JPS5973480A - Manufacture of silicon carbide/glassy carbon composite poro-us body - Google Patents

Manufacture of silicon carbide/glassy carbon composite poro-us body

Info

Publication number
JPS5973480A
JPS5973480A JP57183474A JP18347482A JPS5973480A JP S5973480 A JPS5973480 A JP S5973480A JP 57183474 A JP57183474 A JP 57183474A JP 18347482 A JP18347482 A JP 18347482A JP S5973480 A JPS5973480 A JP S5973480A
Authority
JP
Japan
Prior art keywords
silicon carbide
carbon composite
composite porous
resin
porous body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57183474A
Other languages
Japanese (ja)
Other versions
JPS626984B2 (en
Inventor
千郷 丸茂
林 政夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP57183474A priority Critical patent/JPS5973480A/en
Publication of JPS5973480A publication Critical patent/JPS5973480A/en
Publication of JPS626984B2 publication Critical patent/JPS626984B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、炭化珪素/ガラス状炭素複合多孔体の製造法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a silicon carbide/glassy carbon composite porous body.

炭化珪素は高温での強度が大きく、耐蝕性、耐酸化性に
優れておシ、その焼結体は高温耐蝕材料や構造材料とし
て着目されている。仁の様な特性を有する炭化珪素焼結
体の製造法としては、気相反応法、反応焼結法、ホット
プレス法などイ」ル々の方法が検討されているが、複雑
なる形状物を容易に得ることが困難であるのが現状であ
る。また炭化珪素は高強度にして硬いため焼結体の後加
工が困難であシ、このことも用途の拡大を阻む大きな要
因となっている。
Silicon carbide has high strength at high temperatures and is excellent in corrosion resistance and oxidation resistance, and its sintered body is attracting attention as a high temperature corrosion resistant material and a structural material. Various methods such as gas phase reaction method, reaction sintering method, and hot press method have been studied as methods for manufacturing silicon carbide sintered bodies with properties similar to those of silicon carbide. At present, it is difficult to obtain it easily. Furthermore, since silicon carbide has high strength and is hard, post-processing of the sintered body is difficult, and this is also a major factor preventing the expansion of its uses.

またガラス状炭素も高強度にして耐蝕性、断造法に於て
は焼成時の重量減少や変形が大きく生産性が悪いという
欠点があシ、よシ効率のよい製造法の検討が望まれてい
る。
Glassy carbon also has high strength and corrosion resistance, but the cutting method has the disadvantage of large weight loss and deformation during firing and poor productivity, so it is desirable to consider more efficient manufacturing methods. ing.

また優れた断熱性とともに腐蝕性流体に対する庶へい性
が要求される用途に適合する材料としては、微小な気孔
径よシなる適切な気孔率を有する多孔体であることが望
まれる。
Further, as a material suitable for applications requiring excellent heat insulation properties and resistance to corrosive fluids, a porous body having an appropriate porosity with a small pore diameter is desired.

本発明者等は、既存の方法の有する上述の諸問題点に鑑
み鋭意研究を続けた結果本発明を完成したものであって
、その目的とするところは、高温での断熱性、化学的未
定性、耐蝕性が優れかつ加工性が良好で、更に製造時の
焼成工程に於ける重量減少及び変形の少ない炭化珪素/
ガラス状炭素複合多孔体の製造法を提供するにある。本
発明の他の目的及び効果は以下の記載から明らかにされ
よう。
The present inventors have completed the present invention as a result of intensive research in view of the above-mentioned problems of existing methods. Silicon carbide/
The present invention provides a method for producing a glassy carbon composite porous body. Other objects and advantages of the present invention will become apparent from the following description.

ラス状炭素複合多孔体の製造法によシ達成される〇 本発明に用いる炭化珪素微粉末としてはα−810、β
−8iOのどちらでもよく、また粒径はα1〜100μ
m 程度のものを用いることが出来ルカ、特に0.5〜
50μmの範囲のものが好ましい0 本発明に用いる熱硬化性樹脂としてはフェノール樹脂1
.フラン樹脂、メラミン樹脂、エリア樹脂、エポキシ4
at脂、不飽和ポリエステル樹脂等が挙げられ、これら
は単独で用いても併用してもよい。
Achieved by the method for producing a lath-like carbon composite porous body〇Silicon carbide fine powder used in the present invention includes α-810, β
-8iO may be used, and the particle size is α1 to 100μ.
It is possible to use something of about 0.5m, especially 0.5~
Preferably, the thermosetting resin has a diameter in the range of 50 μm.0 As the thermosetting resin used in the present invention, phenolic resin
.. Furan resin, melamine resin, area resin, epoxy 4
Examples include attrium fat and unsaturated polyester resin, and these may be used alone or in combination.

