JPS597258B2 - Kouatsuhatsu Seisouchi - Google Patents

Kouatsuhatsu Seisouchi

Info

Publication number
JPS597258B2
JPS597258B2 JP14505975A JP14505975A JPS597258B2 JP S597258 B2 JPS597258 B2 JP S597258B2 JP 14505975 A JP14505975 A JP 14505975A JP 14505975 A JP14505975 A JP 14505975A JP S597258 B2 JPS597258 B2 JP S597258B2
Authority
JP
Japan
Prior art keywords
flyback transformer
voltage
transformer
parallel
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14505975A
Other languages
Japanese (ja)
Other versions
JPS5269522A (en
Inventor
光治 赤津
満雄 大津
正 長崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14505975A priority Critical patent/JPS597258B2/en
Priority to FI763461A priority patent/FI61377C/en
Priority to US05/747,324 priority patent/US4112337A/en
Priority to BR7608164A priority patent/BR7608164A/en
Priority to CA267,235A priority patent/CA1081844A/en
Priority to GB51005/76A priority patent/GB1573808A/en
Priority to IT69923/76A priority patent/IT1072145B/en
Priority to TR19271A priority patent/TR19271A/en
Priority to MX767903U priority patent/MX3504E/en
Priority to FR7636843A priority patent/FR2335112A1/en
Priority to AU20307/76A priority patent/AU499222B2/en
Priority to AR265751A priority patent/AR216753A1/en
Priority to DE2655466A priority patent/DE2655466B2/en
Priority to PH19213A priority patent/PH12818A/en
Publication of JPS5269522A publication Critical patent/JPS5269522A/en
Priority to HK591/81A priority patent/HK59181A/en
Priority to MY184/82A priority patent/MY8200184A/en
Publication of JPS597258B2 publication Critical patent/JPS597258B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明ぱ例えばテレビジョン受信機に用いられる高圧レ
ギュレーシヨンを改善した高圧発生装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high voltage generator for use in, for example, a television receiver, with improved high voltage regulation.

従来より高圧レギユレーシヨンを改善する手段として種
々の方法が知られている。
Various methods have been known to improve high pressure regulation.

例えば、可飽和リアクターを使用して高圧負荷変動に従
いパルス巾を変化?せて高圧を安定化する方法、高圧負
荷変動に従い直流電源電圧を変化▲せる方法、高圧整流
器の後にブリーダー抵抗を接続する方法等がある。しか
し、これらの方法では無駄な消費電力を必要以上に要し
たり、部品点数が多くコスト高になる等の欠点があつた
。以下ブリーダー抵抗を接続する方法を例にとリ説明す
る。第1図は一般的な水平出力回路を示し、ここで1は
水平出力トランジスター 2はダンパーダイオード、3
は共振コンデンサー、4は偏向ヨーク、5はS字補正及
び直流カツトコンデンサ一、6はフライバツクトランス
、7はフライバツクトランスの一次巻線、8は二次巻線
、9は高圧整流ダイオードをそれぞれ示す。
For example, using a saturable reactor to vary the pulse width according to high pressure load fluctuations? There are methods such as stabilizing the high voltage by adjusting the voltage, changing the DC power supply voltage according to fluctuations in the high voltage load, and connecting a bleeder resistor after the high voltage rectifier. However, these methods have drawbacks such as unnecessary power consumption and high cost due to the large number of parts. The method for connecting the bleeder resistor will be explained below using an example. Figure 1 shows a general horizontal output circuit, where 1 is a horizontal output transistor, 2 is a damper diode, and 3 is a horizontal output transistor.
is a resonance capacitor, 4 is a deflection yoke, 5 is an S-shaped correction and DC cut capacitor, 6 is a flyback transformer, 7 is a primary winding of the flyback transformer, 8 is a secondary winding, and 9 is a high voltage rectifier diode. show.

これを等価回路で表わすと第2図の如くなる。This can be expressed as an equivalent circuit as shown in FIG.

