JPS5974525A - Automatic cell diagnosing device - Google Patents

Automatic cell diagnosing device

Info

Publication number
JPS5974525A
JPS5974525A JP18371882A JP18371882A JPS5974525A JP S5974525 A JPS5974525 A JP S5974525A JP 18371882 A JP18371882 A JP 18371882A JP 18371882 A JP18371882 A JP 18371882A JP S5974525 A JPS5974525 A JP S5974525A
Authority
JP
Japan
Prior art keywords
lens
low
magnification
view
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18371882A
Other languages
Japanese (ja)
Inventor
Yuzo Okamoto
岡本 勇三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18371882A priority Critical patent/JPS5974525A/en
Publication of JPS5974525A publication Critical patent/JPS5974525A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/26Stages; Adjusting means therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microscoopes, Condenser (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To attain an automatic cell diagnosing device having high examination efficiency, by constituting the device so that a low-power image magnifying means is switched to a high-power image magnifying means to scan a retrieved visual field position after a sample-applied face is scanned by the low-power image magnifying means to retrieve the magnified visual field position. CONSTITUTION:A lens unit 10 is operated by a lens switching circuit 9 to place a low-power lens 11 on the optical axis connecting a condenser lens 3 and a photoelectric converter 15. A stage 6 is moved by a stage driving part 7 to scan successively a face, where a cell sample is applied, of a preparation 5. A video signal is inputted from a TV camera 15 to visual field selecting circuits 18-21 for every magnified visual field, and data of the cell density is inputted to an operation control circuit 22 and is stored for each of 4 divided visual fields. The low-power lens 11 is switched to a high-power lens 12 to scan skippingly the face where the cell sample is applied, and a prescribed diagnosis is performed in the operation processing part 22. Consequently, the examination efficiency is made high.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、スライドガラス上に塗布した試料中から細
胞全検出し、診断する自動細胞診断装置の技術分野に属
する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention belongs to the technical field of automatic cell diagnostic devices that detect and diagnose all cells from a sample coated on a slide glass.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、自動細胞診新装fft、は、細胞塊を個々の細胞
に分散する処理を施して得た試料を塗布したスライドガ
ラスを検査物として用いる。この理由は、前記分散処理
を施すことなく試料をプレパラートガラスに塗布すると
、ブレバラ−トガラス上での細胞密度のばらつきが太き
くなり、検査の自動化に適しないことにある。そうする
と、前記分散処理は長時間を要するため、前記自動細胞
診断装置は、システムとして多数の検査物を迅速に検査
、処理することができない。
Conventionally, automatic cytodiagnosis fft uses a glass slide coated with a sample obtained by dispersing cell clusters into individual cells as a test object. The reason for this is that if a sample is applied to a preparation glass without performing the above-mentioned dispersion treatment, the variation in cell density on the Brevart glass will increase, making it unsuitable for automated testing. In this case, since the distributed processing requires a long time, the automatic cell diagnostic apparatus cannot quickly test and process a large number of test items as a system.

そこで、迅速な検査、処理を実現するために、前記分散
処理を施すことなく、試料を直接に塗布したスライドガ
ラ、スを検査物として、検査可能な自動細胞診断装置の
開発が要望さnる。しかしながら、このような自動細胞
診断装置の開発にあたり、スライドガラス上を視野拡大
装置で走査する際、細胞塊のあるところと細胞が均一に
分散しているところを区別することなく検査するのは、
検査効率がきわめて悪いという問題点があり、この問題
点を是非とも解決する必要がある。
Therefore, in order to realize rapid testing and processing, there is a need for the development of an automatic cell diagnostic device that can test a glass slide or glass directly coated with a sample as a testing object without performing the above-mentioned dispersion processing. . However, when developing such an automatic cell diagnostic device, it is difficult to scan a slide glass with a field magnifying device without distinguishing between areas where cells are clustered and areas where cells are uniformly dispersed.
There is a problem that the inspection efficiency is extremely low, and this problem must be solved by all means.

