JPS5973310A - Suspension of car - Google Patents

Suspension of car

Info

Publication number
JPS5973310A
JPS5973310A JP18236882A JP18236882A JPS5973310A JP S5973310 A JPS5973310 A JP S5973310A JP 18236882 A JP18236882 A JP 18236882A JP 18236882 A JP18236882 A JP 18236882A JP S5973310 A JPS5973310 A JP S5973310A
Authority
JP
Japan
Prior art keywords
steering angle
steering
spring constant
spring
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18236882A
Other languages
Japanese (ja)
Other versions
JPS6147724B2 (en
Inventor
Ikuo Ishimitsu
石満 育男
Toshimichi Tokunaga
徳永 利道
Ken Tanaka
建 田中
Yoshiaki Anami
義明 阿南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Toyo Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, Toyo Kogyo Co Ltd filed Critical Mazda Motor Corp
Priority to JP18236882A priority Critical patent/JPS5973310A/en
Priority to US06/542,652 priority patent/US4555126A/en
Priority to DE8383306313T priority patent/DE3368558D1/en
Priority to EP83306313A priority patent/EP0106697B1/en
Publication of JPS5973310A publication Critical patent/JPS5973310A/en
Publication of JPS6147724B2 publication Critical patent/JPS6147724B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • B60G17/0162Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input mainly during a motion involving steering operation, e.g. cornering, overtaking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/204Vehicle speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/40Steering conditions
    • B60G2400/41Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/10Damping action or damper
    • B60G2500/102Damping action or damper stepwise
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/10Damping action or damper
    • B60G2500/104Damping action or damper continuous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/20Spring action or springs
    • B60G2500/22Spring constant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/40Steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/22Magnetic elements
    • B60G2600/26Electromagnets; Solenoids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/24Steering, cornering
    • B60G2800/244Oversteer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/24Steering, cornering
    • B60G2800/246Understeer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/24Steering, cornering
    • B60G2800/248Neutral steering behaviour

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

PURPOSE:To provide manipulating characteristic matching a steering angle, by constituting a device such that a spring means, having variable spring constant, is installed parallel to a damper, a steering angle is detected, and according to the change in the steering angle, a spring constant ratio between a front and a rear wheels is varied. CONSTITUTION:A steering angle, detected by a steering angle sensor 5, is inputted to a controller 3, and when the steering angle exceeds a set value, the controller 3 outputs a signal to actuators 1a and 2a, a spring constant KF of each of front wheels is reduced, and a spring constant KR of each of rear wheels is increased. Thus, KF/KR is lowered. Similarly, when a steering angle is below the set value under a straight running condition, each of the actuators 1a and 2a is operated so that KF/KR is increased, and the understeer characteristic is enhanced. This obtains optimum manipulating characteristic matching a steering angle.

Description

【発明の詳細な説明】 本発明は自動車のサスベンジ=lン、特にダンパと並列
にばね特性を可変としたばね手段を備え、このばね特性
を状況に応じて制御するようにした自動車のサスペンシ
ョンに関りるもので゛ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to suspension systems for automobiles, and particularly to automobile suspensions that are equipped with a spring means having variable spring characteristics in parallel with a damper, and whose spring characteristics are controlled according to the situation. It's something to do with.

自動車のサスペンションに83いて、ダンパの減衰ツノ
を状況に応じて制御づるようにしたものが提案されてい
る。例えば実開昭55−109008号に示されている
ように、車速に応じて減衰力を変化させ□て常に好まし
い操縦特性を1nるようにしたものが知られている。こ
れは、高速時に〕7ンダーステア特性を強め、低速時に
はニュートラルスデアもしくは弱いオーパースデア特性
を得て、車速の変化に応じて常に安定性に優れた操縦特
性をteるようにしたものである。
A suspension system for automobiles has been proposed in which the damping horn of a damper can be controlled according to the situation. For example, as shown in Japanese Utility Model Application No. 55-109008, a vehicle is known in which the damping force is changed according to the vehicle speed so as to always maintain favorable handling characteristics. This strengthens the 7-under steer characteristic at high speeds, and provides neutral steer or weak over steer characteristics at low speeds, so that stable steering characteristics are always maintained in response to changes in vehicle speed.

しかしながら、操縦特性の変化を要求する状況の変化と
しては、車速以外にも名神の要素がある。
However, there are other important factors other than vehicle speed as changes in the situation that require changes in handling characteristics.

例えば、j梁舵角の大きさも要求される操縦特性と密接
な関係があり、大きくハンドルを切った時にはアンダー
ステア特性は弱い方が望ましい。すなわち、アンダース
テア特性は操舵角が大きいときには弱められ、操舵角が
小さいときには強められるのが望ましい。しIこがって
、車速に応じた制御のみでは、十分な走行安定性を確保
づることができない。
For example, the magnitude of the j-beam steering angle is closely related to the required steering characteristics, and it is desirable that the understeer characteristics be weaker when the steering wheel is turned significantly. That is, it is desirable that the understeer characteristic be weakened when the steering angle is large, and strengthened when the steering angle is small. However, sufficient running stability cannot be ensured only by control according to vehicle speed.