ここで、SWは水平トランジスター1とダンパーダイオ
ード2に相当し、L1は偏向ヨーク4とフライバツクト
ランス6の一次巻線7のインダクタンスを並列接続した
等価インダクタンス、C1は共振コンデンサー、L2は
一次巻線と二次巻線との間のリーケージインダクタンス
、C2は二次巻線の対地容量である。第2図の等価回路
において、SWが開いた時の対地容量C2の両端に発生
する電圧VC2は(1)式で表わされる。ただし、 ここでD,βはこの共振回路の共振角周波数、dは基本
角周波数、βは高調波角周波数を表わし、β/(tが奇
数のNにおいて(2)式を満足する値の時、走査期間に
リンギング電圧が生じないというのが良く知られた高調
波同調理論である。
Here, SW corresponds to the horizontal transistor 1 and damper diode 2, L1 is the equivalent inductance obtained by connecting the inductance of the deflection yoke 4 and the primary winding 7 of the flyback transformer 6 in parallel, C1 is the resonant capacitor, and L2 is the primary winding. The leakage inductance between C and the secondary winding, C2 is the ground capacitance of the secondary winding. In the equivalent circuit of FIG. 2, the voltage VC2 generated across the ground capacitance C2 when SW is open is expressed by equation (1). However, here, D and β are the resonant angular frequencies of this resonant circuit, d is the fundamental angular frequency, and β is the harmonic angular frequency, and when β/(t is a value that satisfies equation (2) for an odd number of N) , the well-known harmonic tuning theory states that no ringing voltage occurs during the scan period.

(2)式において、N=3が3次同調、N−5が5次同
調であV,.NによVN次同調と呼ばれている。
In equation (2), N=3 is third-order tuning, N-5 is fifth-order tuning, and V, . This is called VN-order tuning by N.

各次数によりβ/αはTrとTsの比によつて変化する
。例えば、Tr=12μs、14μsの場合(水平繰返
し周期は63.5μsとする)各次数でのβ/dは表1
のようになる。上記(1)式かられかるように、出力V
C2の基本波成分と高調波成分の比はα/βとなV1表
1かられかるように同調次数により決定?れるほぼ一定
の値を持つ。
For each order, β/α changes depending on the ratio of Tr and Ts. For example, when Tr=12μs and 14μs (the horizontal repetition period is 63.5μs), β/d for each order is shown in Table 1.
become that way. As can be seen from the above equation (1), the output V
The ratio of the fundamental wave component to the harmonic component of C2 is α/β.V1 Is it determined by the tuning order as shown in Table 1? It has an almost constant value.

又出力波形については(1)式かられかるように、3,
7,11次同調では第3図aの如く(3次同調の場合を
図示)VC2の波形の中心では凸状波形となり、5,9
,13次同調では、第3図bの如く(5次同調の場合を
図示)凹状波形となる。ここでぱ3次,5次同調の場合
を例にとv両者の比較とレギユレーシヨンの関係を説明
する。第3図aは3次同調、bぱ5次同調の場合の出力
波形を示したもので、波形を見ても明らかなように、5
次同調波形は3次同調波形に比べて幅が広い。この為負
荷を取つた時、5次同調の方が3次同調と比較してダイ
オード流通角が広くな楓高圧レギユレーシヨンが良い事
は明らかである.このようにレギユレーシヨンを良くす
る方法として5,9次同調を用いる事が多くなつて来た
。しかしこのままでは第3図bかられかるように波形が
双峰となつている為、小電流領域ては双峰部が第4図の
ようにけずv取られるまでの電圧変動率が大きい欠点が
あつた。この影響を無くす為第5図に示すように高圧ダ
イオードの後にブリーダー抵抗10を挿入して常に一定
電流を流し、双峰部を切り取つた状態で用いなければ十
分な効果を得る事ぱ出来ない。この模様を第6図に示す
。Aがブリーダー抵抗の無い場合、Bがブリーダー抵抗
有の場合のレギユレーシヨン特性である。このようにブ
リーダー抵抗を入れればブラウン管電流以外の電流を流
す為、ブリーダー抵抗10の抵抗値をRとし、高圧をE
HTとするとEHT2/Rの電力損失を生じる事となる
。その上高圧部よりアースに抵抗を接続する為、十分な
耐圧を持つた高圧抵抗を使用しなければならず、絶縁に
も十分な考慮を払わなければならないから当然コストも
上がり信頼性にも欠ける事となる。本発明の目的は上記
した従米技術の欠点を無くし、有効に高圧レギユレーシ
ヨンを改善する装置に関するものである。
As for the output waveform, as can be seen from equation (1), 3,
In the 7th and 11th order tuning, as shown in Figure 3a (the case of 3rd order tuning is shown), the center of the VC2 waveform becomes a convex waveform, and the 5th and 9th order.
, 13th-order tuning results in a concave waveform as shown in FIG. 3b (the case of 5th-order tuning is shown). Here, a comparison between the two and the relationship between the regulation will be explained using the cases of third-order and fifth-order tuning as examples. Figure 3 a shows the output waveforms in the case of third-order tuning, and b shows the output waveforms in the case of fifth-order tuning.
The third-order tuned waveform has a wider width than the third-order tuned waveform. For this reason, when the load is removed, it is clear that 5th-order tuning is better than 3rd-order tuning, which has a wider diode flow angle and high-pressure regulation. In this way, 5th and 9th order tuning has been increasingly used as a method to improve regulation. However, if this continues as it is, the waveform will become double peaks as shown in Figure 3b, so in the small current region, the voltage fluctuation rate will be large until the double peaks are removed as shown in Figure 4. It was hot. In order to eliminate this effect, a bleeder resistor 10 is inserted after the high-voltage diode as shown in FIG. 5, and a constant current is constantly passed, and unless the double-peaked portion is used in a cut-off state, a sufficient effect cannot be obtained. This pattern is shown in FIG. A is the regulation characteristic when there is no bleeder resistance, and B is the regulation characteristic when there is bleeder resistance. If a bleeder resistor is inserted in this way, a current other than the cathode ray tube current will flow, so the resistance value of the bleeder resistor 10 is set to R, and the high voltage is set to E.
If HT is used, a power loss of EHT2/R will occur. Furthermore, since the resistor is connected to the ground from the high-voltage part, a high-voltage resistor with sufficient withstand voltage must be used, and sufficient consideration must be given to insulation, which naturally increases costs and lacks reliability. It happens. SUMMARY OF THE INVENTION An object of the present invention is to provide a device which eliminates the above-mentioned drawbacks of the prior art and effectively improves high pressure regulation.