〔発明の目的〕[Purpose of the invention]

この発明は、前記事情に鑑みてなさlrL′fcもので
あり、試料を直接にスライドガラスに塗布してなるプレ
パラート’6検査物としながらも、検査効率のきわめて
良好な自動細胞診断装置を提供することを目的とするも
のである。
The present invention has been made in view of the above circumstances, and provides an automatic cell diagnostic device that has extremely good testing efficiency even though it uses a preparation '6 test object in which a sample is applied directly to a slide glass. The purpose is to

〔発明の概要〕[Summary of the invention]

前記目的を達成するためのこの発明の概要は、互いに拡
大倍率が相違すると共に、プレパラート上の試料塗布面
を走査しながら拡大視する複数の1象拡大手段と、前記
複数の像拡大手段のうちの−の像拡大手段全選択する拡
大倍率変更手段とを備え、低倍率の像拡大手段による拡
大視野で試料塗布面を走査することにより、所定範囲内
の光量を有する拡大視野位置を検索した後、拡大倍率変
更手段で選択さ扛た高倍率の像拡大手段による拡大視野
で、検索した前記拡大視野位置を走査することを特徴と
するものである。
The outline of the present invention for achieving the above object is to include a plurality of one-image enlarging means that have different magnifications and enlarge the image while scanning the sample application surface on the slide; After searching for an enlarged field of view position having a light amount within a predetermined range by scanning the sample coated surface with an enlarged field of view using a low-magnification image enlargement means, The present invention is characterized in that the searched position of the magnified field of view is scanned using the magnified field of view of the high-magnification image magnifying means selected by the magnification changing means.

〔発明の実施例〕[Embodiments of the invention]

第1図はこの発明の一実施例を示す概略ブロック図であ
る。
FIG. 1 is a schematic block diagram showing one embodiment of the present invention.

同図において、1で示すのは光源であり、2で示すのは
視野絞シであフ、6で示すのはコンデンサレンズであり
、4で示すのは照射野絞りであり、光源1を出射した光
は視野絞ジ2でその光量が調節さnた後コンデンサレン
ズ6で集束さn1照射野絞!114で設定さ几るビーム
スポットを、ステージ6上に載置さnるプレパラート5
上の細胞試料塗布面に照射するように配置さnている。
In the figure, 1 is the light source, 2 is the field diaphragm, 6 is the condenser lens, and 4 is the irradiation field diaphragm. The light intensity is adjusted by the field diaphragm 2, and then it is focused by the condenser lens 6. The beam spot set in step 114 is placed on the stage 6.
It is arranged so as to irradiate the upper cell sample application surface.

ステージ6は、演算制御部22により制御さnるステー
ジ駆動部7により、水平面内のxy方向に移動可能とな
っている。したがって、ステージ6を規則的に水平移動
すると、前記照射野絞り4により形成さ几るビームスポ
ットでプレパラート5上の細胞試料塗布面を走査しなが
ら照射することとなる。
The stage 6 is movable in the x and y directions in a horizontal plane by a stage drive section 7 that is controlled by the arithmetic control section 22 . Therefore, when the stage 6 is moved horizontally regularly, the cell sample application surface on the preparation 5 is irradiated while scanning with the beam spot formed by the irradiation field aperture 4.

プレパラート5上の細胞試料塗布面全通過したビームス
ポットは、レンズユニット10′lr:介して、テレビ
カメラ等の光電変換装置15に結像する。
The beam spot that has completely passed through the cell sample application surface on the preparation 5 forms an image on a photoelectric conversion device 15 such as a television camera via a lens unit 10'lr.