上記熱硬化性樹脂のうち非酸化性雰囲気中での熱分解に
よる炭化収率の高いフェノール樹脂及びフラン樹脂は特
に好ましく、樹脂の硬化処理操作時の取扱い易さ等を考
慮するとフェノール樹脂が最適であシ、次にフラン樹脂
が好適であるO フェノール樹脂拡、レゾール樹脂とノボラック樹m2f
jTi類に分かれる0レゾール樹脂は、フェノール類を
アルデヒド類と塩基性触媒の存在下で反応させることに
より製造されるところの初期生成物であシ、通常メチロ
ール基に富む分子短約600までの自己熱架橋性の樹脂
である。特にフェノール1モルに対し1,5〜!h、5
モルのアルデヒド類をやや過剰のアルカリ触媒の存在下
で反応させて得られる初期縮合物を安定な水溶性の状態
に保たせることによシ得られる水溶性レゾールは、取扱
いが容易で本発明に用いる熱硬化性樹脂として最も望ま
しい。
Among the thermosetting resins mentioned above, phenolic resins and furan resins are particularly preferred because they have a high carbonization yield through thermal decomposition in a non-oxidizing atmosphere, and phenolic resins are most suitable in terms of ease of handling during resin curing operations. Reed, then furan resin is suitable O Phenol resin expansion, resol resin and novolac tree m2f
Resole resins, which are divided into Ti compounds, are the initial products produced by reacting phenols with aldehydes in the presence of basic catalysts, and are usually self-containing molecules with a short length of up to about 600, which are rich in methylol groups. It is a thermally crosslinkable resin. Especially 1.5~ per mole of phenol! h, 5
The water-soluble resol obtained by reacting a mole of aldehydes in the presence of a slightly excess alkali catalyst and maintaining the initial condensate in a stable water-soluble state is easy to handle and can be used in the present invention. It is the most desirable thermosetting resin to be used.

レゾール樹脂の製造に用いるフェノール類としては、最
も一般的には、フェノール及びクレゾールが挙けられる
。しかし、他のフェノール類も使用することが出来、例
えば該フェノール類としては、フェノール、0−クレゾ
ール、m−クレゾール、p−クレゾール、2.3−キシ
レノール、2.5−キシレノール、2,4−キシレノー
ル、2.6−キシレノール、へ4−キシレノール1.!
1.5−キシレノール、0−エチルフェノール、m−エ
チルフェノール、p−エチルフェノール、p−フェニル
フェノール、p−tert−フルフラ−ル、I) −t
art−アミノフェノール、ビスフェノールA、レゾル
7ノール及びこ7″1.らフェノール類の混合物等が挙
げられる0このフェノール類と重縮合するために用いる
アルデヒド類としては、ホルムアルデヒドが最も一般的
である0しかし、パラホルノ・アルデヒド、ヘキサメチ
レンテトラミン、フルフラール並びにグルタルj′ルデ
ヒド、アジボアルデヒド及びグリオキサール等のモノア
ルデヒド及びジアルデヒドも使用し得る。
Phenols used in the production of resol resins most commonly include phenol and cresol. However, other phenols can also be used, such as phenol, 0-cresol, m-cresol, p-cresol, 2.3-xylenol, 2.5-xylenol, 2,4- Xylenol, 2.6-xylenol, 4-xylenol 1. !
1.5-xylenol, 0-ethylphenol, m-ethylphenol, p-ethylphenol, p-phenylphenol, p-tert-furfural, I) -t
Examples include art-aminophenol, bisphenol A, resol 7nol, and mixtures of these phenols.Formaldehyde is the most common aldehyde used for polycondensation with these phenols. However, monoaldehydes and dialdehydes such as paraforno aldehyde, hexamethylenetetramine, furfural and glutarj'aldehyde, azibaldehyde and glyoxal may also be used.

レゾール樹脂合成反応に用いる塩基性触媒としては、カ
セイアルカリ、炭酸アルカリ、水酸化バリウム、水酸化
力ルシクム、アンモニア、第4級アンモニウム化合物、
アミン類等の公知のものを使用すればよく、カセイソー
ダあるいはアンモニアが最も一般的に用いられる。
Basic catalysts used in the resol resin synthesis reaction include caustic alkali, alkali carbonate, barium hydroxide, hydroxide, ammonia, quaternary ammonium compounds,
Known amines may be used, and caustic soda or ammonia is most commonly used.