本発明の特徴は5,9,13次等の(4k+1)次同調
では出力波形の中心で基本波と高調波の位相が反対とな
り、出力波形は双峰波形となり中心でへこみを生じるが
、このへこみの程度は高調波成分の大き?により変化す
る。
The feature of the present invention is that in (4k+1) order tuning such as 5th, 9th, and 13th orders, the phases of the fundamental wave and harmonics are opposite at the center of the output waveform, and the output waveform becomes a bimodal waveform with a dent at the center. Does the degree of denting depend on the size of the harmonic components? Varies depending on

この関係を5次同調の場合を例にとり示したのが第7図
である。ここでPは基本波成分に対する高調波成分の比
である。(1)式と表1のβ/dよりわかるように、そ
のままではPはほぼ0.22であ只深いへこみを生じて
いるが、高調波成分をなんらかの方法で小さくする事が
出米ればへこみ量を減少せしめる事が出米ることに鑑み
、具体的にぱフライバツクトランスの一次巻線と直列に
周波数特性を持つた減衰回路を挿入し、高調波成分を効
果的に減衰せしめ出力波形のへこみ特性もしくはとがv
特性をやわらげ高圧レギユレーシヨンを改善しようとす
るものである。以下図に卦いて本発明を説明する。
FIG. 7 shows this relationship using the case of fifth-order tuning as an example. Here, P is the ratio of the harmonic component to the fundamental component. As can be seen from Equation (1) and β/d in Table 1, P is approximately 0.22 and a deep depression is created as it is, but if it is possible to reduce the harmonic components in some way. Considering that it is possible to reduce the amount of denting, we specifically inserted an attenuation circuit with frequency characteristics in series with the primary winding of the flyback transformer to effectively attenuate harmonic components and shape the output waveform. The indentation characteristic or sharpness of
The aim is to soften the characteristics and improve high pressure regulation. The present invention will be explained below with reference to the figures.

第8図は本発明の一実施例の水平出力回路を示すもので
、第1図と同一物は同一番号を付し説明を省略する。本
発明の実施例と第1図に示す従米例との違いは、コイル
11、コンデンサー12よりなるLC並列共振回路に更
に抵抗を並列に接続したLCR並列回路をフライバツク
トランス6の一次巻線7と直列に接続挿入した事にある
。ここで、コイル11のインダクタンスをL。
FIG. 8 shows a horizontal output circuit according to an embodiment of the present invention. Components that are the same as those in FIG. The difference between the embodiment of the present invention and the example shown in FIG. This is because they are connected and inserted in series. Here, the inductance of the coil 11 is L.

