic enzymes of the yeast Satucharomyces, and a useful target peptide. This invention relates to a yeast vector that is linked to a gene. Furthermore, the present invention relates to a method for producing a useful target peptide in high yield from yeast using the promoter of the operon controlling the above-mentioned PGK.

これまで遺伝子操作技術を用いて医薬上有用なペプチド
類、例えばソマトスタチン、インスリン、成長ホルモン
、各趣インターフエロン、インフルエンザウイルス並び
に肝炎Bウィルス蛋白、サイモンンα1、β−エンドル
フィン、α−ネオエンドルフィン、セクレチン、ウロキ
ナーゼ、プラスミノ−ゲン活性化物質など多くの物質が
微生物又は動物細胞で作られるようになっている。
Until now, genetic engineering techniques have been used to produce pharmaceutically useful peptides such as somatostatin, insulin, growth hormone, various interferons, influenza virus and hepatitis B virus proteins, Simon α1, β-endorphin, α-neoendorphin, secretin, Many substances such as urokinase and plasminogen activators are now produced in microorganisms or animal cells.

これらの多くは宿主として原核細胞(prokaryo
le)である大腸菌を用いているが、近年有核細胞(e
ukaryoute)である酵母を宿主として利用する
ことが注目されている。これは、酵母の培養条件が簡単
であり、分裂速度が速いこと、安全性が高いこと、特に
サツカロマイセス酵母では遺伝生化学的解析がより多く
なされていることなどの理由による。しかし、酵母にお
ける外来異種ペプチド産生に関する例は少く、α−イン
ターフェロン、HB肝炎表面抗原蛋白、α−ネオエンド
ルフィンにみられる程度である。
Many of these host prokaryotic cells (prokaryotic cells).
We use Escherichia coli, which is a type of nucleated cell (e).
The use of yeast, which is known as ukaryoute, as a host is attracting attention. This is due to the fact that yeast culture conditions are simple, the rate of division is high, and safety is high, and in particular, more genetic and biochemical analyzes have been performed on Satucharomyces yeast. However, there are few examples of foreign peptide production in yeast, and the only examples are α-interferon, HB hepatitis surface antigen protein, and α-neoendorphin.

一方、外来異種遺伝子、例えば科学的に合成した遺伝子
、mRNAから逆転写酵素によって得られる相補的DN
A(cDNA) 遺伝子、あるいは染色体から適当な処
理によって得られる遺伝子、または酵母内に含まれるが
生産量の少い同種ペプチド遺伝子などを発現させようと
するには、用いる宿主に適したプロモーター領域の存在
が必須である。
On the other hand, a complementary DNA obtained from a foreign heterologous gene, such as a chemically synthesized gene, or mRNA using reverse transcriptase.
A (cDNA) To express a gene, a gene obtained from a chromosome by appropriate treatment, or a homologous peptide gene contained in yeast but produced in small amounts, it is necessary to use a promoter region suitable for the host used. Existence is essential.

プロモーターの良し悪しが目的とするペプチド遺伝子発
現に大きく影響するため、これまで種々のプロモーター
を用いた発現プラスミドベクターの開発が行われてきた
Since the quality of the promoter greatly influences the expression of the desired peptide gene, expression plasmid vectors using various promoters have been developed.

しかしながら、報告されている酵母を宿主とする外来遺
伝子の発現ベクターは、大腸菌を宿主とするベクターに
比べ、目的とする外来遺伝子の発現効率は十分とは言え
ない。発明者らは、酵母サツカロマイセスの解糖系を支
配している酵母である3−ホスホグリセロキナーゼ(P
GK)が酵母菌体で多量に生産されているのに着目し、
この酵素をコードしているオペロンのプロモーター遺伝
子の利用を考え、研究を進めた。この結果、このプロモ
ーターが酵母での異種または同種のペプチドの生産に非
常に有用であることを見出し、このプロモーターの下流
に異種または同種ペプチド遺伝子を結合した酵母菌のベ
クターを作成し、これを用いて酵母の形質転換を行い、
形質転換の行われた酵母を分離解析することにより本発
明を完成した。
However, the expression vectors for foreign genes that have been reported to use yeast as hosts cannot be said to have sufficient efficiency in expressing the target foreign genes compared to vectors that use E. coli as hosts. The inventors discovered that 3-phosphoglycerokinase (P
Focusing on the fact that GK) is produced in large quantities in yeast cells,
We proceeded with our research by considering the use of the promoter gene of the operon that encodes this enzyme. As a result, we discovered that this promoter is extremely useful for producing heterologous or homologous peptides in yeast, and created a yeast vector in which a heterologous or homologous peptide gene was linked downstream of this promoter, and used this vector. Transform yeast using
The present invention was completed by isolating and analyzing transformed yeast.