ノボラック樹脂は、前記レゾール樹脂の製造に際して用
いたと同様のフェノール類と、前記レゾール樹脂の製造
に際して用いたと同様のアルデヒド類とを、しゆう酸、
ぎ酸、酢酸、ハログン化酸、パントルエンスルホン酸等
の有機酸類、塩酸、硫酸、過塩素酸、シん酸等の無機酸
類等の酸性触媒の存在下に加熱しながら反応させること
により製造することのできる分子iI#:300〜20
00程度の未硬化で溶融可能な熱可塑性樹脂力く゛ある
The novolac resin is prepared by combining the same phenols used in the production of the resol resin and the same aldehydes used in the production of the resol resin with oxalic acid,
Manufactured by reaction with heating in the presence of an acidic catalyst such as organic acids such as formic acid, acetic acid, halogenated acid, and pantoluenesulfonic acid, and inorganic acids such as hydrochloric acid, sulfuric acid, perchloric acid, and cynic acid. Molecule iI#: 300-20
It is an uncured and meltable thermoplastic resin with a strength of about 0.00.

フランW脂トシてはフルフリルアルコール樹脂、フリフ
リルアルコールフェノールm Jll 、フ” フ7−
 ル4J 脂、フルフラールフェノール樹脂、フルフー
ルケトン樹脂等が挙げられ、これらの樹脂の硬化剤とし
ては11例えば塩酸アニリン、パラトルエンスルホン酸
等の有機酸を用いることができる。
Furan W fat toshi is furfuryl alcohol resin, furfuryl alcohol phenol m Jll, Fu”fu 7-
For example, organic acids such as aniline hydrochloride and paratoluenesulfonic acid can be used as curing agents for these resins.

エリア樹脂、メラミン樹脂は、それぞれ、尿素−ホルム
アルデヒド、メラミン−ホルムアルデヒドの初期縮合物
であシ水溶性を有するので取扱いが容易である。こり、
らの硬化剤としては塩酸、硫酸等の無機酸やしゆう酸ジ
メチルエステルのようなカルボ/酸エステル類、エチル
アミン塩酸塩やトリエタノールアミン塩酸塩のようなア
ミン類の塩酸塩を用いることが出来る。
Area resin and melamine resin are initial condensates of urea-formaldehyde and melamine-formaldehyde, respectively, and are water-soluble and therefore easy to handle. Stiff,
As curing agents, inorganic acids such as hydrochloric acid and sulfuric acid, carbo/acid esters such as dimethyl oxalate, and amine hydrochlorides such as ethylamine hydrochloride and triethanolamine hydrochloride can be used. .

の存在下で反応して得られる液状のビスフェノール型エ
ポキシ4m M&を用いることが出来る。エポキシ樹脂
は、メタノール、トルエン、キシレン等の溶媒により適
度の濃度に希釈し、アミン類、有機酸等を硬化剤として
加えて使用すればよい。
A liquid bisphenol type epoxy 4mM& obtained by reacting in the presence of can be used. The epoxy resin may be used by diluting it to an appropriate concentration with a solvent such as methanol, toluene, or xylene, and adding amines, organic acids, or the like as a curing agent.

本発明に用いる気孔形成材としては澱粉その他の有機性
の微粉末或は昇華性を有する化合物の微粉末等を用いる
ことか出来る。粉末の種類及び大きさは目的とする多孔
体の孔径に応じて適宜選にずればよい。
As the pore-forming material used in the present invention, starch or other organic fine powder, or fine powder of a sublimable compound, etc. can be used. The type and size of the powder may be appropriately selected depending on the pore diameter of the intended porous body.

本発明の炭化珪話/ガラス状炭素複合多孔体混合し、必
要ならば硬化剤イ加えて硬化反応を行なった後洗浄し、
非酸化性雰囲気中で800℃以上で焼成すればよい。
The silicon carbide/glassy carbon composite porous material of the present invention is mixed, if necessary, a curing agent is added to perform a curing reaction, and then washed,
It may be fired at 800° C. or higher in a non-oxidizing atmosphere.