、コンデンサー12の容量をC。、抵抗の値をR。とす
ると、LOCOの共振角周波数をほぼ高調波角周波数β
に等しく選んである。この場合のインピーダンス特性を
示したのが第9図で、曲線aはLC共振回路のインピー
ダンス曲線、曲線bは抵抗のインピーダンス曲線を示す
。第9図により本発明の動作原理を説明する。基本角周
波数電流の大部分はインピーダンスの低いLC回路(大
半はコイル11)を流れ抵抗を流れる割合は小さい為抵
抗損失は少ないが逆に高調波雷流の大部分ぱインピーダ
ンスの低い抵抗13を通じて供給される為大きな抵抗損
失を生じる。この抵抗損失の為出力電圧VC2の高調波
成分は基本波成分に比べて大きく減衰する。この為出力
波形のへこみ量は第7図に示すように小さくなD、小電
流領域での電圧変動を押さえる事が出米る。第10図は
本発明の他の実施例の水平出力回路を示すもので、共振
周波数をほぼ高調波周波数に等しく選んだLC並列共振
回路に更に抵抗13をコンデンサー12と直列に接続し
たLCR回路をフライバツクトランスの一次巻線と直列
に挿入したものである。
, the capacitance of capacitor 12 is C. , the value of resistance is R. Then, the resonance angular frequency of LOCO is approximately the harmonic angular frequency β
is chosen to be equal to FIG. 9 shows the impedance characteristics in this case, where curve a shows the impedance curve of the LC resonant circuit, and curve b shows the impedance curve of the resistor. The operating principle of the present invention will be explained with reference to FIG. Most of the fundamental angular frequency current flows through the low impedance LC circuit (mostly the coil 11), and a small proportion flows through the resistor, so there is little resistance loss, but on the other hand, most of the harmonic lightning current is supplied through the low impedance resistor 13. This causes large resistance loss. Due to this resistance loss, the harmonic components of the output voltage VC2 are attenuated to a greater extent than the fundamental wave components. For this reason, the amount of depression in the output waveform is small as shown in FIG. 7, and voltage fluctuations can be suppressed in the small current region. FIG. 10 shows a horizontal output circuit according to another embodiment of the present invention, which includes an LC parallel resonant circuit whose resonance frequency is selected approximately equal to the harmonic frequency, and an LCR circuit in which a resistor 13 is further connected in series with a capacitor 12. It is inserted in series with the primary winding of a flyback transformer.

この場合、LCR回路の共振周波数はほぼ高調波周波数
と等しい為、高調波電流成分はLCR回路で共振し、高
インピーダンスとなり抵抗13により大きく減衰を受け
るが、基本波成分ぱ低インピーダンスのコイルLを通過
して流れる為、ほとんど減衰を受けない。この為、FB
Tの高圧出力波形の高調波成分は基本波成分に比べて大
きく減衰され、出力波形は平たんとなv小電流領域での
電圧変動は軽減される。第11図は本発明の更に他の実
施例を示すもので、14!−jメカニカルフイルタ一、
クリスタルフイルタ一等により構成されたフイルタ一で
減衰帯域をほぼ高調波周波数に等しく選んである。
In this case, since the resonant frequency of the LCR circuit is almost equal to the harmonic frequency, the harmonic current component resonates in the LCR circuit and becomes a high impedance and is greatly attenuated by the resistor 13. Because it flows through it, it receives almost no attenuation. For this reason, FB
The harmonic components of the high-voltage output waveform of T are greatly attenuated compared to the fundamental wave components, and the output waveform is flat and voltage fluctuations in the small current region are reduced. FIG. 11 shows still another embodiment of the present invention, 14! -j mechanical filter one,
The attenuation band of the filter constituted by a crystal filter is selected to be approximately equal to the harmonic frequency.