例えば、急ハンドルを切って車の進行方向を大きく変え
たときには、アンダーステア特性は弱められて、A−バ
ースデアに近づけた方が応答性がよく、ハンドルの切れ
がよくなる。しかしながら、ハンドルを切ることなく直
進しているときは、アンダーステア特性が強い方が直進
性がよいので望ましい。アンダーステア特性は、特に車
が外乱を受(プたときにこれを修正する際有効な特性で
あり、この特性が弱まると、直進安定性が低下し、特に
高速uiy、に危険な車となる。したがって操舵角が変
化した場合には、これに応じて常に適切な強さのアンダ
ーステア特性が得られることが望ましい。
For example, when the steering wheel is suddenly turned and the direction of travel of the car is changed significantly, the understeer characteristic is weakened and the response is better when the steering wheel is moved closer to A-birthday, resulting in better steering. However, when the vehicle is traveling straight without turning the steering wheel, it is desirable to have strong understeer characteristics because it improves straight-line performance. The understeer characteristic is particularly effective in correcting disturbances when the car is subjected to disturbances, and when this characteristic weakens, the straight-line stability decreases, making the car dangerous especially at high speeds. Therefore, when the steering angle changes, it is desirable to always be able to obtain an appropriately strong understeer characteristic.

本発明はこの点に着目し、操舵角の変化に応じて常に望
ましい操縦特性が得られるようにした自動車のサスペン
ションを提(Jl することを目的とするものである。
The present invention has focused on this point and aims to provide a suspension for an automobile that can always provide desirable handling characteristics in response to changes in the steering angle.

本発明のりスペンジジンは、この目的を達成するためダ
ンパと並列に設けられたばね手段のばね特性を可変にし
、これを操舵角の変化に応じて制御して、常に望ましい
操縦特性を得るようにしたことを特徴とするものである
In order to achieve this objective, the steering wheel of the present invention makes the spring characteristics of the spring means provided in parallel with the damper variable, and controls this according to changes in the steering angle so as to always obtain desired steering characteristics. It is characterized by:

すなわち、本発明のサスペンションは、前後輪のサスペ
ンションのうち、前輪、後輪の少なくとも一方にばね定
数を変えることにより、ばね特性を変えるばね手段を設
け、このばね手段のばね定数を調整手段により制御する
ようになし、この調整手段をステアリングの操舵を検出
し、操舵時に操舵信号を出力する操舵センサからの操舵
信号が入力されたとき、すなわち操舵時に前輪サスペン
ションのばね定数の後輪リスペンションのはね定数に対
する比を非操舵時より小さくりるような制御信号を上記
調整手段に入力するコントローラからなるものである。
That is, in the suspension of the present invention, a spring means is provided for changing the spring characteristic by changing the spring constant on at least one of the front wheel and the rear wheel among the front and rear wheels, and the spring constant of the spring means is controlled by the adjusting means. When a steering signal is input from a steering sensor that detects steering and outputs a steering signal during steering, this adjusting means adjusts the spring constant of the front wheel suspension to the rear wheel suspension during steering. The controller includes a controller that inputs a control signal to the adjustment means such that the ratio to the steering constant is smaller than when the steering is not performed.

ここで、前輪サスペンションのばね定数の、後輪サスペ
ンションのばね定数に対づる比を操舵時に、非操舵時に
り小さり1′るとは、前輪側のばね定数を一定として、
操舵時に後輪側のばね定数を大きくする場合と、その逆
に後輪側を一定として前輪側を小さくづる場合と、両方
を逆方向に変化させる場合すなわち前輪側を小さく、後
輪側を人きくする場合の3つの場合(それぞれの場合に
おいて、非操舵時には上記と逆の方向(こ(まね定数(
は変化せしめられる)を含むものである。
Here, when we say that the ratio of the spring constant of the front wheel suspension to the spring constant of the rear wheel suspension is 1' smaller than when steering and when not steering, we mean that the spring constant on the front wheel side is constant.
When steering, there are cases where the spring constant of the rear wheels is increased, and conversely, cases where the spring constant of the rear wheels is kept constant and the spring constant of the front wheels is decreased, and cases where both are changed in the opposite direction. (In each case, when not steering, the direction opposite to the above (this (imitation constant)
is caused to change).

以−ト、説明の簡Ill’li化のために前、後輪のサ
スベンジ」ンのばね手段のばね定数をそ4tぞれKF、
K R0表ね力。K 「のK I−<に対づる比はK「
/′に1又で表わされるから、上記3つの揚台と(ま、
操I12時のK F / K Rを非操舵時のK F 
、/ K Rより小さくするということを意味づる。こ
れは表1のように表ねりことができる。
Hereinafter, in order to simplify the explanation, the spring constants of the front and rear suspension spring means are 4t, KF, respectively.
K R0 surface tension. The ratio of K "to K I-< is K"
/' is represented by a single prong, so the above three platforms and (ma,
K F / K R when steering I12 and K F when not steering
, /K means to be smaller than R. This can be expressed as in Table 1.

表  1 K F 、−’ K Rを小さくづるとアンダーステア
特性が弱められるので、操舵時にアンダーステア特性を
弱めてハンドルの切れをよくすることができる。
Table 1 When K F , -' K R are made smaller, the understeer characteristics are weakened, so it is possible to weaken the understeer characteristics during steering and improve steering control.

