JPS5972058A - Quick detection of medicine in urine - Google Patents

Quick detection of medicine in urine

Info

Publication number
JPS5972058A
JPS5972058A JP18247582A JP18247582A JPS5972058A JP S5972058 A JPS5972058 A JP S5972058A JP 18247582 A JP18247582 A JP 18247582A JP 18247582 A JP18247582 A JP 18247582A JP S5972058 A JPS5972058 A JP S5972058A
Authority
JP
Japan
Prior art keywords
urine
membrane
solvent
inspected
semipermeable membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18247582A
Other languages
Japanese (ja)
Inventor
Teruo Otomo
大友 輝雄
Nobuhide Yamamoto
山本 信秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP18247582A priority Critical patent/JPS5972058A/en
Publication of JPS5972058A publication Critical patent/JPS5972058A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/94Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving narcotics or drugs or pharmaceuticals, neurotransmitters or associated receptors

Abstract

PURPOSE:To detect quickly the medicine in urine with high accuracy by filtering the urine to be inspected with a polysulfone semipermeable membrane then adding an alkali metal halide particularly to the urine to be inspected or filtering the urine with the polysulfone semipermeable membrane after adding the alkali metal halide then extracting the same with a solvent. CONSTITUTION:A polysulfone semipermeable membrane is used for the filter membrane of a filter with a pressurization device, and the urine to be inspected is filtered without stirring under the pressure of gaseous N2. If salt such as NaCl, CaCl2 or the like is added at about 0.5-30% to the urine to be inspected, the material, acting as the surfactant in the urine grows to the size at which it cannot permeate the membrane. The urine is thus filtered in a short time without clogging the membrane. Ether is added to the filtered urine and after the urine is vigorously shaked, the urine is allowed to rest and the presence or absence of any medicine, for example, a narcotic, stimulant, cardiac, etc. extracted in the ether layer is detected. Since the surfactant is removed, the separability between the solvent layer and the water layer is fast with a good liqid separating condition and the time for the treatment is considerably shortened.

Description

【発明の詳細な説明】 本発明は、尿中薬物の改良された検出方法に関するもの
である。特に麻薬、覚醒剤、興奮剤などのはか、強心剤
、鎮静剤等の個体における使用の有無を迅速に判定する
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved method for detecting drugs in urine. In particular, the present invention relates to a method for quickly determining whether an individual is using drugs such as narcotics, stimulants, stimulants, cardiotonic drugs, and sedatives.

従来、尿中の薬物の検出には採取した尿に溶媒を加えて
振盪後静置分液し、溶媒層中に薬物を抽出させて分析し
ていた。検査の対象となる薬物は強い生理活性物質であ
り、一般に高い極性を示す物質が多く、溶媒抽出時に水
層のpI(を制御することにより溶媒への薬物移行度を
高めているが1回の抽出操作では薬物の溶媒層への定量
的な回収は望めず、多量の溶媒を使用し、数回の抽出操
作をくり返す必要がある。
Conventionally, to detect drugs in urine, a solvent was added to collected urine, shaken, and then allowed to stand for separation, and drugs were extracted into the solvent layer and analyzed. The drugs to be tested are strong physiologically active substances, and many substances generally exhibit high polarity. In the extraction operation, quantitative recovery of the drug into the solvent layer cannot be expected, and it is necessary to use a large amount of solvent and repeat the extraction operation several times.

この場合は溶媒層を濃縮し、薬物濃度を検知可能な濃度
とするのに時間と手間がか入る。
In this case, it takes time and effort to concentrate the solvent layer and bring the drug concentration to a detectable concentration.

また、尿中には一般に界面活性成分が含まれており、溶
媒との振盪分液時に界面活性成分の影響で、水層−溶媒
層間の界面が不明瞭となり、分液のため数時間静置せざ
るを得ないこともある。
In addition, urine generally contains surfactant components, and due to the influence of the surfactant components during separation by shaking with a solvent, the interface between the water layer and the solvent layer becomes unclear, and the urine is left standing for several hours for separation. Sometimes you have no choice but to do it.

この分液が不完全なま\分析すると定量分析の精度は著
るしく低下する。
If this separation is performed incompletely, the accuracy of quantitative analysis will be significantly reduced.