この場合、第8図の実施例と同様高調波成分を減衰させ
レギユレーシヨンの改善を行う事が出来る。以上、抵抗
素子を用いて高調波成分を減衰?せる実施例について説
明したが、共振素子自体のQが低く、損失が大きい場合
には別に抵抗素子を追加する必要はなく、高調波周波数
とほぼ等しい並列共振周波数を有するQの低い共振素子
をフライバツクトランスの一次巻線と直列に挿入すれば
同一効果が得られる事ぱ以上の説明より明らかである。
第12図はその一実施例を示すもので、イ図は水平偏向
出力回路を、口,ハ図に追加挿入したコイル11、コン
デンサー12のLC回路の等価回路を示したものである
。この場合、コンデンサー12のQは低く選んであり、
等価的に並列抵抗17もしくは直列抵抗18が接続され
た事となり、第8図、第9図の実施例と同一効果を有し
、高調波成分を基本波成分に比べて大きく減衰せしめレ
ギユレーシヨン改善の効果を有する。以上のように本発
明の特徴ぱ、LCR等よりなる共振回路をフライバツク
トランスの一次巻線と直列に挿入して高圧出力波形の高
調波成分を有効的に減衰せしめる事によV1フライバツ
クトランスの出力波形を平たんにし、高圧レギユレーシ
ヨンを改善しようとするものである。
In this case, the regulation can be improved by attenuating harmonic components as in the embodiment shown in FIG. Is the harmonic component attenuated using a resistor element? However, if the Q of the resonant element itself is low and the loss is large, there is no need to add a separate resistance element, and it is possible to fly a resonant element with a low Q that has a parallel resonant frequency almost equal to the harmonic frequency. It is clear from the above explanation that the same effect can be obtained by inserting the back transformer in series with the primary winding.
FIG. 12 shows one embodiment of the present invention, and FIG. 12 shows an equivalent circuit of an LC circuit including a coil 11 and a capacitor 12 in which a horizontal deflection output circuit is additionally inserted in FIGS. In this case, the Q of capacitor 12 is chosen low;
Equivalently, a parallel resistor 17 or a series resistor 18 is connected, which has the same effect as the embodiments shown in FIGS. 8 and 9, and improves regulation by attenuating harmonic components to a greater extent than fundamental components. have an effect. As described above, the main feature of the present invention is that the V1 flyback transformer is constructed by inserting a resonant circuit such as an LCR in series with the primary winding of the flyback transformer to effectively attenuate the harmonic components of the high voltage output waveform. The aim is to flatten the output waveform and improve high pressure regulation.

高調波成分の減衰量は共振回路の共振周波数、回路のQ
及び追加する抵抗の抵抗値、LC回路ではLの値等を適
当に選び第9図のインピーダンス特性を調整する事によ
り可能である。第8図の実施例では、LCR並列回路を
フライバツクトランスの一次巻線の低圧側に挿入したが
、第16図に示すように一次巻線の中間に挿入しても同
一効果が得られる事はいうまでも無い。
The amount of attenuation of harmonic components is determined by the resonant frequency of the resonant circuit and the Q of the circuit.
This can be achieved by appropriately selecting the resistance value of the additional resistor, the value of L in the LC circuit, etc., and adjusting the impedance characteristics shown in FIG. In the embodiment shown in Fig. 8, the LCR parallel circuit is inserted on the low voltage side of the primary winding of the flyback transformer, but the same effect can be obtained by inserting it in the middle of the primary winding as shown in Fig. 16. Needless to say.

又、図示していないが、一次巻線の高圧側に挿入しても
よい。以上、5,9次同調((4k+1)次同調)のよ
うな出力波形が双峰波形となる場合を中心に、本発明の
効果を説明してきたが、7次,11次同調((4k−1
)次同調)のような出力波形がとがつている同調次数の
場合でも本発明によれば、とがvの程度を減少せしめる
事が出来有効である。
Although not shown, it may also be inserted into the high voltage side of the primary winding. The effects of the present invention have been explained above, focusing on the case where the output waveform is a bimodal waveform, such as the 5th and 9th order tuning ((4k-1) order tuning). 1
Even in the case of a tuning order in which the output waveform has a sharp point, such as () order tuning), the present invention is effective because it can reduce the degree of v.

更に、第13図は他の実施例を示したもので、二次巻線
を81・・・8。−1,8。と高圧整流ダイオード9に
よりn分割したものである。この場合、n個の二次巻線
をそれぞれどういう次数で同調させるかは任意であり、
このような複数同調の場合は、挿入するLCR回路は、
1ケの次数を対象として1組挿入しても各次数に対応し
たLCR回路を複数組直列に挿入しても良い。本発明は
以上のように、従来のように数多くの高価な部品を必要
とせず安価なコイル、コンデンサー及び抵抗のみですみ
、大きなコストダウンが可能となる上、信頼性も向上す
る。
Furthermore, FIG. 13 shows another embodiment in which the secondary windings are 81...8. -1,8. and is divided into n by a high-voltage rectifier diode 9. In this case, the order in which the n secondary windings are tuned is arbitrary,
In the case of multiple tuning like this, the LCR circuit to be inserted is
One set may be inserted for one order, or multiple sets of LCR circuits corresponding to each order may be inserted in series. As described above, the present invention does not require a large number of expensive parts as in the prior art, and only requires an inexpensive coil, capacitor, and resistor, which makes it possible to significantly reduce costs and improve reliability.

又、消費電力フについてもQの高い共振を減衰させる方
法なので少なくてすみ大巾な低減が可能である。
Furthermore, since the method is used to attenuate high-Q resonance, power consumption can be reduced significantly.