本発明(よ上記のようにK F’ 、−’ K Rを操
舵角の大小によって変化させるj、うにしたので、常に
望ましいアンダーステア特性を腎ることがで゛き、良O
fな操縦性と走行安定性を実現することができる。
According to the present invention (as described above, KF' and -'KR are changed depending on the magnitude of the steering angle), it is possible to always obtain desirable understeer characteristics, and to maintain good O/O.
It is possible to achieve excellent maneuverability and driving stability.

以下、図面により、本発明の実施例をπ2 [’JJ 
t Za。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
t Za.

第1図は本発明の一実施例による1)−スペンジジンを
備えた自動車を示すもので、第2図1よその1要部系統
図を示す。この実施例では、前輪のリースペンション1
,1と、後輪のサスペンション2゜2のそれぞれに、ば
ね定数を変えるためのアキコムレータ1A、2Δを設け
、これらをコン1〜ローラ3によって制御するようにし
ている。コン1へローラ3には、ステアリング4に設(
プら4′シ、操R亡角の大小を検出する操舵角センサ5
からの1」4力1)i’J−ト′線3aを通して入力さ
れ、ばね定数を変えるための前後輪サスペンション1,
1;  2,2のアキコムレータ1△、2△にリード線
3、b、3Cをj角して制御信号が送られる。また、こ
の実施ll11て(ま、スピードメータ6からの出力ち
り−l” lit 3 dを一逍1して入力される。ざ
らにオー1−とマニユアルの切換スイッチ7がリード線
3eを通してコントローラ3に接続されている。
FIG. 1 shows a car equipped with 1)-spendidine according to an embodiment of the present invention, and FIG. 2 shows a system diagram of one essential part of the system shown in FIG. In this example, the front wheel lease pension 1
, 1 and the rear wheel suspension 2.degree. 2 are provided with Akicomulators 1A and 2.DELTA. for changing the spring constant, and these are controlled by controllers 1 to rollers 3. The roller 3 to the controller 1 is installed on the steering wheel 4 (
A steering angle sensor 5 detects the magnitude of the steering angle.
1'4 force 1) is input through the i'J-to' line 3a to change the spring constant of the front and rear wheel suspensions 1,
1; A control signal is sent to the Akicomulators 1△ and 2△ of 2 and 2 with the lead wires 3, b, and 3C at an angle of j. In addition, in this implementation, the output from the speedometer 6 is inputted at the same time as the output from the speedometer 6.The manual changeover switch 7 is connected to the controller 3 through the lead wire 3e. It is connected to the.

第2図に示すように、各リスペンション1,1.;2.
2には電磁手段からなるアクチュエータ1a、1a  
:2a、2aを侑えた77キー1ムレータIAI、2A
が接続1 され、このt目晒手段によりノlキュムレータ1△。
As shown in FIG. 2, each respension 1, 1. ;2.
2 includes actuators 1a, 1a consisting of electromagnetic means;
:2a, 77 key 1 muller IAI, 2A that can read 2a
is connected to 1, and this t-eye exposure means causes the no.l accumulator 1△ to be connected.

2Δ内の空気至を各リスペンション1,1:  2,2
の1−アばね内のj ’7/至“に連通さゼることによ
り、エア(、工ねのぽね定iQ K F、KRを変える
ようになつ(いる1、操舵角1zンリ−5からの信号を
受(]た]ン1〜(]−ラ3/)〜1)の11j力は、
リード線3t]、3cを通して左右の前後輪のリスペン
ション1,1;  2,2のアキコムレータ1Δ、2△
のアクチュエータ1a、la  : 2a、2aに人力
される。この出力りなわち操舵信号を受(−)たアクチ
ュエータ1a、la  ; 2a、2aはエアぼねIb
、lb : 2b、2bのはね定数を小さくあるいは人
ぎく覆るように制御する。
Each respension 1,1: 2,2
By communicating with the j '7/to' in the 1-A spring, the air (, the spring constant iQ K F, KR can be changed (1, steering angle 1, 5) The 11j force of (]tan]ton1~(]-ra3/)~1) which receives the signal from is,
Lead wires 3t], 3c through the left and right front and rear wheel respensions 1, 1; 2, 2 Akicomulators 1Δ, 2Δ
Actuators 1a, la: 2a, 2a are manually operated. The actuators 1a, la which received (-) this output, that is, the steering signal; 2a, 2a are the air bones Ib
, lb: Control the spring constants of 2b and 2b to be small or to override them.

1シ1えば、操舵角センサ5が、所定餡以上の操舵角を
検出して大操舵角であることを示す信号(所定11i’
i 以上の電磁)を出力すれば、これを受5またコント
ローラ3がアクチュエータ1a、1a : 2a、2a
を駆動して前輪のエノ7ばね ib 、ibのぼね定数
(KF)を小さく、後輪のエアばね2 +1 、211
のばね定数(K、 Iで)を大きくし、これによりKF
/KRを小さくりる。
For example, the steering angle sensor 5 detects a steering angle equal to or greater than a predetermined value and generates a signal indicating that the steering angle is large (predetermined value 11i').
i or more electromagnetic), the receiver 5 or controller 3 outputs this to the actuators 1a, 1a: 2a, 2a
Drive the front wheel Eno7 spring ib, reduce the spring constant (KF) of ib, and reduce the rear wheel air spring 2 +1, 211.
by increasing the spring constant (K, I) of KF
/ Decrease KR.

