JPS5973009A - Degassing apparatus - Google Patents
Degassing apparatusInfo
- Publication number
- JPS5973009A JPS5973009A JP18257182A JP18257182A JPS5973009A JP S5973009 A JPS5973009 A JP S5973009A JP 18257182 A JP18257182 A JP 18257182A JP 18257182 A JP18257182 A JP 18257182A JP S5973009 A JPS5973009 A JP S5973009A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- high molecular
- compressor
- pipe
- tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Degasification And Air Bubble Elimination (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、天然ガス等の高分子量炭化水素成分を含む
ガスを圧縮づるターボ圧縮機のシールオイルをデガツシ
ングする装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for degassing seal oil of a turbo compressor that compresses gas containing high molecular weight hydrocarbon components such as natural gas.
一般に、天然ガス等を取扱うターボ圧縮機のシールオイ
ルはその取扱いガスに一部さらされて、天然ガス内の高
分子量成分がシールオイルの中にとけこんでオイルの粘
度を低下させると共にオイルの引火点温度も低下させ、
圧縮機に悪影響をおよぼす。Generally, the seal oil of a turbo compressor that handles natural gas etc. is partially exposed to the handled gas, and the high molecular weight components in the natural gas dissolve into the seal oil, lowering the viscosity of the oil and lowering the flash point of the oil. It also lowers the temperature
This will adversely affect the compressor.
このため、シールオイルの中にとけこんだ高分子量成分
を脱ガス51−るための装置、すなわちデガツシング装
置が必要になる。このデガツシング装置として、高分子
量成分を含んだシールオイルのタンク中に窒素などの不
活性ガスを吹き込んでバブリングさせ、オイル内の高分
子量成分等をデガツシングさせることがしばしば実施さ
れているが、デガツシングに不活性ガスが用いられるの
は、シールオイルの引火点温度が前述のように低くなり
ていることやオイルの酸化を防ぐため、酸素を含むガス
は使用できないためである。また窒素などの不活性ガス
がない場合には、シールオイルのタンクを減圧〈真空)
する方法が実施されているが、非常に高価なものになる
欠点がある。Therefore, a device for degassing the high molecular weight components dissolved in the seal oil, that is, a degassing device is required. This degumming device is often implemented by blowing and bubbling an inert gas such as nitrogen into a seal oil tank containing high molecular weight components to degump the high molecular weight components in the oil. The reason why an inert gas is used is because the flash point temperature of the seal oil is low as mentioned above, and because a gas containing oxygen cannot be used to prevent oxidation of the oil. Also, if there is no inert gas such as nitrogen, reduce the pressure in the seal oil tank (vacuum).
Although methods have been implemented, they have the disadvantage of being very expensive.
本発明は、前述の如く不活性ガスがない場合のデガツシ
ングを別置の真空ポンプを使用することなく不活性ガス
のバブリングど同じ程度に、安価に実施したいという必
要性から発明に至ったものである。例えば、海上プラッ
トフォーム十に設置される天然ガス用圧縮機などはその
必要上から機器を少なくし、自家処理をすることが望ま
しいとされる。The present invention was developed out of the need to perform degumming in the absence of an inert gas at a low cost, to the same extent as inert gas bubbling, without using a separate vacuum pump, as described above. be. For example, it is considered desirable to reduce the number of equipment required for natural gas compressors installed on offshore platforms and to perform in-house processing.
第1図は従来方式のデガツシング装置を示したもので、
窒素タンク5を有する窒素ガス供給装置から配管2を通
して窒素ガスが供給され、デガツシングタンク1内でバ
ブリングされる。Figure 1 shows a conventional degutting device.
Nitrogen gas is supplied through piping 2 from a nitrogen gas supply device having a nitrogen tank 5, and is bubbled within the degassing tank 1.