レンズユニット10は、拡大倍率の小さイ低倍レンズ1
1およびこの低倍レンズ11を光軸に沿って駆動するレ
ンズ駆動部13と前記低倍レンズ11よりも大きな拡大
倍率を有する高倍レンズ12およびこの高倍レンズ12
を光軸に沿って駆動するレンズ駆動部14とを有し、レ
ンズ切換回路9の制御により前記低倍レンズ11および
高倍レンズ12t−%前記コンデンサレンズ6と前記光
電変換装置15とを結ぶ光軸上に、切り換え配置するこ
とができるように構成さnている。なお、前記レンズ駆
動部13.14は、たとえば差分和の原理に基づく公知
の自動焦点回路8にょジ制御さnる。
The lens unit 10 includes a low magnification lens 1 with a small magnification.
1, a lens driving section 13 that drives the low-magnification lens 11 along the optical axis, a high-magnification lens 12 having a larger magnification than the low-magnification lens 11, and the high-magnification lens 12.
and a lens driving section 14 that drives the lens along the optical axis, and the optical axis connecting the low magnification lens 11 and the high magnification lens 12t-% to the condenser lens 6 and the photoelectric conversion device 15 under the control of the lens switching circuit 9. It is configured so that it can be switched and placed on the top. The lens drive units 13, 14 are controlled by a known autofocus circuit 8 based on the principle of sum of differences, for example.

以上に示すように、光源1、視野絞り2、コンデンサレ
ンズ6、照射野絞り4、焦点合わせのためにレンズ駆動
部16により駆動さnる低倍レンズ12および光電変換
装置15により、低倍率でイ111胞試料塗布面を拡大
視可能な像拡大手段が構成さnlまた、光源1、視野絞
v2、コンデンサレンズ6、照射野絞v4、焦点合わせ
のためにレンズ駆動部14により駆動さnる高倍レンズ
12および光電変換装置15にょt)、高倍率で細胞試
料塗布面を拡大視可能な像拡大手段が構成さnる。
As shown above, the light source 1, the field diaphragm 2, the condenser lens 6, the irradiation field diaphragm 4, the low magnification lens 12 driven by the lens drive unit 16 for focusing, and the photoelectric conversion device 15 are used to achieve low magnification. (a) An image magnifying means capable of magnifying the surface to which the 111-cell sample is applied is constructed; it is also driven by a light source 1, a field diaphragm v2, a condenser lens 6, an irradiation field diaphragm v4, and a lens drive unit 14 for focusing. The high magnification lens 12 and the photoelectric conversion device 15) constitute an image magnifying means that can magnify the cell sample coated surface at high magnification.

なお、低倍率と高倍率との2種の前記像拡大手段におい
ては、光源1、視野絞v2、コンデンサレ7ズ61照射
野絞り4および光電変換装#15が共通の固定部材とな
っているが、低倍と高倍との倍率が大きく異なるときに
は、低倍用と高倍用との視野絞りコンデンサレンズおよ
び照射野絞り孕そnぞn用意し、拡大率に応じて切少換
えあるいハ交換可能にしても良い。また、レンズユニッ
ト10およびレンズ切換回路9KJ:り拡大率変更手段
が構成さ几ることになる。
In addition, in the two types of image magnification means of low magnification and high magnification, the light source 1, field diaphragm v2, condenser lens 7 lens 61 irradiation field diaphragm 4, and photoelectric conversion device #15 are common fixed members. However, when the magnifications for low and high magnifications are significantly different, prepare field diaphragm condenser lenses and irradiation field diaphragms for low magnification and high magnification, and change them or change them depending on the magnification. It may be possible. Further, the lens unit 10 and the lens switching circuit 9KJ are configured to include magnification rate changing means.

光電変換装置15の出力は、図示しないルω変換器によ
りデジタル化さnて、画像処理部23および視野選別回
路18,19,20.21に入力さnる。
The output of the photoelectric conversion device 15 is digitized by a ω converter (not shown) and input to the image processing section 23 and visual field selection circuits 18, 19, 20, and 21.

画像処理部23は、次とえは特願昭51年74625号
明細書に記載するように、第1、第2および第3カウン
タを有し、第1カウンタで拡大視野内の細胞画像につき
2方向の10ジェクショステージを、第2カウンタでノ
゛方向のグロジエクションデータを、そして、第6カウ
ンタで細胞の9度ヒストグラムff:出力するように構
成さ2’Lる。
The image processing unit 23 has first, second and third counters, as described in Japanese Patent Application No. 74625 of 1972, and the first counter calculates two per cell image within the enlarged field of view. The cell is configured to output 10 injection stages in the direction, the second counter outputs the glogejection data in the direction, and the sixth counter outputs the 9 degree histogram ff: of the cell.