具体的には、例えば第3図に示?I J:うに、操舵角
1?ン′lJ5の出力が所定値以」−に<rると二、】
ンl−口−ラ3のコンパレータ3Δの正入力が大きくな
って、高出力(+−1>を出し、この」ンバレータ3A
の出力にインバータ3Bを介して接続した1−ランジス
タ3CのベースmJ千を低くしてこの1〜ランジスタ3
Cをオフするとともに、二」ンバレータ3Aの出力に接
続した1〜ランジスタ3 D O) /\−ス電j1−
を高くしてこのトランジスタ3Dをオンづるようになし
、前者の1−ランジスタ30の一、ルクタ側に接続した
前輪側のアクチュエータ1a、1a  (電磁手段のソ
レノイド)を消)6して前輪側のリスペンション1.′
1のばね定数(KF)を小さくり−るとともに、後右の
1−′ランラスタ3Dの]レクタ側に接続した後輪側の
アクチュエータ2a、2a  (電磁手段のソレノイド
)を駆動して後輪側のサスペンション2,2のばね定数
(KR)を大きくし、これによりK F / K Rを
小さくしてアンダーステ)′特性を弱めるようにづ−る
ことができる。
Specifically, for example, as shown in Figure 3. I J: Sea urchin, steering angle 1? If the output of pin 'lJ5 is less than a predetermined value,
The positive input of the comparator 3Δ of the inverter 3 becomes large, outputting a high output (+-1>), and this inverter 3A
By lowering the base mJ, 1,000 of 1- transistor 3C connected to the output of 1 through inverter 3B,
At the same time as turning off C, transistor 1 to transistor 3 connected to the output of inverter 3A is turned off.
is set high to turn on this transistor 3D. Respension 1. ′
The spring constant (KF) of 1 is reduced, and the rear wheel side actuators 2a, 2a (solenoids of electromagnetic means) connected to the [rector side of the rear right 1-' run raster 3D] are driven. It is possible to increase the spring constant (KR) of the suspensions 2, 2, thereby decreasing KF/KR and weakening the understeer characteristics.

直進状態では、操舵角センサ5の出力か所定藺以下であ
るため、コンパレータ3△の出力は低出力([)どなり
、インバータ31.3を介して接続した1〜ランジスタ
3Cはオンされて前輪側のばね定数(K F )を大き
くし、後輪側のばね定数(K R)を小さくして、K 
F / K lマを大きくりることにJ、す、アンダー
ステア特性を強める。
In the straight-ahead state, the output of the steering angle sensor 5 is less than the predetermined value, so the output of the comparator 3△ becomes a low output ([), and transistors 1 to 3C connected via the inverter 31.3 are turned on and the front wheel side is turned on. By increasing the spring constant (K F ) of the rear wheel and decreasing the spring constant (K R) of the rear wheel,
By increasing the F/K l, the understeer characteristics are strengthened.

なa3、車速レンツであるスピードメータ6(第1図、
第2図)の出力は、操舵角センサ5の出力ととしに、二
」〕71〜11−ラ3に入力され、操舵角センサ“5に
よる上記のばね定数制御に加えて、車速に応じた制御を
可能にづる6のである。この車速に応じた制御とは、例
えば従来知られているように、高速時にアンダーステア
特性を強めるような制御づなわら操ml角(θ)に対す
る制御に対し車速(\/)に24りる制御を逆方向に行
なう制御と、操舵時に車速が大きい稈アンダーステア特
性を弱めるような制御りなわら操舵時の遠心力にJ:る
ロールを押えるために車速の2乗〈ψ)を操舵角(θ)
に掛()含4つけたもの(θ×V2)の大きさに応じ℃
アンダーステア特性を弱める制御の2つが考えられる。
a3, speedometer 6 (Fig. 1,
In addition to the output of the steering angle sensor 5, the output of the steering angle sensor 5) is input to the 71 to 11-ra 3, and in addition to the above-mentioned spring constant control by the steering angle sensor 5, the output is This control according to the vehicle speed is, for example, as known in the art, for example, control for reinforcing understeer characteristics at high speeds, and control for the steering angle (θ). \/) 24 control in the opposite direction, and control to weaken the understeer characteristic where the vehicle speed is high during steering. ψ) is the steering angle (θ)
℃ depending on the size of (θ x V2)
Two types of control are possible to weaken the understeer characteristics.