圧wJIaの取扱いガスと接触した高分子量ガス成分を
含んだシールオイルが配管3よりデガツシングタンク1
に導かれ、タンク1ではシールオイルはヒータ6により
加熱され、配管2力目らの不活性ガスC・バブリングさ
れてデガツシングされる。このオイルは配管4から再度
圧縮機のシールオイル装置に戻り、再び圧縮機のシール
用に供給される。Seal oil containing a high molecular weight gas component that has come into contact with the handling gas at pressure wJIa is transferred from piping 3 to degassing tank 1.
In the tank 1, the seal oil is heated by a heater 6, bubbled with inert gas C from the second pipe, and degushed. This oil returns to the seal oil device of the compressor through the pipe 4 and is again supplied for sealing the compressor.
第2図は本発明の実施例で、デガツシングタンク1は第
1図の場合と同様である。第1図の配管2には窒素ガス
を送給したに対し、本発明においては圧縮機7の吐出カ
スをデガツシング用に利用したものである。圧縮機7の
吐出側に設けられた吐出冷却器10の出口ガスを分岐し
配管13を経てタンク14に導入する。タンク14はタ
ンク17と比較的長い形状のノズル15により接続され
ており、タンク17はベント管18により大気圧レベル
に保たれる。一方ノズル15内には管16が適切な位置
に間口し、管1Gはノズル15外のミス1〜セパレータ
19に接続される。圧縮ガスはタンク14からノズル1
5内に開口している管1Gを通過し断熱膨張して高分子
量成分はミスト状に凝縮し高分子量成分の除かれたガス
が、もし必要な場合加熱器21、弁22を経由して配管
2に導かれてバブリング用に使用される。FIG. 2 shows an embodiment of the present invention, in which the degassing tank 1 is the same as that in FIG. While nitrogen gas is supplied to the piping 2 in FIG. 1, in the present invention, the waste discharged from the compressor 7 is used for degassing. The outlet gas of a discharge cooler 10 provided on the discharge side of the compressor 7 is branched and introduced into a tank 14 via a pipe 13. The tank 14 is connected to a tank 17 by a relatively long nozzle 15, and the tank 17 is maintained at atmospheric pressure level by a vent pipe 18. On the other hand, a pipe 16 is opened at an appropriate position inside the nozzle 15, and the pipe 1G is connected to the miss 1 to the separator 19 outside the nozzle 15. Compressed gas flows from tank 14 to nozzle 1
The gas from which the high molecular weight components have been removed is passed through the pipe 1G opened in the interior of the pipe 1G, expands adiabatically, and is condensed into a mist. 2 and used for bubbling.
次に本発明の作用を図について説明すると、圧縮機7は
高分子量成分を含む天然ガスを配管8から吸引し、圧縮
後針出側配管9に吐出し、吐出冷却器10に送る。11
は冷却水用配管である。Next, the operation of the present invention will be explained with reference to the drawings. The compressor 7 sucks natural gas containing high molecular weight components from the pipe 8, and after compressing it, discharges it to the needle outlet side pipe 9 and sends it to the discharge cooler 10. 11
is the cooling water piping.
冷却器10を出たガスは管路127J+iら管路23へ
と流出し使用に供されるが、管路12から分岐された配
管13へはガスの一部が送られタンク14に導入される
。タンク17はベント管18により大気圧に開放されて
いるので両タンク14.17をつなぐノズル15には相
当高い速度でガスが流れる。このときカスが魚激に膨張
するためにガスは断熱膨張し温度がさがる。すなわち、
タンク14の温度TOsノズル15内の温度T2とし、
流速W2とすれば、
Cp (−ro −T2 )−AW2 2 /
2Q但し、Cp:ガスの定圧比熱、A:仕事の熱当量、
g :重力加速度
となり、速度W2に応じノズル15内の温度T2は低下
する。The gas leaving the cooler 10 flows out through the pipe 127J+i to the pipe 23 and is used, but a part of the gas is sent to the pipe 13 branched from the pipe 12 and introduced into the tank 14. . Since tank 17 is open to atmospheric pressure by vent pipe 18, gas flows at a considerably high velocity through nozzle 15 connecting both tanks 14,17. At this time, the waste expands rapidly, causing the gas to expand adiabatically and lowering its temperature. That is,
The temperature of the tank 14 is TOs, and the temperature inside the nozzle 15 is T2,
If the flow velocity is W2, then Cp (-ro -T2)-AW2 2 /
2Q However, Cp: constant pressure specific heat of gas, A: heat equivalent of work,
g: gravitational acceleration, and the temperature T2 inside the nozzle 15 decreases according to the speed W2.