即ち、従来の分析方法においては大量の溶媒使用による
作業環境上の問題や前処理時間が長いことからくる処理
検体数の制限、分析精度面での問題などの欠点があった
That is, conventional analytical methods have drawbacks such as problems in the working environment due to the use of large amounts of solvents, limitations on the number of specimens to be processed due to long pretreatment times, and problems in terms of analysis accuracy.

これら従来の分析方法において、塵中の界面活性成分を
除去すれば、分液の状態が改善されることは知られてい
る。そのため、予め酢酸セルロース半透膜でr過処理し
、界面活性成分を膜面上に排除し、透過液を溶媒抽出に
供する前処理方法が報告されている。
In these conventional analytical methods, it is known that the state of liquid separation can be improved by removing surface active components in dust. Therefore, a pretreatment method has been reported in which a cellulose acetate semipermeable membrane is used for filtration treatment to remove surfactant components onto the membrane surface, and the permeate is subjected to solvent extraction.

この方法では、界面活性物質が大部分除去され溶媒抽出
時の静置時間の大巾な短縮と溶媒量の低減の面で従来法
の改善がなされている。しかし、この方法は分画分子量
約4,000の孔径の小さな酢酸セルロース半透膜を使
用しているため、透水性能が低く、かつ尿中の溶質成分
の微妙な組成変動により膜の目詰が激しく、尿の個人差
、採取後の保存状態、保存期間によって膜処理時間が大
巾に延長する欠点がある。
This method is an improvement over the conventional method in that most of the surfactant is removed and the standing time during solvent extraction is greatly shortened and the amount of solvent is reduced. However, because this method uses a cellulose acetate semipermeable membrane with a small pore size and a molecular weight cutoff of approximately 4,000, its water permeability is low, and the membrane can become clogged due to subtle compositional fluctuations in solute components in urine. However, there is a drawback that the membrane processing time is greatly extended depending on individual differences in urine, storage conditions after collection, and storage period.

本発明は、上記の欠点を克服し、尿中の薬物分析のため
前処理時間を大巾に短縮し、かつ抽出溶媒量を低減する
ことで安全で迅速な薬物分析を行なうことを目的とした
ものである。
The present invention aims to overcome the above-mentioned drawbacks, drastically shorten the pretreatment time for drug analysis in urine, and perform safe and rapid drug analysis by reducing the amount of extraction solvent. It is something.

発明者らは尿中の界面活性物質の除去に用いる分離膜と
して上記酢酸セルロース半透膜の結果に鑑み、透水速度
の大きな半透膜を選択し試験した。
In view of the results of the cellulose acetate semipermeable membrane described above, the inventors selected and tested a semipermeable membrane with a high water permeation rate as a separation membrane used for removing surfactant substances in urine.

分画分子量2〜4万の酢酸セルロース半透膜およびポリ
アクリロニトリル半透膜を用いて尿を膜処理した結果、
処理時間は前記の分画分子量4,000酢酸セルロース
半透膜の場合に比較し、1/−1/4と大巾な短縮を達
成することができた。しかし、尿中の界面活性物質の除
去は不十分であり、透過液を溶媒と振盪後、静置分液し
た際の尿−溶媒界面の分離は不完全であった。一方、は
ぼ同じ分画分子量を有するポリスルホン半透膜で尿を処
理した場合は、膜処理時間の短縮がなされると同時に意
外にも界面活性物質も膜上にとどめおかれて、透過液の
溶媒抽出時の分液性が良好、かつ薬物の回収率を定量的
であることを見出した。
As a result of membrane treatment of urine using a cellulose acetate semipermeable membrane and a polyacrylonitrile semipermeable membrane with a molecular weight cutoff of 20,000 to 40,000,
The processing time could be significantly shortened to 1/-1/4 compared to the case of the cellulose acetate semipermeable membrane having a molecular weight cut off of 4,000. However, the removal of the surfactant in urine was insufficient, and the separation of the urine-solvent interface was incomplete when the permeate was shaken with a solvent and then allowed to stand still for liquid separation. On the other hand, when urine is treated with a polysulfone semipermeable membrane having approximately the same molecular weight cutoff, the membrane treatment time is shortened, and at the same time surprisingly, surfactant substances are also retained on the membrane and the permeate is It was found that the liquid separation properties during solvent extraction were good and the recovery rate of the drug was quantitative.