第3図C゛は車速レノ1ノロの出力を利用してい/、に
いが第4図、第5〕図に示(実施例にJ3いて、車速レ
ンツ(3の出力を利用したL記2種の制御の例を説明づ
る。(前者の操舵角と車速に対して逆方向の制御を行’
cKうものを第5図の実1t[l!例て0×V2に対す
る制御を行なうものを第4図の実施例で説明する。) また、7I−1〜マニlノ′ル切換スイツチ7は、上記
の自動的なオート制御の他に、イf意に手動で前後輪の
ばね定数(KF、KR)を変えたいときに、手動での制
御を可能にするものである。
Figure 3C is a diagram using the output of vehicle speed 1, and is shown in Figures 4 and 5. An example of this type of control will be explained. (Control in the opposite direction for the former steering angle and vehicle speed
cK Umono in Figure 5 1t[l! For example, the control for 0xV2 will be explained with reference to the embodiment shown in FIG. ) In addition to the above-mentioned automatic automatic control, the 7I-1 ~ manifold knob changeover switch 7 can be used to manually change the spring constants (KF, KR) of the front and rear wheels at will. It allows manual control.

次に第4図に、第2の実施例を示す。この実施例で(よ
、−」ン]ヘローラ30に人力される操舵角センサ5の
出力0と車速センサ(3の出力Sとが、操舵角θはその
まま、車速Vは中速センサーの出力Sを電磁:に変換゛
りる変換器31にJ、って変換され!、−出力Vを乗算
器32によって11日−)合わせてV2にした後乗算器
33に入力されてθ×V1″を得、この出力θ×V2を
バラノア−371aと増幅器341)を介して前後輪の
ノノクチュエータla、21)に伝え、ばね定数を制御
するようにしている。すなわち、中速(V)を2乗した
ものと操舵角(0)をIt)け合わせた値の大小に応じ
てばね定数の前後輪比K F 、、=′KRの大きさを
この値(θ×v2)か大きい稈小さくなるにうに制御す
る。これにより、車速の2乗に比例りる遠心力の影響を
操舵角に乗じたものにλ・jするばね定数制御を行なう
ことができる。
Next, FIG. 4 shows a second embodiment. In this embodiment, the output 0 of the steering angle sensor 5 and the output S of the vehicle speed sensor (3), which are manually input to the roller 30, are the same as the steering angle θ, and the vehicle speed V is the output S of the medium speed sensor. is converted into electromagnetic J by the converter 31. -The output V is converted into V2 by the multiplier 32, and then input to the multiplier 33 to obtain θ×V1''. This output θ×V2 is transmitted to the front and rear wheel actuators la, 21) via the Balanor 371a and the amplifier 341) to control the spring constant.In other words, the medium speed (V) is squared. According to the magnitude of the value obtained by multiplying the steering angle (0) by the steering angle (It), the front and rear wheel ratio of the spring constant K F ,,='KR is set to this value (θ×v2) or the larger the culm becomes smaller. This makes it possible to control the spring constant by multiplying the steering angle by the influence of centrifugal force, which is proportional to the square of the vehicle speed, by λ·j.

次に車速と操舵角の組み合わせに応じて、前後輪のt;
f ta定数を制御する実施例を説明づる。
Next, depending on the combination of vehicle speed and steering angle, t of the front and rear wheels;
An example of controlling the fta constant will be described.

この第33の実施例は、K F / K )での大きさ
を操舵11)に小さく歪するという基本的な制御を覆る
一方、ざらに車速によってK l−’ 、/ K Rの
大ぎざを変えるにうにしたものである。1lJ4cわら
、低速のどきより高速のどぎにK F /’ K Rを
大きくして高速時アンダースデア特・[jlを強めるJ
、うにしたものである。
This 33rd embodiment covers the basic control of slightly distorting the magnitude of KF/K) in steering 11), while roughly distorting the magnitude of Kl-',/KR depending on the vehicle speed. It is something that can be changed. 1lJ4c Straw, increase K F /' K R at high speed throat than at low speed throat to increase the undersudder characteristic at high speed. [Strengthen jl J
, sea urchin.

この関係は表2のように表わりことができる。This relationship can be expressed as shown in Table 2.

表    2 表2にiljい(ソノ1−とはば4υ定故(Kl”、K
R)の小さいことを、ハートとは大きいことを意味する
。したがって1表2は低速のどきも高速のときも操舵時
は後輪のばね定数(K R)をソフトからハードにして
アンダースデア特性を弱めるようにしており、d進時も
操舵時も車速が低がら高に4rるど、前輪のばね定数(
KF)をソノj〜からハードにしてアンダーステア特性
を強めるようにしている。
Table 2.
R) means small, and heart means large. Therefore, Table 1 shows that the spring constant (K R) of the rear wheels is changed from soft to hard when steering at both low speeds and high speeds, weakening the under steer characteristic. From low to high 4r, the spring constant of the front wheel (
KF) is set to hard from Sono to strengthen the understeer characteristics.

このような実施例の回路図を第5図に示覆。A circuit diagram of such an embodiment is shown in FIG.

第5図から明らかなように、車速センサ6がらの出力は
コントローラ35の第1のコンパレータ36に入力され
、この第1コンパレータ36の出力に接続されている第
1トランジスタ37をオンオフし、これに接続されてい
る前輪のサスペンション1のアキ1ムレータ1Aのアク
チコ1−夕1a。
As is clear from FIG. 5, the output from the vehicle speed sensor 6 is input to the first comparator 36 of the controller 35, which turns on and off the first transistor 37 connected to the output of the first comparator 36. Actico 1-Yu 1a of connected front wheel suspension 1 Aki 1 muleta 1A.