視野選別回路1B、i9,20.21は、拡大視野内の
細胞密度を検出するものであり、たとえば実願昭50年
103119号明細書に記載するように、光電変換装置
15の出力信号を拡大視野を4分割した1視野毎に積分
する積分器を有して構成さnlあるいは公知の差分和に
基いて構成さnる。
The visual field selection circuits 1B, i9, 20.21 detect the cell density within the expanded visual field, and magnify the output signal of the photoelectric conversion device 15, for example, as described in Utility Model Application No. 103119 of 1973. It is constructed with an integrator that integrates each field of view divided into four, or is constructed based on a known sum of differences.

16で示すのFJ、yt、電変換装置制t1部でおり、
光電変換装置15を制御すると同時にセレクタ17を介
して視野選別回路18〜21の動作の囲始、停止、リセ
ット等の制御を行なう、つまり、セレクタ17は、たと
えばα=1で視野選別回路18の入力をONにし、b=
1で視野選別回路19の人力’frONVc−3−るよ
うな回路構成を有する。
16 is FJ, YT, electric converter system T1 part,
At the same time as controlling the photoelectric conversion device 15, the selector 17 controls the start, stop, reset, etc. of the operation of the visual field selection circuits 18-21. Turn on the input and set b=
1, the visual field sorting circuit 19 has a circuit configuration such that the visual field sorting circuit 19 is manually operated.

22で示すのは演算制御部であり、ステージ駆動部7、
自動焦点回路8およびレンズ切換回路9を制御すると共
に、拡大視野毎に視野選別口w518〜21の出力を調
べて細胞密度が上下限内にあnばその座標を記憶し、画
1象処理部26の出力に基づきたとえば細胞面積、接面
積#全求めて細胞の検査を行なうように構成さnている
Reference numeral 22 indicates an arithmetic control section, which includes a stage drive section 7,
In addition to controlling the automatic focus circuit 8 and the lens switching circuit 9, the output of the field selection ports w518 to 21 is checked for each expanded field of view, and if the cell density is within the upper and lower limits, the coordinates are stored, and the image processing unit Based on the output of 26, for example, the cell area and the total contact area are determined and the cell is inspected.

次に、以上構成の作用について述べる。Next, the operation of the above configuration will be described.

第2図(α)および(b)はプレパラート5上の細胞試
料塗布面における低倍率および高倍率での拡大視野つま
り検査領域を示したものである。図中の数字は拡大視野
の移動順序であジ、拡大視野1,2゜#+1 、#+2
 、2#+1 、2#+2における斜線部分は、診断不
能の細胞塊であることを示し、拡大視野1゜3、MXA
’−1は細胞密度が設定範囲内にある拡大視野であり、
その他の拡大視野は細胞が存在しないことを示す・ 先ず、レンズ切換回路9の制御によりレンズユニット1
0を操作して低倍レンズ11f:コンデンサレンズ6と
光電変換装置15とを結ぶ光軸上に位置させる。ついで
、ステージ駆動部7によりステージ6を移動させること
により、プレパラートガラス5を順次移動させ、第2図
(α〕に示すように。
FIGS. 2(α) and (b) show the magnified field of view, that is, the inspection area, at low and high magnifications on the surface of the preparation 5 on which the cell sample is applied. The numbers in the figure are the order of movement of the magnified field of view, magnified field of view 1, 2° #+1, #+2
, 2#+1, 2#+2 indicate undiagnosable cell clusters, magnified field of view 1°3, MXA
'-1 is an expanded field of view where the cell density is within the set range,
Other enlarged fields of view indicate the absence of cells. First, the lens unit 1 is controlled by the lens switching circuit 9.
0 to position the low magnification lens 11f: on the optical axis connecting the condenser lens 6 and the photoelectric conversion device 15. Next, by moving the stage 6 using the stage drive unit 7, the glass preparations 5 are sequentially moved as shown in FIG. 2 (α).