更に、走期間に発生する有害な振動(リンギング)を抑
圧出米リンギングによる損失の増加、他回路への誘導妨
害、水平水力トランジスターのコレクノ一電流の増加等
を防止する事が出来る。この事を第14図,第15図に
ついて説明する。第14図ぱフライバツクトランス6の
二次側出力電圧波形を水平1周期について示したもので
、二図は本発明のLCR回路の無い場合、ホ図は本発明
のLCR回路を挿入した場合をそれぞれ表わす。LCR
回路の無い場合は走査期間に発生する有害なリンギング
電圧20は走査期間の間ほとんど減衰なく継続する。こ
のリンギング電圧の角周波数をrとすると、r+βの関
係がある為、LCR回路を挿入すればホ図に示すように
帰線期間の出力波形が平らとなるだけでなく走査期間の
リンギング電圧20も減衰する。第15図は走査期間の
リンギングの有害性と本発明の効果を水平出力トランジ
スノ一のコレクター電流を一例に取9図示したもので、
卜図はLCR回路の無い場合、チ図はLCR回路を挿入
した場合のコレクター電流波形を示す。走査期間にリン
ギング電流が重畳されると位相によつては卜図に示すよ
うに最大コレクター電流IcpはICP2のように増加
する。リンギング位相は非常に不安定で高圧負荷の変動
、回路定数のバラツキにより変化する為、リンギング電
流ぱ小さくする事が必要とされている。本発明によれば
走査期間の終vではリンギング電流はチ図に示すように
ほとんど零に減衰させる事が出来、Icpの増加を防ぐ
事が出米る。
Furthermore, it is possible to suppress harmful vibrations (ringing) that occur during the running period, thereby preventing an increase in loss due to ringing, induction interference to other circuits, and an increase in current of the horizontal hydraulic transistor. This will be explained with reference to FIGS. 14 and 15. Figure 14 shows the secondary side output voltage waveform of the flyback transformer 6 for one horizontal period, Figure 2 shows the case without the LCR circuit of the present invention, and Figure E shows the case with the LCR circuit of the present invention inserted. Represent each. LCR
Without the circuit, the harmful ringing voltage 20 that occurs during the scan period continues with little attenuation during the scan period. If the angular frequency of this ringing voltage is r, there is a relationship of r + β, so by inserting an LCR circuit, not only the output waveform during the retrace period becomes flat as shown in figure E, but also the ringing voltage 20 during the scanning period becomes flat. Attenuate. FIG. 15 shows the harmful effects of ringing during the scanning period and the effects of the present invention, taking the collector current of a horizontal output transistor as an example.
Figure 1 shows the collector current waveform when there is no LCR circuit, and Figure 1 shows the collector current waveform when the LCR circuit is inserted. When a ringing current is superimposed on the scanning period, depending on the phase, the maximum collector current Icp increases to ICP2 as shown in the diagram. Since the ringing phase is extremely unstable and changes due to fluctuations in the high voltage load and variations in circuit constants, it is necessary to reduce the ringing current. According to the present invention, at the end of the scanning period v, the ringing current can be attenuated to almost zero as shown in Figure 1, making it possible to prevent an increase in Icp.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般的な水平偏向出力回路図、第2図はその等
価回路、第3図,第4図は同回路説明のための波形図、
第5図はブリーダー抵抗を使用した水平偏向出力回路図
、第6図ぱ同水平偏向出力回路説明の為の特性図、第7
図は本発明説明の為の波形図、第8図は本発明の一実施
例を示す水平偏向出力回路図、第9図は本発明を説明す
る為のインピーダンス特性曲線、第10図,第11図,
第12図,第13図,第16図は本発明の他の実施例の
回路図、第14図,第15図は本発明の他の効果を説明
する為の波形図である。 6・・・フライバツクトランス、7・・・一次巻線、8
・・・二次巻線、11・・・コイル、 12・・・コンデンサー 13・・・抵抗、 14・・・フィルター。
Figure 1 is a general horizontal deflection output circuit diagram, Figure 2 is its equivalent circuit, Figures 3 and 4 are waveform diagrams for explaining the circuit,
Figure 5 is a horizontal deflection output circuit diagram using a bleeder resistor, Figure 6 is a characteristic diagram for explaining the same horizontal deflection output circuit, and Figure 7 is a diagram of the horizontal deflection output circuit using a bleeder resistor.
The figure is a waveform diagram for explaining the present invention, Figure 8 is a horizontal deflection output circuit diagram showing an embodiment of the present invention, Figure 9 is an impedance characteristic curve for explaining the present invention, Figures 10 and 11 are figure,
FIGS. 12, 13, and 16 are circuit diagrams of other embodiments of the present invention, and FIGS. 14 and 15 are waveform diagrams for explaining other effects of the present invention. 6... Flyback transformer, 7... Primary winding, 8
...Secondary winding, 11...Coil, 12...Capacitor 13...Resistor, 14...Filter.