ザツカロマイセス酵母のPGK遺伝子は既にHitoz
emanらによりクローニングされている(Hitze
man,R.A.,Clarke,L.,&carbo
n,j.j.Biol、Chem、255:12073
(1980))。彼らによればPGK遺伝子は酵母の核
由来DNAのHind■で切断される約3.1kbのD
NA断片に存在し、その断片はさらにEcoR1で1ケ
所、Sallで2ケ所、Bg1■で1ケ所切断される。
The PGK gene of Zatsucharomyces yeast has already been
It has been cloned by Eman et al. (Hitze
man, R. A. , Clarke, L. , &carbo
n, j. j. Biol, Chem, 255:12073
(1980)). According to them, the PGK gene consists of approximately 3.1 kb of D
It exists in the NA fragment, and this fragment is further cleaved at one site by EcoR1, two sites by Sall, and one site by Bg1■.

又PGK遺伝子の5′末端付近およびその上流の1部の
塩基配列がDobsonら(Dohson、M.J.e
t al.,NucleicAcids Res.10
:2625〜2637(1982))によって示されて
いる。
In addition, the nucleotide sequence near the 5' end of the PGK gene and a portion upstream thereof was published by Dobson et al. (Dohson, M.J.
tal. , Nucleic Acids Res. 10
:2625-2637 (1982)).

また、PGKプロモーターを用いたγ−インターフェロ
ンの酵母での生産に関し第4回GIM(Fourth 
International Symposium o
n Geneticsof Industrial M
icroganisms: June 6−11,19
82,Kyoto,Japan)でGoeddel(G
enentech社)が口頭で発表しているが、詳細な
製造法に関しては開示していない。そこで発明者らは、
以下に述べる方法で独白にPGK遺伝子をクローニング
しPGK遺伝子プロモーターが酵母での同種または異種
ペプチドの生産に有効であることを具体的に示すもので
ある。
In addition, the 4th GIM (Fourth
International Symposium o
n Genetics of Industrial M
icroganisms: June 6-11, 19
82, Kyoto, Japan) and Goeddel (G
Enentech, Inc. has made an oral announcement, but the detailed manufacturing method has not been disclosed. Therefore, the inventors
This study specifically demonstrates that the PGK gene was cloned into a monomer by the method described below, and that the PGK gene promoter is effective for producing homologous or heterologous peptides in yeast.

以下に本発明により酵母ベクターの作成方法を示す。A method for producing yeast vectors according to the present invention will be described below.

まずザツカロマイセス酵母XS16−5c株の核DNA
を制限酵母Hind■で切断する。得られた断片のうち
約3.1kbの長さをもつDNA断片をpBR322の
Hind■切断点にクローニングした酵母の遺伝子ライ
ブラリー(大腸菌)301クローンを得る。次にクロー
ン化された約3.1kbのDNA断片の内EcoRIで
1ケ所、Sa1Iで2ケ所、Bg1llで1ケ所切断さ
れるDNA断片をもつブラスミドを1つ得る。このプラ
スミドをMaxman−Gilbert法(PNAS 
74:560−564(1977))により塩基配列を
決定し、前述のHitzemanらおよびDobson
らの結果との比較することにより目的とするPGK遺伝
子を有することが確認できる。
First, nuclear DNA of Zatucharomyces yeast XS16-5c strain
is cut with restriction yeast Hind■. Among the obtained fragments, a DNA fragment having a length of about 3.1 kb was cloned into the Hind■ cut point of pBR322 to obtain a yeast gene library (E. coli) 301 clone. Next, one plasmid having a DNA fragment that is cleaved at one site with EcoRI, two sites with SalI, and one site with Bg1ll among the cloned DNA fragments of approximately 3.1 kb is obtained. This plasmid was extracted using the Maxman-Gilbert method (PNAS
74:560-564 (1977)), and the base sequence was determined by Hitzeman et al. and Dobson et al.
By comparing the results with those of et al., it can be confirmed that the target PGK gene is present.

このようにしてPGK遺伝子が挿入されたプラスミドを
特定の制限酵素で切断し、上記遺伝子を含むDNA断片
を選択マーカーを持つ酵母菌ベクター、好ましくは操作
の便宜上大腸菌−酵母シャトルベクターに挿入する。
The plasmid into which the PGK gene has been inserted is cut with a specific restriction enzyme, and the DNA fragment containing the gene is inserted into a yeast vector having a selection marker, preferably an E. coli-yeast shuttle vector for convenience of operation.