レゾール樹脂またはノボラック樹脂等のフェノール樹脂
は、例えはメタノール、アセトン等は、水溶性レゾール
を用いると取扱いか容易で好適である。レゾール樹脂の
場合には、上記溶液に更に必要ならば硬化用の酸触媒と
してパラトルエンスルホン酸、フタール酸などの有機酸
をあらかじめ少量添加してもよい6 ノボラツク樹脂の場合には、メタノール、アセトン等の
溶媒に適当量溶解した所定濃度の溶液に更に架橋剤を溶
解して用いればよい。
Phenol resins such as resol resins or novolak resins, such as methanol and acetone, are preferably used as water-soluble resols because they are easy to handle. In the case of resol resin, a small amount of organic acid such as para-toluenesulfonic acid or phthalic acid may be added in advance to the above solution as an acid catalyst for curing, if necessary.6 In the case of novolak resin, methanol, acetone, etc. A crosslinking agent may be further dissolved in a solution of a predetermined concentration obtained by dissolving an appropriate amount in a solvent such as the above.

架橋剤としては、最も一般的にはへキサメチレンテトラ
ミンを用いることができるがその他ニモパラホルムアル
デヒド、グルタルアルデヒド、アジボアルデヒド及びグ
リオキサールのようなアルデヒド類と酸またはアルカリ
を併用してもよい。
As the crosslinking agent, hexamethylenetetramine is most commonly used, but aldehydes such as nimoparaformaldehyde, glutaraldehyde, azibaldehyde and glyoxal, and acids or alkalis may also be used in combination.

7ラン樹脂の場合には該フラン樹脂をアセトン、ベンゼ
ン等の溶媒に溶がし、更に塩酸アニリン、パラトルエン
スルホン酸等の硬化剤を樹脂固形分の0.2〜1%程度
混入した溶液を周込ればよい。
In the case of a 7-run resin, the furan resin is dissolved in a solvent such as acetone or benzene, and a solution containing a curing agent such as aniline hydrochloride or paratoluenesulfonic acid in an amount of about 0.2 to 1% of the solid content of the resin is prepared. All you have to do is get involved.

エリア樹脂、メラミン樹脂の場合には該樹脂の水溶液に
、酸触媒等を硬化剤として数%程度混入した溶液を用い
ればよい。
In the case of area resin or melamine resin, a solution prepared by mixing several percent of an acid catalyst or the like as a curing agent into an aqueous solution of the resin may be used.

またエポキシ樹脂、不飽和ポリエステル樹脂等は、焼成
時、の炭化収率等を考慮するとフェノール樹脂、フラン
樹脂等と併用することが望ましい。
Furthermore, it is desirable to use epoxy resin, unsaturated polyester resin, etc. in combination with phenol resin, furan resin, etc., considering the carbonization yield during firing.

上記の如く、溶媒に溶かした所定濃度の熱硬化性初詣に
炭化珪素微粉末及び気孔形成材を加えて攪拌混合し、所
望の形状の型枠に移し加熱して硬化反応を完了させた後
、型枠よフ取出した成型物を水で洗浄する。
As mentioned above, silicon carbide fine powder and pore-forming material are added to thermosetting hatsumode of a predetermined concentration dissolved in a solvent, stirred and mixed, transferred to a mold of a desired shape and heated to complete the curing reaction, Remove the molded product from the mold and wash it with water.

成型物の形状は目的、用途、要求性能に応じて板状、円
筒状、その他自由に選択する仁とが可能である。
The shape of the molded product can be a plate, a cylinder, or any other shape that can be freely selected depending on the purpose, use, and required performance.

本発明の炭化珪素/熱硬化性樹脂多孔体の焼成は非酸化
性雰囲気中、即ち減圧下、又はアルボンガス、ヘリウム
ガス等の不活性ガス、水素ガス、窒素ガス等の中で、少
なくとも800℃、好ましくは1000℃以上に加熱し
て行なう。
The silicon carbide/thermosetting resin porous body of the present invention is fired at a temperature of at least 800°C in a non-oxidizing atmosphere, that is, under reduced pressure, or in an inert gas such as arbon gas or helium gas, hydrogen gas, nitrogen gas, etc. Preferably, heating is performed at 1000°C or higher.

上記の如くして得られる炭化珪素/ガラス状炭素複合多
孔体中の炭化珪素含有量は、通常60〜90重量%、好
ましくは65〜853i−ji5A。
The silicon carbide content in the silicon carbide/glassy carbon composite porous body obtained as described above is usually 60 to 90% by weight, preferably 65 to 853i-ji5A.

最も好ましくは70〜80である◇また炭化珪素/ガラ
ス状炭素複合多孔体の気孔率は、通常40〜80重量%
、好ましくは4・5〜70重量%である。
Most preferably 70 to 80 ◇ Also, the porosity of the silicon carbide/vitreous carbon composite porous material is usually 40 to 80% by weight.
, preferably 4.5 to 70% by weight.