Claims (1)

【特許請求の範囲】 1 少なくともフライバックトランスと、このフライバ
ックトランスの1次巻線に接続された水平出力トランジ
スターと、この水平出力トランジスターに並列に接続さ
れた偏向ヨーク及び共振コンデンサーと、フライバック
トランスの2次巻線に接続された高圧整流ダイオードを
具え、フライバックトランスの2次巻線に発生する帰線
出力電圧の基本波成分とその高調波成分を整流ダイオー
ドによつて整流することにより高電圧を発生する高圧発
生装置において、高調波成分の周波数で共振する共振回
路が上記1次巻線に対して直列に接続されるとともに、
この共振回路に抵抗が接続され、帰線出力電圧の先端が
平坦化されていることを特徴とする高圧発生装置。 2 少なくともフライバックトランスと、このフライバ
ックトランスの1次巻線に接続された水平出力トランジ
スターと、この水平出力トランジスターに並列に接続さ
れた偏向ヨーク及び共振コンデンサーと、フライバック
トランスの2次巻線に接続された高圧整流ダイオードを
具え、フライバックトランスの2次巻線に発生する帰線
出力電圧の基本波成分とその高調波成分を整流ダイオー
ドによつて整流することにより高電圧を発生する高圧発
生装置において、高調波成分の周波数で共振する。 コンデンサーとコイルとからなる並列共振回路が上記1
次巻線に対して直列に接続されるとともにこの並列共振
回路に対して並列に抵抗が接続され、帰線出方電圧の先
端が平坦化されていることを特徴とする高圧発生装置。
3 少なくともフライバックトランスと、このフライバ
ックトランスの1次巻線に接続された水平出力トランジ
スターと、この水平出力トランジスターに並列に接続さ
れた偏向ヨーク及び共振コンデンサーと、フライバック
トランスの2次巻線に接続された高圧整流ダイオードを
具え、フライバックトランスの2次巻線に発生する帰線
出力電圧の基本波成分とその高調波成分を整流ダイオー
ドによつて整流することにより高電圧を発生する高圧発
生装置において、高調波成分の周波数で共振するコンデ
ンサーとコイルとからなる並列共振回路が上記1次巻線
に対して直列に接続されるとともに、このコンデンサに
対して直列に抵抗が接続され、帰線出力電圧の先端が平
坦化されていることを特徴とする高圧発生装置。
[Claims] 1. At least a flyback transformer, a horizontal output transistor connected to the primary winding of the flyback transformer, a deflection yoke and a resonant capacitor connected in parallel to the horizontal output transistor, and a flyback transformer. A high-voltage rectifier diode is connected to the secondary winding of the transformer, and the fundamental wave component and its harmonic components of the retrace output voltage generated in the secondary winding of the flyback transformer are rectified by the rectifier diode. In a high voltage generator that generates high voltage, a resonant circuit that resonates at the frequency of harmonic components is connected in series with the primary winding, and
A high voltage generator characterized in that a resistor is connected to this resonant circuit, and the tip of the retrace output voltage is flattened. 2 At least a flyback transformer, a horizontal output transistor connected to the primary winding of this flyback transformer, a deflection yoke and a resonant capacitor connected in parallel to this horizontal output transistor, and a secondary winding of the flyback transformer. A high-voltage transformer is equipped with a high-voltage rectifier diode connected to the flyback transformer, and generates a high voltage by rectifying the fundamental wave component and its harmonic components of the retrace output voltage generated in the secondary winding of the flyback transformer. In the generator, resonance occurs at the frequency of the harmonic component. The parallel resonant circuit consisting of a capacitor and a coil is the above 1.
A high voltage generator characterized in that a resistor is connected in series with the next winding and in parallel with this parallel resonant circuit, and the tip of the return output voltage is flattened.
3 At least a flyback transformer, a horizontal output transistor connected to the primary winding of this flyback transformer, a deflection yoke and a resonant capacitor connected in parallel to this horizontal output transistor, and a secondary winding of the flyback transformer. A high-voltage transformer is equipped with a high-voltage rectifier diode connected to the flyback transformer, and generates a high voltage by rectifying the fundamental wave component and its harmonic components of the retrace output voltage generated in the secondary winding of the flyback transformer. In the generator, a parallel resonant circuit consisting of a capacitor and a coil that resonates at the frequency of the harmonic component is connected in series with the above primary winding, and a resistor is connected in series with this capacitor. A high voltage generator characterized by a flattened tip of the line output voltage.
JP14505975A 1975-12-08 1975-12-08 Kouatsuhatsu Seisouchi Expired JPS597258B2 (en)