次に、このベクター中のPGK遺伝子にある2つのSa
1I切断点のうちN末端側にあるSa1I切断部位に、
読みわく(reading frame)が合うように
、予じめ得ている目的はペプチド遺伝子を含むBamH
IとSa1Iで切断されたDNA断片を挿入する。この
ようにして得たPGK遺伝子および目的ペプチド遺伝子
を含むプラスミドにより酵母を形質転換する。
Next, two Sa in the PGK gene in this vector
At the Sa1I cleavage site on the N-terminal side of the 1I cleavage point,
In order to match the reading frame, the purpose obtained in advance is BamH containing the peptide gene.
Insert the DNA fragment cut with I and SalI. Yeast is transformed with the thus obtained plasmid containing the PGK gene and the target peptide gene.

目的はプチド遺伝子としては外来性異種ペプチド遺伝子
および酵母内のPGK遺伝子以外のペプチド遺伝子(同
種ペプチド遺伝子)の両方を含むものとする。
The purpose is to include both an exogenous heterologous peptide gene and a peptide gene (homologous peptide gene) other than the PGK gene in yeast as a peptide gene.

PGK遺伝子の塩基配列の1部(5′末端付近とその上
流の1部およびアミノ酸配列の270番目から400番
目の配列に担当する塩基配列)がDobsonらにより
示されているが全塩基配列が不明なため、その構造遺伝
子部に同種または異種遺伝子を挿入し目的とするペプチ
ドを得ようとする場合工夫を要す(何故なら読みはじめ
からのframe(reading frame)が合
わなければ目的とするペプチドはえられない)。そこで
PGK遺伝子にある2つのSalI切断点の内N末端に
近い方のSslI切断点(n末端より約240アミノ酸
残基に相当する部位)に、読みわく(reading 
frame)を1つずつずらした3種の目的とする遺伝
子(本発明の実施例ではα−ネオエンドルフィン遺伝子
)をクローニングする。このように読みわくを1つずつ
ずらせば、3種の遺伝子の内1つはPGK遺伝子の読み
はじめからの読みわくが合ったものが得られる筈である
。事実このようにして、発明者らは実施例に示すように
αNEペプチドをPGKペプチドとの雑種蛋白として酵
母内で生産するプラスミドベクター(pYαNE61−
C)を得ており、上記の手法が正しいことが実施されて
いる。このようにして得たプラスミドにより酵母を形質
転換し、これを培養することにより目的ペプチドを生産
することができる。
A part of the base sequence of the PGK gene (the part near the 5' end and part upstream thereof, and the base sequence corresponding to positions 270 to 400 of the amino acid sequence) has been shown by Dobson et al., but the entire base sequence is unknown. Therefore, when trying to obtain the desired peptide by inserting the same or different gene into the structural gene region, it is necessary to be creative (because if the reading frame does not match, the desired peptide will not be obtained). (cannot be obtained). Therefore, of the two SalI cleavage points in the PGK gene, the SslI cleavage point (a site corresponding to about 240 amino acid residues from the n-terminus), which is closer to the N-terminus, has a reading mark.
Three target genes (α-neoendorphin gene in the example of the present invention) are cloned by shifting the frame by one. If we shift the reading frame one by one in this way, we should be able to obtain one of the three genes whose reading frame matches the reading frame from the beginning of the PGK gene. In fact, in this way, the inventors constructed a plasmid vector (pYαNE61-
C) has been obtained, and the above method has been implemented correctly. The target peptide can be produced by transforming yeast with the plasmid thus obtained and culturing it.

形質転換された酵母において、PGK遺伝子プロモータ
ーが目的ペプチド遺伝子の発現に非常に優れていること
が認められた。
In the transformed yeast, the PGK gene promoter was found to be extremely effective in expressing the target peptide gene.

本発明を以下の実施例により更に詳細に説明する。The present invention will be explained in more detail by the following examples.

具体的実施例では、目的ペプチド遺伝子としてアルフア
ネオエンドルフィン(αNE)遺伝子を用い、PGKに
プロモーターPGK構造遺伝子−αNE遺伝子のような
配列から、PGK−αNE雑種蛋白質として目的物質(
αNE)を生産する方法を記しているが、PGKプロモ
ーターの位置から適当な塩基配列をおいて目的遺伝子、
例えばインターフェロンのようなペプチドをコードする
遺伝子を付加し目的ペプチドを直接生産させることもで
きる。このようにPCKプロモーターは広く外来遺伝子
の発現並びにアルファネオエンドルフィン以外の異種お
よび同種ペプチドの生産にも活用されうるものである。
In a specific example, the alpha neoendorphin (αNE) gene is used as the target peptide gene, and the target substance (
The method for producing αNE) is described, but the target gene is
For example, the target peptide can be directly produced by adding a gene encoding a peptide such as interferon. As described above, the PCK promoter can be widely used for the expression of foreign genes and for the production of heterologous and homologous peptides other than alpha neoendorphin.