本発明の膜処理に使用するポリスルホン半透膜は下に示
す構造式のいずれかで表わされる重合体を製膜して得ら
れるものである。
The polysulfone semipermeable membrane used in the membrane treatment of the present invention is obtained by forming a membrane from a polymer represented by any of the structural formulas shown below.

ポリスルホン半透膜が界面活性物質を透過させずに阻止
する機構は不明であるが、ポリスルホン半透膜は酢酸セ
ルロース膜、ポリアクリルニトリル膜に比べ、分子鎖中
に芳香族環を多く有しており、疎水性の高い高分子膜で
あって、この分子鎖中の疎水骨格部位が尿中の界面活性
物質の親油性基部分と、疎水的な相互作用を持つことが
考えられる。
The mechanism by which polysulfone semipermeable membranes block surfactants without allowing them to pass through is unknown, but polysulfone semipermeable membranes have more aromatic rings in their molecular chains than cellulose acetate membranes and polyacrylonitrile membranes. This is a highly hydrophobic polymer membrane, and it is thought that the hydrophobic skeleton portion in this molecular chain has a hydrophobic interaction with the lipophilic group portion of the surfactant in urine.

発明者等はまた、この半透膜による界面活性物質の分離
が被検査尿に食塩などの塩類を添加すると、さらに良好
な結果を与えることも見出した。
The inventors have also found that the separation of surfactant substances by this semipermeable membrane gives even better results when salts such as common salt are added to the urine to be tested.

添加スる塩類はハロゲン化アルカリ金属塩又はハロゲン
化土類金属塩が良く、例えば食塩、塩化カリウムなどを
用いることができ、その量は被検査尿に対し0.5〜3
0%程度が適当である。これらの塩類を添加することに
より、界面活性物質が分子会合してミセルを形成し、分
離効率が良くなるものと考えられ、半透膜としてポリス
ルホン膜に限らず、酢酸セルロース膜やポリアクリルニ
トリ 5− ル膜を用いた場合でも塩類の添加によって界面活性物質
の分離性をかなり向上させることができる。
The salts to be added are preferably halogenated alkali metal salts or halogenated earth metal salts. For example, common salt, potassium chloride, etc. can be used, and the amount thereof is 0.5 to 3% relative to the urine to be tested.
Approximately 0% is appropriate. It is thought that by adding these salts, the molecules of surface-active substances associate to form micelles, improving the separation efficiency.As a semipermeable membrane, not only polysulfone membranes but also cellulose acetate membranes and polyacrylic nitric membranes can be used. - The separation of surface-active substances can be considerably improved by the addition of salts even when using membranes.

即ち、本発明は、被検査尿を分画分子量2万から40万
のポリスルホン半透膜を用いて処理した後、溶媒抽出処
理し、溶媒中に抽出された薬物を定量分析する迅速検出
方法であって、特別の前処理を必要とせず、従来法の1
15〜1/10の少ない溶媒使用量で速やかな抽出が得
られ、分析速度・精度を向上させることができる分析方
法に関する尿中薬物の迅速検出方法である。
That is, the present invention provides a rapid detection method in which urine to be tested is treated using a polysulfone semipermeable membrane with a molecular weight cutoff of 20,000 to 400,000, followed by solvent extraction and quantitative analysis of drugs extracted into the solvent. Therefore, it does not require any special pre-treatment and can be used as a conventional method.
This is a rapid detection method for drugs in urine, which is an analysis method that can quickly extract with a 15 to 10 times smaller amount of solvent and improve analysis speed and accuracy.

また、被検査尿にハロゲン化アルカリ金属塩又はハロゲ
ン化アルカリ土金属塩を添加して膜処理することを特徴
とする特許請求範囲第1項記載の尿中薬物の迅速検出方
法である。
Further, the method for rapid detection of drugs in urine according to claim 1 is characterized in that a halogenated alkali metal salt or a halogenated alkaline earth metal salt is added to the urine to be tested and subjected to membrane treatment.

以下に実施例をあげ本発明を説明する。The present invention will be explained below with reference to Examples.