該炭化珪素/ガラス状炭素多孔体を製造するに当たシ、
炭化珪素含有量が少な過ぎると焼成時の重量減少や変形
が大きくなシ、生産効率や生品の歩留υが低下オるA南
向+仁あ31シ、また、炭化珪素含有量が多過ぎると炭
化珪素微粉子とガラス状炭素との結合が弱くなシ複合多
孔体の強度が著しく低下して好ましくない。
In producing the silicon carbide/glassy carbon porous body,
If the silicon carbide content is too low, weight loss and deformation during firing will be large, and production efficiency and raw product yield υ will decrease. If it is too high, the strength of the composite porous body due to the weak bond between the silicon carbide fine powder and the glassy carbon is undesirably lowered.

炭化珪素/ガラス状炭素複合多孔体の気孔率は、炭化珪
素、熱硬化性樹脂固形分量と溶媒の比率及び気孔形成材
の量によって変ゎシ、炭化珪素、熱硬化性#i脂固形分
量が増加する程気孔率が低下し、溶媒量及び気孔形成材
量が多い程気孔率は増大する。炭化珪素/ガラス状炭素
複合多孔体の気孔率が大食すぎると強度低下が著しく、
かつ断熱性が低下する号峨匍1≦;IF) [= 。
The porosity of the silicon carbide/glass-like carbon composite porous material varies depending on the ratio of silicon carbide and thermosetting resin solid content to the solvent and the amount of pore-forming material. The porosity decreases as the amount increases, and the porosity increases as the amount of solvent and the amount of pore-forming material increase. If the porosity of the silicon carbide/glassy carbon composite porous material is too high, the strength will decrease significantly;
And the insulation property decreases No. 匨匍1≦;IF) [=.

また気孔率が低過ぎるような配合組成では、製造時の作
業性が怒く原料を均一に混合することが内錐であり1.
良好なる炭化珪素/ガラス状災素抜合多孔体が得られな
い。
In addition, if the porosity is too low, the inner cone is used to uniformly mix the raw materials, which may be difficult to work with during production.1.
A good silicon carbide/vitreous element extraction porous body cannot be obtained.

本発明によって得られた炭化珪素/ガラス状炭素多孔体
の気孔径は通常0.1〜50μmに分布し、特に0.5
〜10μm′程度の気孔径が大半を占める。該炭化珪素
/ガラス状炭素複合多孔体は、耐蝕性、断熱性が極めて
良好であシ、高温断熱材、腐蝕性流体の遮へい栃や、電
気炉用治具として好適である。
The pore diameter of the silicon carbide/glassy carbon porous material obtained by the present invention is generally distributed in the range of 0.1 to 50 μm, particularly 0.5 μm.
Most of the pores have a diameter of about 10 μm'. The silicon carbide/vitreous carbon composite porous body has extremely good corrosion resistance and heat insulation properties, and is suitable as a high-temperature heat insulating material, a shield for corrosive fluids, and a jig for an electric furnace.

該炭化珪素/ガラス状炭素多孔体は上記の用途の他に、
軽量構造材、研削材・発熱体、熱処理用治具としても使
用出来る。
In addition to the above-mentioned uses, the silicon carbide/glass-like carbon porous material has
It can also be used as a lightweight structural material, abrasive material, heating element, and heat treatment jig.

次に実施例によυ本発明を具体的に説明する。Next, the present invention will be specifically explained with reference to Examples.

実施例1 固形分濃度65重蓋%の水溶性レゾール樹脂溶液(住友
デ瓢しズ■製品、スミライトレジンPR961A)e所
定量加熱し、60℃になったところで、あらかじめ70
℃で糊化した小麦粉澱粉200yを加えて攪拌しながら
70〜80℃で15分間攪拌した〇 この溶液を40℃に冷却後平均粒径2μmのβ−炭化珪
素微粉末を所定量加えて十分に攪拌混合し、更に硬化剤
としてパラトルエンスルポン酸を水溶性レゾール樹脂に
対して20重量%加えて攪拌した。
Example 1 A water-soluble resol resin solution with a solid content concentration of 65% (Sumitomo Dehyoroshizu ■ product, Sumilite Resin PR961A) e Heated a predetermined amount and when the temperature reached 60°C, it was heated to 70°C in advance.
Add 200 y of wheat starch gelatinized at ℃ and stir at 70 to 80 ℃ for 15 minutes while stirring. After cooling this solution to 40 ℃, add a predetermined amount of β-silicon carbide fine powder with an average particle size of 2 μm and mix thoroughly. The mixture was stirred and mixed, and further, 20% by weight of para-toluene sulfonic acid was added as a curing agent based on the water-soluble resol resin, and the mixture was stirred.