実施例 1.PGK遺伝子のクローニング(第1図参照)PGK
遺伝子はすでにHitzemanらによりクローニング
されており(R.A.Hitzeman,L.Clar
keand J.Carbon:J.Biol.Che
m.255 12073,1980)、Hind■で切
断される約3.1kb断片に存在し、ECoR■で1ケ
所、SalIで2ケ所、Bgl■で1ケ所切断される。
Example 1. Cloning of PGK gene (see Figure 1) PGK
The gene has already been cloned by Hitzeman et al. (R.A.Hitzeman, L.Clar
Keand J. Carbon: J. Biol. Che
m. 255 12073, 1980), is present in an approximately 3.1 kb fragment that is cleaved with Hind■, one site with ECoR■, two sites with SalI, and one site with Bgl■.

又Dobsonらによってもクローニングされ(Nuc
leic Acid Research10、2625
,1982)、塩基配列の一部及びアミノ酸配列の一部
が示されている。そこでHitzemanらの結果を元
にHind■切断フラグメントジーンバンクよりの選択
を試みた。
It was also cloned by Dobson et al. (Nuc
leic Acid Research 10, 2625
, 1982), part of the base sequence and part of the amino acid sequence are shown. Therefore, an attempt was made to select from the Hind ■ cleavage fragment gene bank based on the results of Hitzeman et al.

サツカロマイセス酵母XS16−5C〔cir°〕(S
accharomyces cerevisiaoXS
16−5C:MATa leu 2 his3 trp
1(cir°)、サントリー生物医学研究所保存菌株)
を2lYPD培地(1%酵母エキス、2%ポリペプトン
、2%グルコース)で30℃24時間の培養により得ら
れた菌体を、Cryerらの方法(Metbod in
 CellBiology,Vol.12.39−44
,1975)に従って総DNAを分離した。このDNA
50μgを100単位のHind■を用いて37℃、2
時間加温することにより切断した。反応液を0.8%ア
ガロースゲル電気泳動により分離し、2.9kbから3
.2kbに相当するDNA断片を得た。一方、0.5μ
gのpBR322をHind■1単位を用いてTA緩衝
液中で37℃1時間反応させることにより切断した。
Satucharomyces yeast XS16-5C [cir°] (S
accharomyces cerevisiao
16-5C: MATa leu 2 his3 trp
1 (cir°), Suntory Biomedical Research Institute preserved strain)
The cells obtained by culturing 2lYPD medium (1% yeast extract, 2% polypeptone, 2% glucose) at 30°C for 24 hours were cultured using the method of Cryer et al.
Cell Biology, Vol. 12.39-44
, 1975). this DNA
50 μg was incubated at 37°C for 2 hours using 100 units of Hind■.
It was cut by heating for an hour. The reaction solution was separated by 0.8% agarose gel electrophoresis, and 2.9 kb to 3
.. A DNA fragment corresponding to 2 kb was obtained. On the other hand, 0.5μ
pBR322 was cleaved using 1 unit of Hind 1 in a TA buffer at 37° C. for 1 hour.

次にこの両DNAを20μlのT4DNAリガーゼ緩衝
液に溶解し、2単位のT4DNAリガーゼを加え、15
℃18時間反応させた。この反応液を供与DNAとして
常法に従いE.coli JA221に形質転換しアン
ピシリン耐性クローンを得た。
Next, both DNAs were dissolved in 20 μl of T4 DNA ligase buffer, 2 units of T4 DNA ligase was added, and 15 μl of T4 DNA ligase was added.
The reaction was carried out at ℃ for 18 hours. Using this reaction solution as donor DNA, E. The clone was transformed into E.coli JA221 to obtain an ampicillin-resistant clone.

そのうちテトラサイクリンに対して感受性のあるクロー
ンを301選び、そのプラスミッドDNAの解析をアル
カリ変性法(Nucleic Acid Resear
ch7.6.1979)により検討した。Hitzem
anらの結果によるとPGK遺伝子を含む約3.1kb
の断片にはEcoRI(1ケ所)SalI(2ケ所)B
glll(1ヶ所)の切断点が存在する。
Among them, 301 clones sensitive to tetracycline were selected, and their plasmid DNA was analyzed using the alkaline denaturation method (Nucleic Acid Research).
ch7.6.1979). Hitzem
According to the results of an et al., approximately 3.1 kb containing the PGK gene
The fragment contains EcoRI (1 site) SalI (2 sites) B
There is one (1) cutting point.