実施例1及び比較例1゜ r過装置として実用新案登録願昭57−95965号に
示す攪拌及び加圧装置付r過器(膜面積31.2c4)
を用いた。膜はポリスルホン半透膜等を用いた。
Example 1 and Comparative Example 1 A filtration device with stirring and pressure device (membrane area 31.2c4) shown in Utility Model Registration Application No. 57-95965 was used as a filtration device.
was used. A polysulfone semipermeable membrane or the like was used as the membrane.

 6− 被検査尿号50Wllを上記濾過装置を用いて窒素によ
る加圧下(9/r、g 7 c、# )無攪拌で沢過し
た。
6- 50 liters of urine to be tested was filtered using the above filtration device under nitrogen pressure (9/r, g 7 c, #) without stirring.

透過した尿は、そのまま溶媒を加え薬物を抽出し分析に
供することが可能であるが、膜処理による界面活性物質
の除去効果を判定するために試験管内での小量抽出試験
を行なった。
Although it is possible to add a solvent to the permeated urine to extract the drug and use it for analysis, we conducted a small-volume extraction test in a test tube to determine the effectiveness of membrane treatment in removing surfactants.

即ち、膜処理で透過した尿10m1を20me試験管に
採取し、食塩3g、アンモニア水(28%)0.3−を
添加し、更に抽出溶媒としてエーテル1−を加えた後、
1分間激しく振盪する。振部により懸濁状態になった液
を静置し、2分後の尿−溶媒界面の分離状態を観察する
。分液が不十分の時は更にエーテル1rnI!を加え、
同様の操作を行ない再度分液状態を観察する。この場合
でも、なお分液が不十分な時は更にエーテルを3m7!
を加え抽出処理をする。なおこの場合の分液状態の判定
は、加えた溶媒量に対し溶媒層中の懸濁部分が1/10
以下の場合、分離良好、懸濁部分がなく、溶媒層と水層
に明瞭に分液しているものを優秀とした。
That is, 10ml of urine permeated through the membrane treatment was collected in a 20me test tube, 3g of common salt and 0.3ml of aqueous ammonia (28%) were added, and ether was further added as an extraction solvent.
Shake vigorously for 1 minute. The liquid suspended in the shaker is allowed to stand still, and the state of separation at the urine-solvent interface is observed after 2 minutes. If the separation is insufficient, add 1rnI of ether! Add
Perform the same operation and observe the liquid separation state again. Even in this case, if the liquid separation is still insufficient, add an additional 3 m7 of ether!
and perform extraction processing. In this case, the liquid separation state is determined when the suspended portion in the solvent layer is 1/10 of the amount of solvent added.
In the following cases, those with good separation, no suspended portion, and clear separation into a solvent layer and an aqueous layer were evaluated as excellent.

上記の方法による試験結果を第1表に示した。The test results according to the above method are shown in Table 1.

不法によって抽出された有機溶媒層中の薬物はその後適
宜濃縮処理等を行なった後、ガスクロ分析又は高速液ク
ロ分析により定量分析することが可能であった。
The drug in the illegally extracted organic solvent layer could then be subjected to appropriate concentration treatment and then quantitatively analyzed by gas chromatography or high-performance liquid chromatography.

実施例2及び比較例2 実施例1及び比較例1とは異る個体からの尿を被検査尿
とし、以下実施例1及び比較例1と同様の方法で濾過及
び溶剤抽出を行った。また被検査尿に食塩を30係添加
したものについても同様の処理を行った。その結果を第
2表に示す・ 本実施例の被検査尿は、実施例1のものに比べて界面活
性物質含有量が少く、相対的に操作が容易であったが、
食塩添加によって分離性が一一層向上することがみとめ
られた。
Example 2 and Comparative Example 2 Urine from individuals different from those in Example 1 and Comparative Example 1 was used as test urine, and filtration and solvent extraction were performed in the same manner as in Example 1 and Comparative Example 1. The same treatment was also performed on urine to be tested to which 30 parts of common salt had been added. The results are shown in Table 2. The urine tested in this example had a lower surfactant content than that in Example 1, and was relatively easy to manipulate.
It was found that the separation property was further improved by adding salt.