ノズル15外には管1Gが内臓され開口部がタンク14
に近い位置にあり、従って管1eの開口部のカス温度は
To、圧力はピトー管の全圧力口と同様原理でかなり高
圧となり、流速は比較的ゆるやかな状態を得ることがで
きる。管16内のガスはノズル15内を通過することに
よりT2のレベルにまで冷却され、ミストレバレータ1
9に送られる。ミストセパレータ19に送られたガスの
高分子量成分はガス状では飽和状態どなり、ミストとし
てミス1−セパレータにて回収され排出口120から排
出される。従って高分子゛量成分の除かれたガスのみが
加熱器21及び弁22を経由して配管2に送られてシー
ルオイルのバブリング用に使用される。配管2のバブリ
ングに必要な温度は加熱器21により、又圧力は弁22
により調整されるのである。A tube 1G is built in outside the nozzle 15, and the opening is the tank 14.
Therefore, the scum temperature at the opening of the tube 1e is To, the pressure is quite high based on the same principle as the full pressure port of the Pitot tube, and the flow rate can be relatively slow. The gas in the pipe 16 is cooled to the level T2 by passing through the nozzle 15, and the mist lever regulator 1 is cooled down to the level T2.
Sent to 9th. The high molecular weight components of the gas sent to the mist separator 19 reach a saturated state in gaseous form, are collected as mist by the mist separator, and are discharged from the discharge port 120. Therefore, only the gas from which high molecular weight components have been removed is sent to the pipe 2 via the heater 21 and the valve 22 and used for bubbling the seal oil. The temperature required for bubbling in the pipe 2 is controlled by the heater 21, and the pressure is controlled by the valve 22.
It is adjusted by
以上の説明で理解される如く、ターボ圧縮機のシールオ
イルをバブリング用
グするにあたり、従来はオイルを単に加熱゛りるだりで
デガツシングが可能である。しかし高分子量成分を含む
カスを圧縮機に使用したシールオイルを再使用する場合
には単に加熱しただけでは混入する高分子量成分が取り
去れ一部、結局、デガツシングのための不活性ガスによ
りバブリングと加熱とを411用Jることにより脱ガス
する方法と、シールオイルタンクを真空ポンプにより減
圧し加熱して高分子用成分を除去する方法がある。本発
明はこのいずれの方法をも採用することなく圧縮機の圧
縮ガス自体をバブリングに使用してデガツシングするた
めに、仕縮機の吐出ガスの冷却器用]二1のガスの一部
を断熱膨張せしめC冷7J]シ、ガスに含まれている高
分子量成分を液状にして除去せしめる装置を有したデガ
ツシング装置であるので、不活性ガスを使用しなくても
デガツシングすることができ、安価な手段で高分子量成
分のデガツシングをすることができるものである。As understood from the above explanation, when bubbling the seal oil of a turbo compressor, degassing has conventionally been possible by simply heating the oil. However, when reusing seal oil from a compressor that contains residue containing high molecular weight components, simply heating it will remove some of the high molecular weight components, and eventually the inert gas used for degassing will cause bubbling. There is a method of degassing by heating and a method of degassing, and a method of reducing the pressure of the seal oil tank with a vacuum pump and heating it to remove the polymer components. The present invention does not employ any of these methods, but uses the compressed gas itself from the compressor for bubbling to perform degutting. [Seshime C Cold 7J] This is a degumming device that is equipped with a device that removes high molecular weight components contained in the gas by turning it into a liquid state, so it is possible to perform degumming without using an inert gas, and is an inexpensive method. This allows degutting of high molecular weight components.