Priority Applications (16)

Application Number Priority Date Filing Date Title
JP14505975A JPS597258B2 (en) 1975-12-08 1975-12-08 Kouatsuhatsu Seisouchi
FI763461A FI61377C (en) 1975-12-08 1976-12-01 HOEGSPAENNINGSGENERATOR
US05/747,324 US4112337A (en) 1975-12-08 1976-12-03 High voltage generator
BR7608164A BR7608164A (en) 1975-12-08 1976-12-06 HIGH VOLTAGE GENERATOR
CA267,235A CA1081844A (en) 1975-12-08 1976-12-06 High voltage generator
FR7636843A FR2335112A1 (en) 1975-12-08 1976-12-07 VERY HIGH VOLTAGE GENERATOR
DE2655466A DE2655466B2 (en) 1975-12-08 1976-12-07 High voltage generator for cathode ray tubes, preferably for television receivers and EDP display devices
TR19271A TR19271A (en) 1975-12-08 1976-12-07 HIGH VOLTAGE GENERATOERUE
MX767903U MX3504E (en) 1975-12-08 1976-12-07 HIGH VOLTAGE GENERATOR
GB51005/76A GB1573808A (en) 1975-12-08 1976-12-07 High voltage generator
AU20307/76A AU499222B2 (en) 1975-12-08 1976-12-07 High voltage generator
AR265751A AR216753A1 (en) 1975-12-08 1976-12-07 HIGH VOLTAGE GENERATOR
IT69923/76A IT1072145B (en) 1975-12-08 1976-12-07 HIGH VOLTAGE GENERATOR PARTICULARLY FOR TELEVISION
PH19213A PH12818A (en) 1975-12-08 1976-12-08 High voltage generator
HK591/81A HK59181A (en) 1975-12-08 1981-12-03 High voltage generator
MY184/82A MY8200184A (en) 1975-12-08 1982-12-30 High voltage generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14505975A JPS597258B2 (en) 1975-12-08 1975-12-08 Kouatsuhatsu Seisouchi

Publications (2)

Publication Number Publication Date
JPS5269522A JPS5269522A (en) 1977-06-09
JPS597258B2 true JPS597258B2 (en) 1984-02-17

Family

ID=15376416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14505975A Expired JPS597258B2 (en) 1975-12-08 1975-12-08 Kouatsuhatsu Seisouchi

Country Status (2)

Country Link
JP (1) JPS597258B2 (en)
BR (1) BR7608164A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH089184A (en) * 1995-05-31 1996-01-12 Hitachi Ltd High voltage generator and image device

Also Published As

Publication number Publication date
JPS5269522A (en) 1977-06-09
BR7608164A (en) 1977-11-22

Similar Documents

Publication Publication Date Title
US3828239A (en) High dc voltage generating circuit
US3936719A (en) High voltage generator for a television receiver
US4027200A (en) High voltage generating circuit
US3500116A (en) Deflection circuit for regulating the high voltage load
US4112337A (en) High voltage generator
JPS597258B2 (en) Kouatsuhatsu Seisouchi
US2655615A (en) Television circuit
US5844793A (en) High-voltage transformer for a televison receiver including separated partial windings tuned to different harmonics
CA1037601A (en) Circuit arrangement including a line deflection circuit
JPS6053504B2 (en) Adjustment deflection circuit
JPS597259B2 (en) Kouatsuhatsu Seisouchi
US4808891A (en) High voltage generator
US4181874A (en) Television S-correction circuit with improved linearity
KR800000856B1 (en) High voltage generator
JP2715991B2 (en) High pressure generator
GB1068307A (en) Circuit arrangement for the generation of a periodically fluctuating unidirectional current in an inductive load
JPS62154976A (en) High voltage generating device
JPS5851708B2 (en) Deflection device for picture tube
JPS6123896Y2 (en)
JPH02184262A (en) Switching regulator
JPS596027Y2 (en) Ringing prevention device
JPS6040065Y2 (en) Cathode ray tube heater circuit
JPS62293892A (en) High voltage generator
JPH089184A (en) High voltage generator and image device
JPS6239871B2 (en)