301クローンについて検耐した結果、上記の制限酵素
切断部位を有するプラスミドを持つクローンが1つ得ら
れた。このクローンのプラスミドをpYpgk301と
命名した。
As a result of testing 301 clones, one clone was obtained that had a plasmid having the above-mentioned restriction enzyme cleavage site. The plasmid of this clone was named pYpgk301.

このpYpgk301上にあるPGK遺伝子の上流に相
当する部分をMaxam−Gilbert法に従って塩
基配列を決定し、Dobsonらにより報告されている
PGK遺伝子の上流部分の塩基配列と比較検討し、pY
pgk301はPGK遺伝子を持つことを確認した。こ
のpYpgk301によって形質転換された大腸菌K−
12株はE,coli SBM 152と命名し工業技
術院微生物工業研究所(微工研)に寄託し寄託番号FE
RM P−6763を得ている。
The base sequence of the part corresponding to the upstream part of the PGK gene on pYpgk301 was determined according to the Maxam-Gilbert method, and the base sequence was compared with the base sequence of the upstream part of the PGK gene reported by Dobson et al.
It was confirmed that pgk301 has the PGK gene. E. coli K- transformed with this pYpgk301
The 12 strains were named E. coli SBM 152 and deposited with the Institute of Microbiology, Agency of Industrial Science and Technology (Feiken), with deposit number FE.
RM P-6763 has been obtained.

2. pYE237プラスミドベクターの作製pYE2
37 ベクターは特許昭56−167615号に開示さ
れたpYE227ベクターからSal■切断点を消失さ
せたプラスミドであり、次のように作製された。
2. Construction of pYE237 plasmid vector pYE2
37 The vector is a plasmid obtained by deleting the Sal■ break point from the pYE227 vector disclosed in Japanese Patent No. 56-167615, and was produced as follows.

5μgのpYE227を10単位のSalIを用いTA
緩衝液中での37℃1.5時間反応させ切断した。
TA of 5 μg pYE227 using 10 units of SalI
The mixture was reacted in a buffer solution at 37°C for 1.5 hours and then cleaved.

続いて65℃で加熱することによりSalIを失活させ
た後、4種のdNTPを0.3mM、2−メルカプトエ
クノールを80mMとなる様に加え、1単位のT4DN
Aポリメラーゼを用いて37℃30分間反応させ、Sa
lI切断で生じた粘着末端を消失させた。反応終了後フ
エノール抽出を1回行つた後、2容のエタノールでDN
Aを沈殿させた。
Subsequently, SalI was inactivated by heating at 65°C, and then four types of dNTPs were added to 0.3mM and 2-mercaptoequenol was added to 80mM, and 1 unit of T4DN was added.
A polymerase was used to react at 37°C for 30 minutes, and Sa
The sticky ends generated by II cleavage were eliminated. After the reaction was completed, phenol extraction was performed once, and DN was extracted with 2 volumes of ethanol.
A was precipitated.

dna沈殿物を20μlのT4DNAリガ−ゼ緩衝液に
溶解後、5単位のT4DNAリガーゼを用い15℃18
時間反応させることにより結合させた。
After dissolving the DNA precipitate in 20 μl of T4 DNA ligase buffer, incubate at 15°C with 5 units of T4 DNA ligase.
They were bound by reacting for a period of time.

反応液を供与DNAとして常法に従いE,coliJA
221に形質転換し、アンピシリン耐性クローンを得た
。これらのクローンよりDNAを分離し解析し、pYE
227よりSalIの切断部位の消失したpYE237
を得た。
Using the reaction solution as donor DNA, E. coli JA
221 to obtain an ampicillin-resistant clone. DNA was isolated and analyzed from these clones, and pYE
pYE237 with the SalI cleavage site deleted from 227
I got it.

3。pYE1301酵母−大腸菌シャトルベクターの作
製(第2図参照) 5μgのpYE237を20単位のHind■を用い切
断したものとpYpgk301 5μgを20単位のH
ind■を用いて切断後、寒天電気泳動法により3.1
kbのDNAフラグメント(PGK遺伝子)を分離・精
製そた物を20μlのDNAリガーゼ緩衝液に溶解し、
1単位のT4DNAリガーゼを加え15℃、16時間反
応させた。この反応液10μlを0.3mlのCaCl
2処理したE.coliTA221に加え形質転換を行
った。形質転換体より常法に従いプラスミドDNAを分
離解析しpYE1302を得た。
3. Construction of pYE1301 yeast-E. coli shuttle vector (see Figure 2) 5 μg of pYE237 was cut with 20 units of Hind■, and 5 μg of pYpgk301 was digested with 20 units of H
After cutting with ind■, 3.1 was determined by agar electrophoresis.
Isolate and purify the Kb DNA fragment (PGK gene) and dissolve it in 20 μl of DNA ligase buffer.
1 unit of T4 DNA ligase was added and reacted at 15°C for 16 hours. Add 10 μl of this reaction solution to 0.3 ml of CaCl.
2 treated E. In addition to coli TA221, transformation was performed. Plasmid DNA was separated and analyzed from the transformant according to a conventional method to obtain pYE1302.