第1図は従来のデガツシング装置の1例を示す側断面図
、第2図は本発明を説明づるためのデガツシング装置の
実施例を承り側断面図である。
1・・・デガツシングタンク、5・・・窒素ボンベ。
6・・・加熱管、7・・・圧縮機、10・・・冷k]器
、14.17・・・タンク、15・・・ノズル、16・
・・管、19・・・ミストセパレータ。FIG. 1 is a side sectional view showing an example of a conventional degumming device, and FIG. 2 is a side sectional view showing an embodiment of the degumming device for explaining the present invention. 1... Degassing tank, 5... Nitrogen cylinder. 6... Heating tube, 7... Compressor, 10... Cooler, 14.17... Tank, 15... Nozzle, 16...
...Pipe, 19...Mist separator.
Claims (1)
シングする装置であって、当該圧縮機の吐出側に配置す
る冷却器の排出ガスの一部を断熱膨張させ冷却し、ガス
に含まれている高分子量成分を液化して除去せしめる装
置を有し、該装置により高分子量成分を除去した後のガ
スをバブリングに使用することを特徴としたデガツシン
グ装置。This device degushes the seal oil of a turbo compressor by bubbling. It adiabatically expands and cools a part of the exhaust gas from a cooler placed on the discharge side of the compressor, and removes high molecular weight components contained in the gas. A degassing device comprising a device for liquefying and removing high molecular weight components, and using the gas after removing high molecular weight components by the device for bubbling.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18257182A JPS5973009A (en) | 1982-10-18 | 1982-10-18 | Degassing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18257182A JPS5973009A (en) | 1982-10-18 | 1982-10-18 | Degassing apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5973009A true JPS5973009A (en) | 1984-04-25 |
JPS6136443B2 JPS6136443B2 (en) | 1986-08-19 |
Family
ID=16120600
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18257182A Granted JPS5973009A (en) | 1982-10-18 | 1982-10-18 | Degassing apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5973009A (en) |
-
1982
- 1982-10-18 JP JP18257182A patent/JPS5973009A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6136443B2 (en) | 1986-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5547021A (en) | Method and apparatus for fluid production from a wellbore | |
US3315879A (en) | Evacuation system | |
FR2820052B1 (en) | ANTI-SUBLIMATION CARBON DIOXIDE EXTRACTION PROCESS FOR ITS STORAGE | |
US4110996A (en) | Method and apparatus for recovering vapor | |
US20020017193A1 (en) | Method and apparatus for removing gas from drilling mud | |
US4346726A (en) | Method of drying pipelines and putting gas thereinto | |
KR920704016A (en) | Oil recovery system for low volume operation of refrigeration system | |
US5951741A (en) | Hydrocarbon vapor recovery processes and apparatus | |
US6383257B1 (en) | Reclamation and separation of perfluorocarbons using condensation | |
US5163462A (en) | Apparatus for tapping a fluid through a wall | |
US6829906B2 (en) | Multiple products and multiple pressure vapor recovery system | |
JPS6365189A (en) | Method and device for transporting gas | |
JPS58656Y2 (en) | Ammonia recovery equipment | |
JPH07507964A (en) | cryogenic water pump | |
JPS5973009A (en) | Degassing apparatus | |
US3903708A (en) | Volatile vapor recovery system and method utilizing joule thompson expansion | |
KR890701965A (en) | Refrigerant regeneration method and apparatus | |
US3914115A (en) | Method and apparatus for separating and collecting hydrocarbons in a volatile vapor mixture | |
JPH05508215A (en) | Methods using single-stage and multi-stage cooling systems and hydrocarbons | |
US4898006A (en) | Method and apparatus for drawing off low boiling media from pressure systems | |
NO833302L (en) | PROCEDURE FOR EXTRACING GAS FROM FLUID | |
KR930005667B1 (en) | Method and arrangement for pumping refrigerants | |
JP2992472B2 (en) | CFC recovery method and apparatus for implementing the method | |
US6247314B1 (en) | Apparatus and method for continuously disposing of condensate in a fluid compressor system | |
US4953356A (en) | Geothermal reboiler apparatus and method |