該混合液を円柱状型枠に注型し、80℃で24時間加熱
して硬化反応を行なった後型よル取出し、シャワーで8
時間洗浄を行ない酸触媒等を洗い流した後乾燥して、2
50 m”X 60   の炭化珪素/フェノール樹脂
複合多孔体を得た。
The mixed solution was poured into a cylindrical mold, heated at 80°C for 24 hours to perform a curing reaction, and then removed from the mold and heated in the shower for 8 hours.
After washing for several hours to wash away the acid catalyst, etc., dry the
A silicon carbide/phenol resin composite porous body measuring 50 m"×60 was obtained.

上記の如くして得られた複合多孔体を電気炉に入れ、窒
素雰囲気中で20℃/hr  で昇温し、1000℃に
1時間保持して焼成し、炭化珪素/ガラス状炭素複合多
孔体を得た。
The composite porous body obtained as described above was placed in an electric furnace, the temperature was raised at 20°C/hr in a nitrogen atmosphere, and the temperature was maintained at 1000°C for 1 hour to sinter the silicon carbide/glassy carbon composite porous body. I got it.

炭化珪素/ガラス状炭素複合多孔体の仕込組成、焼成に
よる重量及び体積変化及び得られた炭化珪素/ガラス状
炭素複合多孔体の特性を第1表に示す。
Table 1 shows the charged composition of the silicon carbide/vitreous carbon composite porous body, changes in weight and volume due to firing, and properties of the obtained silicon carbide/vitreous carbon composite porous body.

第1表に於て炭化珪素/ガラス状炭素複合多孔体中のS
iO含有量は、該複合多孔体を空気中で900℃で48
時間保持してガラス状炭素を燃焼させた後の炭化珪素重
量を測定することにより決定した。
In Table 1, S in the silicon carbide/glassy carbon composite porous material
The iO content is 48
It was determined by measuring the weight of silicon carbide after burning the glassy carbon for a certain period of time.

また耐蝕性は該炭化珪素/ガラス状屍素複合多孔体をc
o2/H2o混合雰囲気中(002流量517m1n)
、950 ℃K tR間保持り、fcl1合f)jR旦
保持率にょ)訂価した。a目表かられかるように炭化珪
素/ガラス状炭素複合多孔体の炭化珪素含有量が60〜
90重量%で製造時の作業性及び試料状態が良好で耐蝕
性の優れた多孔体が得られた。
In addition, the corrosion resistance of the silicon carbide/vitreous carbon composite porous material is
In o2/H2o mixed atmosphere (002 flow rate 517mln)
, retention rate at 950°C, retention rate at 950°C, and retention rate at 950°C. As can be seen from the table a, the silicon carbide content of the silicon carbide/glassy carbon composite porous material is 60~
At 90% by weight, a porous body with good workability and good sample condition during production and excellent corrosion resistance was obtained.

第  1  表                実施
例2 固形分濃度50重量%のフラン樹脂溶液(日立化成工業
■製品、ヒタフラン302 ) ic平均粒径0.5μ
mのα−炭化珪素微粉末を所定量加えて十分に攪拌し、
更に所定量の馬鈴薯澱粉を凝集上ない様に注意しながら
加え攪拌混合した。
Table 1 Example 2 Furan resin solution with solid content concentration of 50% by weight (Hitachi Chemical ■ product, Hitafuran 302) IC average particle size 0.5μ
Add a predetermined amount of α-silicon carbide fine powder of m and stir thoroughly.
Furthermore, a predetermined amount of potato starch was added and mixed while being careful not to cause agglomeration.