Claims (2)

【特許請求の範囲】[Claims] (1)尿に溶媒を加えて振盪分液し、溶媒層中の薬物を
分析する尿中の薬物検出方法において被検査尿をあらか
じめポリスルホン半透膜で処理した後に、溶媒と振爵す
ることを特徴とする尿中薬物の迅速検出方法。
(1) In the drug detection method in urine, which involves adding a solvent to urine, shaking it to separate the liquids, and then analyzing the drug in the solvent layer, the urine to be tested is first treated with a polysulfone semipermeable membrane and then shaken with a solvent. Characteristic rapid detection method for drugs in urine.
(2)被検査尿にハロゲン化アルカリ金属塩又はハロゲ
ン化アルカリ土類金属塩を添加して、膜処理することを
特徴とする特許請求範囲第1項記載の尿中薬物の迅速検
出方法。
(2) The method for rapid detection of drugs in urine according to claim 1, which comprises adding a halogenated alkali metal salt or a halogenated alkaline earth metal salt to the urine to be tested and subjecting it to membrane treatment.
JP18247582A 1982-10-18 1982-10-18 Quick detection of medicine in urine Pending JPS5972058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18247582A JPS5972058A (en) 1982-10-18 1982-10-18 Quick detection of medicine in urine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18247582A JPS5972058A (en) 1982-10-18 1982-10-18 Quick detection of medicine in urine

Publications (1)

Publication Number Publication Date
JPS5972058A true JPS5972058A (en) 1984-04-23

Family

ID=16118914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18247582A Pending JPS5972058A (en) 1982-10-18 1982-10-18 Quick detection of medicine in urine

Country Status (1)

Country Link
JP (1) JPS5972058A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03160367A (en) * 1989-11-20 1991-07-10 Denki Kagaku Kogyo Kk Treating agent for urine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03160367A (en) * 1989-11-20 1991-07-10 Denki Kagaku Kogyo Kk Treating agent for urine

Similar Documents

Publication Publication Date Title
Kennedy et al. Filter pore‐size effects on the analysis of Al, Fe, Mn, and Ti in water
Simmons III et al. Concentration and detection of Cryptosporidium oocysts in surface water samples by method 1622 using ultrafiltration and capsule filtration
Creitz et al. The estimation and characterization of plankton populations by pigment analysis. III. A note on the use of" Millipore" membrane filters in the estimation of plankton pigments.
US5882943A (en) Filtration apparatus, kit and method for processing parasite samples
JPH067108A (en) Method for extracting and separating sweet substance of stevia rebaudiana bertoni
CN109568352A (en) The film extraction process of effective component in a kind of traditional Chinese medicine liquid
Hill Jr et al. Virus in water. II. Evaluation of membrane cartridge filters for recovering low multiplicities of poliovirus from water
US20220081686A1 (en) Filter assembly, kit and methods
Wallace Jr The association of copper, mercury and lead with surface-active organic matter in coastal seawater
US20220298029A1 (en) A process for removal of pfas from water
JPS5972058A (en) Quick detection of medicine in urine
Choe et al. Isolation of colloidal monomethyl mercury in natural waters using cross-flow ultrafiltration techniques
Jongen et al. Determination of the pesticide chlorothalonil by HPLC and UV detection for occupational exposure assessment in greenhouse carnation culture
Klein et al. Evaluation of semi permeable membranes for determination of organic contaminants in drinking water
Bodzek et al. Removal of Natural Estrogens and Synthetic Compounds Considered to be Endocrine Disrupting Substances (EDs) by Coagulation and Nanofiltration.
Aldeen et al. Use of Hemo-De to eliminate toxic agents used for concentration and trichrome staining of intestinal parasites
Hsu et al. Recovery of Giardia and Cryptosporidium from water by various concentration, elution, and purification techniques
Krasna et al. Clarification of Native DNA Solutions by Filtration
JP7015705B2 (en) Extraction method of polychlorinated biphenyls
JP3972062B2 (en) Method for capturing and extracting endocrine disrupting chemicals in water samples containing suspended substances and solid-phase extraction column used therefor
Noller et al. Analytical scheme for speciation of aluminium in natural waters
JP2019191005A (en) Method of measuring chelating agent
JPH08262007A (en) Ultramicroamount organic substance extraction system
Jaïry et al. Speciation of organic carbon, Cu and Mn in the River Marne (France): the role of colloids
Wick et al. Purification of MS2 bacteriophage from complex growth media and resulting analysis by the integrated virus detection system (IVDS)