1aを制御する。(操舵時第1の]ンバレータ36の出
力がH(こなり、アクチコニし−9をオーンづることに
にす、ソフトをハードにする)一方、操舵角セン→ノ5
の出力は第2のコンパレータ38に入力され、その出力
は第2の1〜ランジスタ39をオンオフし、これに接続
された後輪のリスペンション2のアキュムレータ2△の
アクチュエータ2a、2aを制御する。(操舵時に第2
の二1ンバレータ38の出力がHになり、アクチュエー
タをオンすることによりソフトをハードにする。) 次にばね定数可変のエアばねサスペンションの具体的な
例を第6図により詳細に説明づ゛る。
1a. (At the time of steering, the first) output of the energizer 36 is H (I decided to turn on -9 after turning on, and set the soft to hard), while the steering angle was set to -9.
The output is input to the second comparator 38, which turns on and off the second transistors 1 to 39, and controls the actuators 2a, 2a of the accumulator 2Δ of the rear wheel suspension 2 connected thereto. (Second
21 The output of the inverter 38 becomes H, and the actuator is turned on, thereby making the software hard. ) Next, a specific example of an air spring suspension with a variable spring constant will be explained in detail with reference to FIG.

第6図に示づように、車体の一部10に弾性体11を介
して上幅:を固定されたザスペンショ1ン2は、エアv
12を形成づる上ケース13と、この上ケースの下端に
上端を出入さUるように組み込J、れた外筒14と内筒
15からなる下ケース16と、上下のケース13.16
の内部内部を気密に連結覆る連結(ホ17と、上下のダ
ース13.1Gの内部を同軸に貫通し1;ダース16の
内筒15に対して上下に1習動自在のピストンロッド1
8と、このピストンロッド°18のF端に固着されたメ
インバルブ19と1.内筒15の下端に固着されたボ1
−ムバルブ20とを備え、メインバルブ19により、内
筒15内の油室をメインバルブ19の上のΔ至と下の[
3室とに分割し、さらに外筒14と内筒15の間の油室
Cを1端においてA至の上端と、下端にa3い(B室の
一ト端と、それぞれ連通させている。また、ビス1〜ン
ロツド18の中心を上下に゛1ン1−(]−ル1]ツド
21が貫通しており、このコントロールj」ット21は
上端21aが外ノjにより回転される回転キー22と回
転力伝達可能に係合されている。この]]ントロールロ
ツド2の下端部には、Δ室とB室とを連通さヒるにうに
ピストンロッド18の下端部18aに穿設された連通孔
181)と連通づるオリノィス211)が設けられ、コ
ントロールロッド21の回転にJ、す、このAリフイス
211)とピストンロッド下端部18aの連通孔181
)との連通がオンオフされるようになっ−(いる。
As shown in FIG.
12, a lower case 16 consisting of an outer cylinder 14 and an inner cylinder 15, which are assembled so that the upper end goes in and out of the lower end of the upper case, and upper and lower cases 13.16.
A connection that airtightly connects and covers the inside of the drum (1) coaxially penetrates the inside of the upper and lower darts 13.1G;
8, a main valve 19 fixed to the F end of this piston rod °18, and 1. Bottle 1 fixed to the lower end of the inner cylinder 15
The main valve 19 controls the oil chamber in the inner cylinder 15 between the upper and lower [Δ] of the main valve 19.
Furthermore, the oil chamber C between the outer cylinder 14 and the inner cylinder 15 is communicated with the upper end of the chamber A at one end, and the lower end of the oil chamber C is communicated with the lower end of the chamber B. In addition, a screw 21 passes vertically through the center of the screw 1 to the rod 18, and this control j'' cut 21 is controlled by the rotation when the upper end 21a is rotated by the outer knob j. It is engaged with the key 22 so that rotational force can be transmitted.The lower end of the control rod 2 is provided with a hole in the lower end 18a of the piston rod 18 to communicate the Δ chamber and the B chamber. An orifice 211) is provided that communicates with the communicating hole 181) in the lower end portion 18a of the piston rod.
) is now turned on and off.

コン1〜ロールロツド21の下端部を含むビス1〜ンロ
ツド18の下端部J5よびメインバルブ19とボ1〜ム
バルブ20の構造の詳細は省略づる。
Details of the structure of the lower end J5 of the screws 1 to 18 including the lower ends of the connectors 1 to 21, the main valve 19, and the bottom valves 1 to 20 will be omitted.

上ケース13と下ケース16の相対的上下動は、上記エ
ア室12によるエアばねの他に、上下のケース13.1
6に固定した上下のスブリンクケース13a、 16a
の間に挟持されたスプリング30により弾力的に吸収さ
れる。下ケース16の外面に固設されたブラケッl〜1
6b、16cは車輪を回転白石(こ支持するホイールハ
ブを含む車輪支持構造を固着するだめのもので、これに
より車輪は車体の一部10に上下動可能に保持される。
The relative vertical movement of the upper case 13 and the lower case 16 is caused by the air spring provided by the air chamber 12 as well as by the upper and lower cases 13.1.
Upper and lower sublink cases 13a and 16a fixed to 6
It is elastically absorbed by the spring 30 held between them. Brackets l~1 fixed to the outer surface of the lower case 16
Reference numerals 6b and 16c are used to fix the wheel support structure including the wheel hub that supports the wheels, and the wheels are thereby held on the part 10 of the vehicle body so as to be movable up and down.