この混合液にフラン樹脂の0.2%に当たるヒタフラン
用硬化剤を加え、更に全体の液量が52となる様アセト
ンで希釈1r−0 核晶合液を直方形の型枠に注型し、70℃で48時間保
持して硬化反応を行なって脱型後シャワーで8時間洗浄
し乾燥して500′×2001×201 の灰化珪素/
フラン樹脂複合多孔体を得た0 該複合多孔体をアルゴン雰囲気中で800℃まで10℃
/hr その後50℃/h、r  で昇温し、1500
℃に1時間保持して焼成し、炭化珪素/ガラス状炭素複
合多孔体を得た。
A curing agent for hitafuran corresponding to 0.2% of the furan resin was added to this mixed solution, and the 1r-0 nucleus crystal mixture diluted with acetone was further poured into a rectangular mold, so that the total liquid volume was 52%. The curing reaction was carried out by holding at 70°C for 48 hours, and after removing the mold, it was washed with a shower for 8 hours and dried to form a silicon ash of 500' x 2001 x 201.
A furan resin composite porous body was obtained. The composite porous body was heated at 10°C to 800°C in an argon atmosphere.
/hr After that, the temperature was raised at 50℃/h, r to 1500℃.
C. for 1 hour and fired to obtain a silicon carbide/glassy carbon composite porous body.

上記ガラス状炭素複合多孔体の仕込組成及び特性を第2
表に示す。
The preparation composition and characteristics of the above glassy carbon composite porous material were determined in the second step.
Shown in the table.

第2表かられかるように気孔率40〜80zの範囲で良
好なる炭化珪素/ガラス状炭素複合多孔体が得られた。
As shown in Table 2, a good silicon carbide/glassy carbon composite porous body was obtained with a porosity in the range of 40 to 80z.

第  2  表 実施例6 実施例1と同様にして、固形分濃度65重量%の水溶性
レゾール樹脂溶液(住友デエレズ■製品、スミライトレ
ジンPR961A)400p。
Table 2 Example 6 In the same manner as in Example 1, 400 p of a water-soluble resol resin solution (Sumitomo Delez ■ product, Sumilite Resin PR961A) with a solid content concentration of 65% by weight was prepared.

固形分濃度60%の水浴性メラミン樹脂溶液(住友化学
工業■製品、スミテックスレジンM3、硬化触媒、スミ
テックスAcX)200J/、平均粒径10μm のβ
−8iC微粉末8009、小麦粉澱粉30gを混合し、
更に水を加えて混合液の総置を1Qに調整した。
Water-bathable melamine resin solution with a solid content concentration of 60% (Sumitomo Chemical ■ product, Sumitex Resin M3, curing catalyst, Sumitex AcX) 200 J/, β with an average particle size of 10 μm
-8iC fine powder 8009 and wheat starch 30g were mixed,
Furthermore, water was added to adjust the total position of the mixed liquid to 1Q.

該混合液を平板状の型枠に注型して作成した+ o o
”〆′bX 200 ”×4 mt(7’) & 状9
 合糸孔体f、 ヘ’Jウム雰囲気中で20℃/hr 
の昇温速度で700℃、900℃、1500℃までそれ
ぞれ昇温し各温度で1時間保持して、炭化珪素/ガラス
状炭素複合多孔体を作成した。該炭化珪素/ガラス状炭
素複合多孔体を濃硝酸/濃塩酸= /1(体積比)の混
合液に90℃で7日間浸漬した。その結果を第5表に示
す。第3表より焼成温度800℃以上の場合には得られ
た炭化珪素/ガラス状炭素複合多孔体の耐薬品性が優れ
ていることがわかる。
The mixed liquid was cast into a flat formwork to create a + o o
"〆'bX 200" x 4 mt (7') & shape 9
Synthesis hole f, 20°C/hr in hemium atmosphere
The temperature was raised to 700° C., 900° C., and 1500° C. at a temperature increasing rate of 100° C., and held at each temperature for 1 hour to create a silicon carbide/glass-like carbon composite porous body. The silicon carbide/vitreous carbon composite porous body was immersed in a mixed solution of concentrated nitric acid/concentrated hydrochloric acid=/1 (volume ratio) at 90° C. for 7 days. The results are shown in Table 5. From Table 3, it can be seen that when the firing temperature is 800° C. or higher, the obtained silicon carbide/glassy carbon composite porous body has excellent chemical resistance.