拡大視野1,2.・・・・・・、MxNの順序で細胞試
料塗布面を走査していく。走査する各拡大視野毎に元[
変換装置15たとえばテレビカメラから視野選別回路1
8〜21にビデオ信号が出刃さn、視野選別回路18〜
21は、第3囚に示すように1拡大視野を4分割した視
野イ9ロ、ハ、二毎に細胞密度のデータを演算制御部2
2に出力する。ここで、拡大視野f:2次元の座標で表
現する場合、低倍率での現在の拡大視野座標を(t、〕
)とすると(ただし、1≦t≦N、1≦)5M)、第3
図に示す視野イ99ロ、ハ二の高倍率での拡大視野座標
はそ几ぞn<2i−1,2ノ゛−1)、(2?:、2)
−1) −(2t−192j) t (2t *2))
となる。そこで、前記低倍検査において、視野選別回路
18〜21より出力さnる細胞密度データを入力する演
算制御部22は、細胞密度が設定範囲内にあるがどうか
を判別し、細胞密度が設定範囲内にある視野の座標を記
憶する。このようにして、低倍率の拡大視野の移動によ
り1演算制御部22は、細胞密度が設定範囲内にある視
野の座標を次々と記憶していく。第2図(α)の場合、
低倍検査により、高倍検査のための視野座標として(1
,1)、(2゜1)、(5,1)、(6,1)、(1,
2)、(5,2)、(6,2)、(2#−3,2’M−
1)、(2#−2,2&−1)、(2N−ろ、2M)、
(2N−2。
Expanded field of view 1, 2. . . . The cell sample applied surface is scanned in the order of M×N. For each magnified field of view scanned, the original [
Conversion device 15 For example, from a television camera to a visual field selection circuit 1
Video signals are output from 8 to 21, visual field selection circuit 18 to
21, as shown in the third prisoner, the calculation control unit 2 calculates cell density data for each field of view (A), (B), (C), and (2) that is obtained by dividing one enlarged field of view into four.
Output to 2. Here, magnified field of view f: When expressed in two-dimensional coordinates, the current magnified field of view coordinates at low magnification are (t,]
) (where 1≦t≦N, 1≦5M), the third
The coordinates of the enlarged field of view at high magnification shown in the figure are as follows: n<2i-1,2no-1), (2?:,2)
-1) -(2t-192j) t (2t *2))
becomes. Therefore, in the low magnification examination, the arithmetic control unit 22 which inputs the cell density data outputted from the visual field selection circuits 18 to 21 determines whether the cell density is within the set range, and determines whether the cell density is within the set range. Memorize the coordinates of the field of view within. In this way, by moving the enlarged field of view at low magnification, the 1 calculation control unit 22 successively stores the coordinates of the field of view in which the cell density is within the set range. In the case of Figure 2 (α),
By low magnification inspection, (1
,1), (2゜1), (5,1), (6,1), (1,
2), (5,2), (6,2), (2#-3,2'M-
1), (2#-2,2&-1), (2N-ro, 2M),
(2N-2.

2M)の11座標が記憶さnる。2M) are stored.

次いで、低倍検査の終了後、低倍レンズ11と高倍レン
ズ12とを交換し、高倍レンズ12をコンデンサレンズ
6と光電変換装置15とを結ぶ光軸上に位置させる。そ
して、ステージ駆動部7によりステージ6を移動させる
ことにより、プレパラート5を移動させる。この場合、
ステージ6は高倍の拡大視野が前記11座標の順に従っ
て細胞試料塗布面を飛び飛びに走査するように、移動す
る。高倍レンズ12を介して受光する光電変換装置15
から画像処理826にビデオ信号が出刃さn1画像処理
部23で細胞を検出、処理し、画像処理部23の出力に
基づき演算処理部22は所定の診断を行なうことになる
Next, after the low-magnification inspection is completed, the low-magnification lens 11 and the high-magnification lens 12 are replaced, and the high-magnification lens 12 is positioned on the optical axis connecting the condenser lens 6 and the photoelectric conversion device 15. Then, by moving the stage 6 using the stage drive unit 7, the preparation 5 is moved. in this case,
The stage 6 moves so that the highly magnified field of view scans the cell sample application surface intermittently in accordance with the order of the 11 coordinates. A photoelectric conversion device 15 that receives light through a high-magnification lens 12
The video signal is sent to the image processing section 826.The image processing section 23 detects and processes cells, and the arithmetic processing section 22 performs a predetermined diagnosis based on the output of the image processing section 23.