すなわち、車体は、車輪に懸架され、L下動i」能に弾
性支持される1、 7二のエア室12の周壁の一部には、間口12aが股i
、)l rもれ、この間r’+ 128にはアキコムレ
ータ2△とこの工j’ 荀12を連通させるための空圧
配管23の一端が接続されている。この空圧配管2.3
の他端はデー1−1ムレータ2Δのソレノイドバルブ(
前記アクf =+ 1−一部)2aに接続され、このソ
レノイドバルブ゛2aは前記T1ン1〜ローラ3からの
′リード線3ciこ電気的に接続されている。
That is, the vehicle body is suspended on wheels and is elastically supported by L downward movement. Parts of the peripheral walls of the air chambers 12 and 72 have a frontage 12a extending from the crotch i.
, )l r leak, and during this time r'+ 128 is connected to one end of a pneumatic pipe 23 for communicating the Akicomulator 2Δ and this machine j' shaft 12. This pneumatic piping 2.3
The other end is the solenoid valve (
The solenoid valve 2a is electrically connected to the T1 lead wire 3ci from the roller 3.

このソレノイドバルブ2aは、前述のようにコントロー
ラJ1か1−′1の出力により閉じられて、エア室′1
2どアキr、 l\レータ2Aのエア室を分離し、下ア
ばねのばね定数K Rを大きくする。すなわら、この−
11ばねが後輪用のリスペンション2のものの場合は、
操舵時にはコントローラ3からの出力によりア:T ニ
ア、 l\レータ2Aのソレノイドバルブ2’alよ開
じられて、エア室12の容積は小さくなり、この」ア(
;rねのばね定数は大きくなる。ばね定数が大きくなる
とソフトなニアばねはハード(こなり、後輪のばね定数
K Rは人さくなって表2からら明らかなように車のア
ンダーステア特性が弱められ、応答性が大きくなる。
This solenoid valve 2a is closed by the output of the controller J1 or 1-'1 as described above, and the air chamber '1' is closed.
2. Separate the air chamber of the 2nd Aki R, l\Rator 2A, and increase the spring constant KR of the lower A spring. In other words, this -
If spring 11 is for rear wheel respension 2,
During steering, the solenoid valve 2'al of the controller 2A is opened by the output from the controller 3, and the volume of the air chamber 12 is reduced.
;The spring constant of the r spring becomes larger. As the spring constant increases, the soft near spring becomes harder (KR), and as is clear from Table 2, the understeer characteristics of the car are weakened and the responsiveness increases.

前輪の場合には、上記の制御とは反対に、操舵時の操舵
信号がコントローラ3に人力されると、コントローラ3
はアキュムレータ1Aのソレノイドバルブ(アクチュエ
ータ>laを開くように作用し、前輪ナスペンション1
,1のニアばねのばね定数KFを小さくし、ソノ1〜に
り゛る。
In the case of the front wheels, contrary to the above control, when a steering signal during steering is manually input to the controller 3, the controller 3
acts to open the solenoid valve (actuator >la) of accumulator 1A, and opens the front wheel suspension 1.
, 1 by decreasing the spring constant KF of the near spring, and moving up to Sono 1~.

本発明による自動車のリスペンションは、−L、記のよ
うにばね定数可変のばね手段を使用し、これを操舵角の
変化に応じて制御し−(操舵時にKF/KRを小さくす
るようにしているので・、非操舵片に弱められるアンダ
ーステア特性を望ましい強さに維持づることができ、操
舵角の変□化にかかわらず、常に安定した走行を実現す
ることがぐきる。
The respension of an automobile according to the present invention uses a spring means with a variable spring constant as shown in -L, and controls this according to changes in the steering angle (by reducing KF/KR during steering). As a result, the understeer characteristic, which is weakened by non-steering wheels, can be maintained at a desired level, and stable driving can always be achieved regardless of changes in the steering angle.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のサスベンジ…1ンを備えた自動車の概
略図、第2図は本発明の4ブースペンシヨンの実施例の
系統図、第3図から第5図は第2図の具体的な例を示す
回路図、第6図は本発明のリスペンションに使用される
ばね手段の例を示り一断面図である。 1.2・・・ナスペンション 1a、2a・・・アクチュエータ 1Δ、2A・・・アキュムレータ 3・・・コン1−ローラ   5・・・操舵角センサ6
・・・車速センサ 7・・・7I−1−マー−7アル切換スイツチ12・・
・エア室  13・・・上ケース  14・・・外 筒
1j)・・・内   筒    16・・・下ケース1
8・・・ビス1〜ン1」ツト  18b・・・連 通 
孔1つ・・メインバルブ   20・・・ボ1−ムバル
ブ21・・・コン1〜ロールロツド 21b・・・Δリ
フイス22・・・回転キー 第1図 第2図
Fig. 1 is a schematic diagram of an automobile equipped with a suspension system according to the present invention, Fig. 2 is a system diagram of an embodiment of a four-booth pension according to the present invention, and Figs. FIG. 6 is a sectional view showing an example of a spring means used in the respension of the present invention. 1.2... Eggplant pension 1a, 2a... Actuator 1Δ, 2A... Accumulator 3... Controller 1-Roller 5... Steering angle sensor 6
...Vehicle speed sensor 7...7I-1-MAR-7A changeover switch 12...
・Air chamber 13... Upper case 14... Outer cylinder 1j)... Inner cylinder 16... Lower case 1
8... Screws 1 to 1'' 18b... Connection
1 hole... Main valve 20... Bom valve 21... Control 1~Roll rod 21b... Δ refit 22... Rotary key Fig. 1 Fig. 2