第3表Table 3

Claims (1)

【特許請求の範囲】 (1)炭化珪素微粉末と熱硬化性樹脂溶液とを気孔形成
材とともに混合し、硬化反応処理後非酸化性雰囲気中で
焼成することを特徴とする炭化珪素/ガラス状炭素複合
多孔体の製造法 (2)  炭化珪素/ガラス状炭素複合多孔体中の炭化
珪素含有量が60〜9Ofi量%である特許請求の範囲
第(1)項記載の炭化珪′Jg/ガラス状炭素複合多孔
体の製造法。 (6)  炭化珪素/ガラス状炭素複合多孔体の気孔率
が40〜80%でおる特許請求の範囲第(1)項記載の
炭化珪素/ガラス状炭素複合多孔体の製造法。 (4)M硬化性樹脂がフェノール樹脂またはフラン樹脂
である特許請求の範囲第(1)項記載の炭化珪素/ガラ
ス状炭素複合多孔体の製造法。 (5)  非酸化性雰囲気中で800℃以」−で焼成す
る特許請求の範囲第(1)項記載の炭化珪素複合多孔体
の製造法。
[Scope of Claims] (1) A silicon carbide/glass-like product characterized by mixing fine silicon carbide powder and a thermosetting resin solution together with a pore-forming material, and firing the mixture in a non-oxidizing atmosphere after a curing reaction treatment. Manufacturing method of carbon composite porous body (2) Silicon carbide 'Jg/glass according to claim (1), wherein the silicon carbide content in the silicon carbide/glassy carbon composite porous body is 60 to 90% by weight. A method for manufacturing a carbon composite porous material. (6) The method for producing a silicon carbide/vitreous carbon composite porous body according to claim (1), wherein the silicon carbide/vitreous carbon composite porous body has a porosity of 40 to 80%. (4) The method for producing a silicon carbide/glass-like carbon composite porous body according to claim (1), wherein the M curable resin is a phenol resin or a furan resin. (5) A method for producing a silicon carbide composite porous body according to claim (1), which comprises firing at a temperature of 800° C. or higher in a non-oxidizing atmosphere.
JP57183474A 1982-10-18 1982-10-18 Manufacture of silicon carbide/glassy carbon composite poro-us body Granted JPS5973480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57183474A JPS5973480A (en) 1982-10-18 1982-10-18 Manufacture of silicon carbide/glassy carbon composite poro-us body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57183474A JPS5973480A (en) 1982-10-18 1982-10-18 Manufacture of silicon carbide/glassy carbon composite poro-us body

Publications (2)

Publication Number Publication Date
JPS5973480A true JPS5973480A (en) 1984-04-25
JPS626984B2 JPS626984B2 (en) 1987-02-14

Family

ID=16136423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57183474A Granted JPS5973480A (en) 1982-10-18 1982-10-18 Manufacture of silicon carbide/glassy carbon composite poro-us body

Country Status (1)

Country Link
JP (1) JPS5973480A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0267476A2 (en) * 1986-11-10 1988-05-18 Kao Corporation Glasslike carbon composite material and method of preparing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56145018A (en) * 1980-04-10 1981-11-11 Kubota Ltd Receiver for transferred article

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56145018A (en) * 1980-04-10 1981-11-11 Kubota Ltd Receiver for transferred article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0267476A2 (en) * 1986-11-10 1988-05-18 Kao Corporation Glasslike carbon composite material and method of preparing the same

Also Published As

Publication number Publication date
JPS626984B2 (en) 1987-02-14

Similar Documents

Publication Publication Date Title
JP4395626B2 (en) Non-heat-curable binder and method for producing molded body using the same
KR101498344B1 (en) Process for production of spherical furfuryl alcohol resin particles, spherical furfuryl alcohol resin particles produced thereby, and spherical carbon particles and spherical active carbon particles obtained using same
CN109206636B (en) Boron-containing phenolic resin hollow microsphere and preparation method thereof
JPS5973480A (en) Manufacture of silicon carbide/glassy carbon composite poro-us body
JPH0147433B2 (en)
JPS6353154B2 (en)
JPS6348831B2 (en)
JPH0148228B2 (en)
JPS5870939A (en) Resin coated sand for shell mold and its production
JP3518610B2 (en) Phenolic resin composition for refractories
JPS6059168B2 (en) Manufacturing method of carbon porous material
JPS6132250B2 (en)
TWI646119B (en) Production method of cured amino resin particles
JPS6332818B2 (en)
JPS59138218A (en) Curable epoxy resin mixture
US4166166A (en) Process for producing acetophenone-modified phenolic resin
JPS5854082B2 (en) Manufacturing method of carbon porous material
JPS5921513A (en) Manufacture of activated carbon having network structure
JP2001316945A (en) Carbon fiber and fibrous activated carbon
JPH04294839A (en) Binder for molding sand and its manufacture
JP4706166B2 (en) Regular refractory composition and regular refractory
JPS6320455B2 (en)
JPH0892461A (en) Binder composition
JPH10139845A (en) Modified phenolic resin composition
JPS63248781A (en) Manufacture of silicon carbide porous body