このプラスミドベクターpYE1301によってサツカ
ロマイセス酵母XS16−5C株を形質転換し、形質転
換体をSaccharomyces cerevisi
aeSBM331と命名し、微工研に寄託した。
This plasmid vector pYE1301 was used to transform Saccharomyces yeast strain XS16-5C, and the transformant was transformed into Saccharomyces cerevisi.
It was named aeSBM331 and deposited at the National Institute of Fine Technology.

(寄託番号:FERM P−6767)4 αNE遺伝
子を挿入したプラスミドベクターpYENE61cの作
製(第2図参照)5μgの、pYE1301を20単位
のBamHI、20単位のSalIで3つの断片に切断
し寒天電気泳動にて分離後、一番大きい断片を寒天より
溶出させ精製した。一方αNE遺伝子を含む断片はpα
NE−SalI−a,−b,−cそれぞれ50μgを1
00単位のBamHI、100単位のSalIを用いて
切断後、5%ポリアクリルアミドゲルによる電気泳動法
により分離し、αNE遺伝子を含むDNA断片(それぞ
れ48塩基対、49塩基対、50塩基対に相当するDN
A断片)をそれぞれ分離し、精製した3種のαNE遺伝
子を含むDNA断片およびそれぞれ先のpYE1301
のHind■断片を20μlのDNAリガーゼ緩衝液に
溶解し2単位のT4DNAリガーゼを加え15℃16時
間反応させた。この反応液10μlを0.3mlのCa
Cl2処理したE.Coli JA221に加え形質転
換を行った。得られたアンピシリン耐性形質転換体より
プラスミドDNAを分離し解析し、pYαNE61−a
、−b、−cを得た。
(Deposit number: FERM P-6767) 4 Preparation of plasmid vector pYENE61c into which αNE gene was inserted (see Figure 2) Cut 5 μg of pYE1301 into 3 fragments with 20 units of BamHI and 20 units of SalI and perform agar electrophoresis. After separation, the largest fragment was eluted from agar and purified. On the other hand, the fragment containing the αNE gene is pα
50 μg each of NE-SalI-a, -b, -c at 1
After cutting with 00 units of BamHI and 100 units of SalI, the DNA fragments containing the αNE gene (corresponding to 48 base pairs, 49 base pairs, and 50 base pairs, respectively) were separated by electrophoresis using a 5% polyacrylamide gel. D.N.
A fragment) was isolated and purified, and the DNA fragments containing the three types of αNE genes and the previous pYE1301
The Hind■ fragment was dissolved in 20 μl of DNA ligase buffer, 2 units of T4 DNA ligase was added, and the mixture was reacted at 15° C. for 16 hours. Add 10 μl of this reaction solution to 0.3 ml of Ca.
Cl2-treated E. In addition to coli JA221, transformation was performed. Plasmid DNA was isolated and analyzed from the obtained ampicillin-resistant transformant, and pYαNE61-a
, -b, -c were obtained.

以上得られたプラスミドpYE1301,pYαNE6
1−a,−b,−cをBeggs.J.D.Natur
e,Vol.275、104(1978)に記載の方法
に従って酵母(Saccharoyces cerev
isiae XS16−5C)に形質転換した。得られ
た形質転換体をYPD(1%イーストエキス、2%ポリ
ペプトン、2%グルコース)培地で30℃、24時間振
とう培養後、遠心分離により菌体を回収した。1mlの
培養液から得られた菌体に0.5mlの冷アセトンを加
え、−20℃で1〜24時間放置した後、アセトンを真
空下で除いた。この様にして得られた乾燥菌体を5mg
/mlの臭化シアンを含む70%ギ酸溶液に懸濁し、2
4時間暗所で反応させた。この試料を凍結乾燥後0.1
mlの0.1N酢酸でαNE溶出させ0.1mlの1.
3Mのトリス塩酸緩衝液で中和後ラジオイムノアツセイ
(RIA)の試料とした。RIAはN.Minamin
o et al.BBRC Vol 102 226(
1981)に記載の方法に準じて行った。
Plasmids pYE1301 and pYαNE6 obtained above
1-a, -b, -c from Beggs. J. D. Nature
e, Vol. 275, 104 (1978).
isiae XS16-5C). The obtained transformant was cultured with shaking in YPD (1% yeast extract, 2% polypeptone, 2% glucose) medium at 30° C. for 24 hours, and then the bacterial cells were collected by centrifugation. 0.5 ml of cold acetone was added to the bacterial cells obtained from 1 ml of the culture solution, and after standing at -20°C for 1 to 24 hours, the acetone was removed under vacuum. 5 mg of dried bacterial cells obtained in this way
/ml cyanogen bromide in a 70% formic acid solution,
The reaction was allowed to proceed in the dark for 4 hours. After freeze-drying this sample, 0.1
Elute αNE with 0.1 ml of 0.1 N acetic acid and add 0.1 ml of 1.
After neutralization with 3M Tris-HCl buffer, it was used as a sample for radioimmunoassay (RIA). RIA is N. Minamin
o et al. BBRC Vol 102 226 (
It was carried out according to the method described in (1981).