Claims (1)

【特許請求の範囲】[Claims] 前後輪の1ノスペンシヨンの少なくとも0ずれbl一方
にダンパと並列に設けられたばね常数可変の(まね手段
、このばね手段のばね常数を変化させる調整手段、ステ
アリングの操舵を検出し、ステアリングが操舵されIC
ときに操舵信号を出力する操舵センナ、およびこの操舵
信号が入力されたとき前輪(ノスペンションのは゛ね常
数の後輪サス外ンションのばね常故に対リ−る比を低下
させる制御信号を前記調整手段に人力するコントローラ
からなる自動車のサスペンション。
At least 0 deviation of the front and rear wheels' 1 nose suspension bl A variable spring constant (copying means) provided in parallel with the damper on one side, an adjusting means for changing the spring constant of this spring means, detects the steering, and controls the IC when the steering is steered.
a steering sensor that outputs a steering signal when the steering signal is input; Automobile suspension consists of a human-powered controller.
JP18236882A 1982-10-18 1982-10-18 Suspension of car Granted JPS5973310A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP18236882A JPS5973310A (en) 1982-10-18 1982-10-18 Suspension of car
US06/542,652 US4555126A (en) 1982-10-18 1983-10-17 Vehicle suspension system
DE8383306313T DE3368558D1 (en) 1982-10-18 1983-10-18 Vehicle suspension system
EP83306313A EP0106697B1 (en) 1982-10-18 1983-10-18 Vehicle suspension system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18236882A JPS5973310A (en) 1982-10-18 1982-10-18 Suspension of car

Publications (2)

Publication Number Publication Date
JPS5973310A true JPS5973310A (en) 1984-04-25
JPS6147724B2 JPS6147724B2 (en) 1986-10-21

Family

ID=16117085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18236882A Granted JPS5973310A (en) 1982-10-18 1982-10-18 Suspension of car

Country Status (1)

Country Link
JP (1) JPS5973310A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6167608A (en) * 1984-09-06 1986-04-07 オートモビル ペエージオ Suspension having variable deflection damping characteristic

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311239U (en) * 1986-07-09 1988-01-25

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3068023A (en) * 1957-11-26 1962-12-11 Daimler Benz Ag Equalization spring system for vehicles, especially motor vehicles
JPS5326021A (en) * 1976-08-19 1978-03-10 Honda Motor Co Ltd Adjustable suspension for vehicle
JPS56147107U (en) * 1980-04-08 1981-11-06

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3068023A (en) * 1957-11-26 1962-12-11 Daimler Benz Ag Equalization spring system for vehicles, especially motor vehicles
JPS5326021A (en) * 1976-08-19 1978-03-10 Honda Motor Co Ltd Adjustable suspension for vehicle
JPS56147107U (en) * 1980-04-08 1981-11-06

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6167608A (en) * 1984-09-06 1986-04-07 オートモビル ペエージオ Suspension having variable deflection damping characteristic

Also Published As

Publication number Publication date
JPS6147724B2 (en) 1986-10-21

Similar Documents

Publication Publication Date Title
US4555126A (en) Vehicle suspension system
CN109641620B (en) Vehicle and method for steering a vehicle
US20030088350A1 (en) Rear wheel steering control
CN108602532A (en) Method for the travel direction for influencing motor vehicle
JP4622686B2 (en) Left and right independent drive vehicle
JPS60161255A (en) Auxiliary steering apparatus for car
JPH0585133A (en) Suspension device for vehicle
JPS5973310A (en) Suspension of car
JPS629449B2 (en)
Semmler et al. Global chassis control-the networked chassis
JP2913748B2 (en) Comprehensive control device for braking / driving force and wheel load distribution
JPS63188512A (en) Vehicle attitude control device
JP2841774B2 (en) Caster angle control device for vehicles
JP3079538B2 (en) Comprehensive control system for auxiliary steering angle and braking / driving force
JPS60191812A (en) Suspension control unit for vehicle
JP2936640B2 (en) Comprehensive control system for auxiliary steering angle and wheel load distribution
JPH07164852A (en) Driving force distributive controller of automobile
JPH1086622A (en) Vehicle stability controlling device
JPS5973309A (en) Suspension of car
JPH01275272A (en) Running control device for vehicle
JP2894393B2 (en) Caster angle control device for vehicles
JPS60113714A (en) Stabilizer controller for car
Katayama et al. Development of 4 Wheel Active Steer
JPS60161258A (en) Auxiliary steering apparatus for car
JPH04260807A (en) Roll rigidity controlling device