以上のように構成すると、高倍が低倍の2倍であり1″
!た、高倍での検査視野が60X30の場合、前記実施
例における検査時間は、検査領域をすべて高倍で検査し
た場合に比較して、約1/4〔((1800/4)+1
1)÷1800)に短縮することができる。一般に、直
接塗抹のプレパラートの多くは、全視野数のうち半数以
上が、細胞密度が設定範囲外にあるものであるから、実
際上、検査時間全374μ下に短縮することができる。
With the above configuration, the high magnification is twice the low magnification and 1″
! In addition, when the inspection field of view at high magnification is 60 x 30, the inspection time in the above embodiment is approximately 1/4 [((1800/4) + 1
It can be shortened to 1)÷1800). Generally, in most direct smear preparations, more than half of the total number of fields have cell densities outside the set range, so in practice, the total examination time can be shortened to less than 374μ.

以上、この発明の一実施例について詳述したが、この発
明は前記実施例に限定さnるものではなく、この発明の
要旨を変更しない範囲内で適宜に変形して実施すること
ができるのはいうまでもない。
Although one embodiment of the present invention has been described in detail above, this invention is not limited to the above-mentioned embodiment, and can be implemented with appropriate modifications within the scope of the gist of the invention. Needless to say.

前記実施例においては、2系統の像拡大手段につき、高
倍レンズの倍率は低倍レンズの倍率の2倍であったが、
こnに限定さnないことはいうまでもない。また、像拡
大手段は6系統以上であってもよい。
In the above embodiment, the magnification of the high magnification lens was twice the magnification of the low magnification lens for the two systems of image enlarging means;
It goes without saying that the invention is not limited to this. Further, the image enlarging means may include six or more systems.

〔発明の効果〕〔Effect of the invention〕

以上詳述したこの発明によると、検査時間を短縮するこ
とにより、検査効率を著しく向上させることのできると
ころの、試料を直接塗布してなるプレパラートで検査可
能な自動細胞診断装置を提供することができる。
According to the present invention described in detail above, it is possible to provide an automatic cell diagnostic device that can perform a test using a preparation prepared by directly applying a sample, which can significantly improve the test efficiency by shortening the test time. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す概略ブロック図、第
2図(a) (h)はプレパラート上の細胞試料塗布面
における低倍率および高倍率での拡大視野(検査領域)
を示す説明図、および第6図は低倍検査における拡大視
野の分割を示す説明図である。 1・・・光分、  2・・・視野絞り、 6・・・コン
デンサレンズ、  4・・・照射野絞り、  5・・・
クレノ々ラード、6・・・ステージ、  7・・・ステ
ージ駆動部、  8・・・自動焦点回路、  9・・・
レンズ切換回路、  10・・・レンズユニット、  
11・・・低倍レンズ、  12・・・高倍レンズ、 
 13.14・・・レンズ駆動部、15・・・光電変換
装置%  16・・・光電変換装置制御部、17・・・
セレクタ、  18〜21・・・視野選別回路、22・
・・演算制御部、  26・・・画像処理部。 代理人 弁理士 則 近 憲 佑(はか1名)第3図 ノ
Figure 1 is a schematic block diagram showing an embodiment of the present invention, and Figures 2 (a) and 2 (h) are enlarged fields of view (inspection area) at low and high magnifications on the cell sample application surface on the slide.
and FIG. 6 are explanatory diagrams showing the division of the magnified field of view in low magnification examination. 1... Light minute, 2... Field diaphragm, 6... Condenser lens, 4... Irradiation field diaphragm, 5...
6... Stage, 7... Stage drive unit, 8... Automatic focus circuit, 9...
lens switching circuit, 10...lens unit,
11...Low magnification lens, 12...High magnification lens,
13.14... Lens drive section, 15... Photoelectric conversion device % 16... Photoelectric conversion device control section, 17...
Selector, 18-21... Visual field selection circuit, 22.
...Arithmetic control unit, 26...Image processing unit. Agent: Patent Attorney Noriyuki Chika (1 person) Figure 3