その結果を表1に示した。pYαNE6.1−cに高い
αNE生産性が見られた。pYαNE61−a,−bは
対照としたαNE遺伝子を含まないpYE1301と同
じ程度のラジオイムノ反応性であった。従って読みわく
は、pαNE−Sal■−cのものがPGKのこのSa
lI切断部位と合っていることが判明した。pYαNE
61−cのαNE生産性は単細胞あたり約200万分子
生産した。これは別途行ったGAP−DH遺伝子を用い
た場合とほぼ同程の生産性であった。
The results are shown in Table 1. High αNE productivity was observed in pYαNE6.1-c. pYαNE61-a, -b had the same level of radioimmunoreactivity as pYE1301, which did not contain the αNE gene, as a control. Therefore, the reading is that pαNE-Sal■-c is this Sa of PGK.
It was found that this matched the lI cleavage site. pYαNE
The αNE productivity of 61-c was approximately 2 million molecules per single cell. This was approximately the same productivity as the case using the GAP-DH gene, which was conducted separately.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図はPGK遺伝子を含みαNE遺伝子を組
込んだプラスミドの構成法を示す図である。 第1図はPGK遺伝子のクローニングを示す。 第2図はPGK遺伝子を含みαNE遺伝子を組込んだプ
ラスミドの構成法を示す。 第3図はPGK遺伝子の3’末端非翻訳部位が付加され
たプラスミドの構成法を示す。 特許出願人 サントリー株式会社 代理人 弁理士 湯 浅 恭 三 (外4名) 手続補正書 昭和58年10月19日 特許庁長官 若杉和夫殿 1.事件の表示 昭和57年特許願第184292号 2発明の名称 解糖系酵素支配遺伝子プロモーター利用酵母発現ベクタ
ープラスミドおよびその利用方法3補正をする者 事件との関係 特許出願人 住所 名称 (190)サントリー株式会社 4代理人 住所 東京都千代田区大手町二丁目2番1番   新大
手町ビル206号室(電話270−6641〜6)氏名
 (2770)弁理士 湯浅恭三 5補正の対象 明細書の〔発明の詳細な説明〕と〔図面の簡単な説明〕
の欄図面の第2図と第3図 6補止の内容 (1)明細書の記載を下記の通り訂正する。 頁    行    補正前      補正後6  
4〜5   前述の・・・    (削除)     
    および 7  5〜6   およびアミノ酸   (削除)  
       配列・・・・に          相当する塩基配          列   10〜11  読みはじめから   よみはじめか
らの         のframe    読みわく
13   5   Hind■     Hind■ 
   13   TA■       JA22114
   2   pYαNE61c  pYαNE61c
    18   E.Coli    E.coli
17 8〜9   第3図は・・・   (削除)  
       を示す。 (2)図面中第3図を削除し、第2図を添付図面の通り
訂正する。 以上
Figures 1 to 3 are diagrams showing a method of constructing a plasmid containing the PGK gene and incorporating the αNE gene. Figure 1 shows the cloning of the PGK gene. FIG. 2 shows a method for constructing a plasmid containing the PGK gene and incorporating the αNE gene. Figure 3 shows a method for constructing a plasmid to which the 3'-end untranslated site of the PGK gene is added. Patent applicant Suntory Ltd. agent Patent attorney Kyozo Yuasa (and 4 others) Procedural amendment October 19, 1980 Commissioner of the Japan Patent Office Kazuo Wakasugi 1. Display of the case 1984 Patent Application No. 184292 2 Name of the invention Yeast expression vector plasmid using a glycolytic enzyme-controlled gene promoter and its method of use 3 Person making the amendment Relationship to the case Patent applicant address name (190) Suntory Stock Company 4 Agent Address Room 206, Shin-Otemachi Building, 2-2-1 Otemachi, Chiyoda-ku, Tokyo (Telephone: 270-6641-6) Name (2770) Patent Attorney Kyozo Yuasa [Details of the invention in the specification subject to the 5th amendment [brief explanation] and [brief explanation of the drawing]
Contents of the supplement to Figures 2 and 3 of the drawings (1) The statement in the specification is corrected as follows. Page Line Before correction After correction 6
4-5 Above mentioned... (Deleted)
and 7 5-6 and amino acids (deletion)
Base sequence corresponding to the sequence... 10-11 From the beginning of reading Frame of from the beginning of reading Reading frame 13 5 Hind■ Hind■
13 TA■ JA22114
2 pYαNE61c pYαNE61c
18 E. Coli E. coli
17 8-9 Figure 3 is... (Deleted)
shows. (2) Figure 3 in the drawings will be deleted and Figure 2 will be corrected as shown in the attached drawings. that's all

Claims (1)

【特許請求の範囲】 1)3−ホスホグリセロキナーゼを支配している遺伝子
のプロモーターを含み、目的ペプチド遺伝子を酵母中で
発現させるプラスミド。 2)3−ホスホグリセロキナーゼを支配している遺伝子
のプロモーターと目的ペプチド遺伝子とを含むプラスミ
ドを作製し、このプラスミドにより形質転換された酵似
を培養することにより目的ペプチドを生産する方法。
[Scope of Claims] 1) A plasmid containing a promoter of a gene controlling 3-phosphoglycerokinase and expressing a target peptide gene in yeast. 2) A method of producing a target peptide by preparing a plasmid containing the promoter of the gene controlling 3-phosphoglycerokinase and the target peptide gene, and culturing yeast cells transformed with this plasmid.
JP57184292A 1982-10-20 1982-10-20 Yeast developable vector plasmid utilizing promotor for gene controlling glycolytic enzyme and method for utilizing the same Pending JPS5974987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57184292A JPS5974987A (en) 1982-10-20 1982-10-20 Yeast developable vector plasmid utilizing promotor for gene controlling glycolytic enzyme and method for utilizing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57184292A JPS5974987A (en) 1982-10-20 1982-10-20 Yeast developable vector plasmid utilizing promotor for gene controlling glycolytic enzyme and method for utilizing the same

Publications (1)

Publication Number Publication Date
JPS5974987A true JPS5974987A (en) 1984-04-27

Family

ID=16150771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57184292A Pending JPS5974987A (en) 1982-10-20 1982-10-20 Yeast developable vector plasmid utilizing promotor for gene controlling glycolytic enzyme and method for utilizing the same

Country Status (1)

Country Link
JP (1) JPS5974987A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60248181A (en) * 1984-05-23 1985-12-07 Shiseido Co Ltd Yeast manifestation vector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60248181A (en) * 1984-05-23 1985-12-07 Shiseido Co Ltd Yeast manifestation vector
JPH0249715B2 (en) * 1984-05-23 1990-10-31 Shiseido Co Ltd

Similar Documents

Publication Publication Date Title
JP2519023B2 (en) Insulin precursor
JP2641457B2 (en) Yeast promoter
EP0080848B1 (en) Stabilizing & selecting cells
EP0100561A1 (en) Yeast hybrid vectors and their use for the production of polypeptides
JPH0757190B2 (en) Expression of polypeptides in yeast
JPH0513630B2 (en)
JPS61119192A (en) Use of bghgdna polyadeniration signal in non-bg11 polypeptide in higher eukaroyotic cell
JPH0657154B2 (en) Cloning vehicle for expressing desired polypeptide
JPH0759193B2 (en) Cloning vector for foreign protein expression
JPH0767665A (en) Gene system for producing mature insulin
EP0077689A2 (en) Method of gene manipulation using an eukaryotic cell as the host
EP0109560A2 (en) Yeast plasmid vector capable of induced expressing and method of using said plasmid
US4960704A (en) Modified antibiotic resistance gene
JPH0716432B2 (en) Method for producing peptide using yeast high expression vector plasmid
JPS5974987A (en) Yeast developable vector plasmid utilizing promotor for gene controlling glycolytic enzyme and method for utilizing the same
EP0135291B1 (en) A modified antibiotic resistance gene
US5756313A (en) Albumin gene-containing plasmid, transformant carrying same, production of such transformant and production of albumin
EP0339567A1 (en) Expression of Hepatitis B PreS 2 Protein in Methylotrophic Yeasts
JPH07114702B2 (en) Method for producing human insulin-like growth factor (I)
EP1905836A1 (en) Recombinant Pichia pastoris strains and process for the production of recombinant human interferon alpha
JP2625379B2 (en) DNA fragment for high expression vector plasmid of yeast
WO1990002810A1 (en) Production of interleukin-2 polypeptides in pichia pastoris yeast cells
JP2766651B2 (en) How to increase gene expression
JP2518862B2 (en) New plasmid vector
JP2625379C (en)