Claims (1)

【特許請求の範囲】[Claims] 互いに拡大培率が相違すると共に、プレパラート上の試
狛塗布面を走査しながら拡大視する複数の像拡大手段と
、前記複数の像拡大手段のうちの−の1象拡大手段を選
択する拡大倍率変更手段とを備え、低倍率の像拡大手段
による拡大視野で試料塗布面を走査することにより、所
定範囲内の光量を有する拡大視野位置を検索した後、拡
大倍率変更手段で選択さIした高培率の像拡大手段によ
る拡大視野で、検索した前記拡大視野位置を走査するこ
とを特徴とする自動細胞診断装置。
a plurality of image enlarging means that have different magnification factors and magnify the sample-coated surface on the preparation while scanning; and an enlarging magnification for selecting one of the plurality of image enlarging means; - one of the image enlarging means; By scanning the sample coated surface with an enlarged field of view using the low magnification image enlarging means, a position of an enlarged field of view having a light amount within a predetermined range is searched, and then the enlarged magnification changing means selects a selected height. An automatic cell diagnosis apparatus characterized in that the searched position of the enlarged field of view is scanned using an enlarged field of view by a magnifying means of a culture rate.
JP18371882A 1982-10-21 1982-10-21 Automatic cell diagnosing device Pending JPS5974525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18371882A JPS5974525A (en) 1982-10-21 1982-10-21 Automatic cell diagnosing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18371882A JPS5974525A (en) 1982-10-21 1982-10-21 Automatic cell diagnosing device

Publications (1)

Publication Number Publication Date
JPS5974525A true JPS5974525A (en) 1984-04-27

Family

ID=16140738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18371882A Pending JPS5974525A (en) 1982-10-21 1982-10-21 Automatic cell diagnosing device

Country Status (1)

Country Link
JP (1) JPS5974525A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60244803A (en) * 1984-05-21 1985-12-04 Disco Abrasive Sys Ltd Automatic precise positioning system
JPS6453157A (en) * 1987-08-24 1989-03-01 Shiseido Co Ltd Method and instrument for measuring characteristic of cutaneous cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60244803A (en) * 1984-05-21 1985-12-04 Disco Abrasive Sys Ltd Automatic precise positioning system
JPH0327043B2 (en) * 1984-05-21 1991-04-12 Disco Abrasive Systems Ltd
JPS6453157A (en) * 1987-08-24 1989-03-01 Shiseido Co Ltd Method and instrument for measuring characteristic of cutaneous cell

Similar Documents

Publication Publication Date Title
US7499583B2 (en) Optical inspection method for substrate defect detection
US6275777B1 (en) Scanning cytometer
US4651200A (en) Split-image, multi-power microscopic image display system and method
US4673973A (en) Split-image, multi-power microscopic image display system and method
CN109239900B (en) Full-automatic rapid focusing method for large-field acquisition of microscopic digital image
US20030227673A1 (en) System and method for controlling microscope
CN106210520B (en) A kind of automatic focusing electronic eyepiece and system
JPH08190056A (en) Optical observation device
CN105004723A (en) Pathological section scanning 3D imaging and fusion device and method
JPH02504318A (en) Interaction microscopy image display system and method
US20040105000A1 (en) Microscopic image capture apparatus
CN103955050A (en) Multi-light-path microscope system
CN111240004A (en) System and method for automatically identifying two insects by microscope
JP2017156207A (en) Imaging device and imaging method
US3978280A (en) Image analysis apparatus
JPS5974525A (en) Automatic cell diagnosing device
GREEN et al. The design, operation and evaluation of a high speed automatic metaphase finder
CN111656247B (en) Cell image processing system, cell image processing method, automatic film reading device and storage medium
JP2005216645A (en) Transmission electron microscope
JPH03123860A (en) Chromosome inspecting device
Downing et al. Overview of computer-aided electron microscopy
CN115598822B (en) Intelligent multi-dimensional microscopic image acquisition and processing method
TWI826990B (en) Detection apparatus and detection method
TWI824616B (en) System and method of cell statistics based on image recognition
CN111402175B (en) High-speed scanning imaging system and method