JPS5972044A - Measuring device of dynamic spring constant - Google Patents

Measuring device of dynamic spring constant

Info

Publication number
JPS5972044A
JPS5972044A JP18350282A JP18350282A JPS5972044A JP S5972044 A JPS5972044 A JP S5972044A JP 18350282 A JP18350282 A JP 18350282A JP 18350282 A JP18350282 A JP 18350282A JP S5972044 A JPS5972044 A JP S5972044A
Authority
JP
Japan
Prior art keywords
detector
vibration
load
test piece
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18350282A
Other languages
Japanese (ja)
Other versions
JPS6218852B2 (en
Inventor
Zenji Sakai
酒井 善治
Eiji Suzuki
英治 鈴木
Riyuuji Seigou
清郷 龍二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKUSAI KIKAI SHINDO KENKYUSHO KK
IMV Corp
Original Assignee
KOKUSAI KIKAI SHINDO KENKYUSHO KK
IMV Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKUSAI KIKAI SHINDO KENKYUSHO KK, IMV Corp filed Critical KOKUSAI KIKAI SHINDO KENKYUSHO KK
Priority to JP18350282A priority Critical patent/JPS5972044A/en
Publication of JPS5972044A publication Critical patent/JPS5972044A/en
Publication of JPS6218852B2 publication Critical patent/JPS6218852B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To ensure high-precision load measurement, by arranging a sound shielding material between an exciting shaft and an attaching part of a load detector and cutting off the propagation of an acoustic energy generated from an oscillation generating machine to said attaching part. CONSTITUTION:A sound shielding material 15 is arranged between an exciting shaft 5 of an oscillation generating machine 1, which excites a test piece 11, and an attaching part 10 of a load detector 9 which detects the load applied to said test piece 11. By this constitution, the sound shielding material 15 cuts off the propagation of said acoustic energy to the attaching part 10 to prevent the generation of acceleration of the detector 9. As the result, the excitation of the attaching part 10 due to said energy is not generated, and consequently, the generation of acceleration of said detector is prevented to ensure the load measurement of very high precision.

Description

【発明の詳細な説明】 この発明は動バネ定数測定装置に関する。[Detailed description of the invention] The present invention relates to a dynamic spring constant measuring device.

一般に、この種装置は、振動発生機により試験片を加振
させて、このときに該試験片に加わる荷重を荷重検出器
により検出し、その検出結果から上記試験片の動バネ定
数を測定する。しかし乍ら、従来の装置においては、上
記振動発生機の駆動により生ずる各種振動が上記荷重検
出器に加速度を扁2 発生させ、これが為、該検出器による荷重測定に誤差が
生じるという欠点があった。
Generally, this type of device vibrates a test piece with a vibration generator, detects the load applied to the test piece at this time with a load detector, and measures the dynamic spring constant of the test piece from the detection result. . However, in the conventional device, various vibrations caused by the drive of the vibration generator generate acceleration in the load detector, which causes an error in the load measurement by the detector. Ta.

本発明は、上記のこのような問題点を解決し、上記各種
振動による荷重検出器の加速度発生、特に音響エネルギ
ーによる加速度発生を防止して、極めて精度の高い荷重
測定を可能にした動バネ定数測定装置を提供することを
目的とする。そこで、本発明の特徴とする処は、試験片
を加振させる振動発生機の加振軸と、上記試験片に加わ
る荷重を検出する荷重検出器の取付部との間に遮音体を
配設し、これにより、上記振動発生機からの発生音響エ
ネルギーの上記取付部への伝搬を遮断して、該エネルギ
ーによる上記検出器の加速度発生を防止するように構成
した点にある。
The present invention solves the above-mentioned problems, and provides a dynamic spring constant that prevents the acceleration of the load detector caused by the various vibrations mentioned above, especially the acceleration caused by acoustic energy, and makes it possible to measure loads with extremely high accuracy. The purpose is to provide a measuring device. Therefore, a feature of the present invention is that a sound insulator is disposed between the vibration axis of the vibration generator that vibrates the test piece and the mounting part of the load detector that detects the load applied to the test piece. Accordingly, the acoustic energy generated from the vibration generator is prevented from propagating to the mounting portion, thereby preventing the generation of acceleration of the detector due to the energy.

以下、図面に示す実施例に基づいて本発明を詳( 説する。The present invention will be described in detail below based on the embodiments shown in the drawings. Explain.

第1図及び第2図において、(A)t/′i、振動発生
機(1)を下方に向けて装置した下向き加振方式の動バ
ネ定数測定装置であって、振動発生機(1)は、ガイド
軸受(6)を介して、基礎(2)に固設した架台(3)
のガイ扁 3 ド軸(4)・・・に昇降自在に支持させである。
In FIGS. 1 and 2, (A) t/'i is a downward vibration type dynamic spring constant measuring device in which a vibration generator (1) is directed downward; The frame (3) is fixed to the foundation (2) via the guide bearing (6).
It is supported by the guide shaft (4) so that it can be raised and lowered freely.

架台(3)は略正面コ字形状であり、その左右両側を振
動発生機(1)の支持部(力(8)としてガイド軸(4
)・・・が取付固定しである。また、その中央を荷重検
出器(9)の取付部(IIとしである。荷重検出器(9
)はその中心が振動発生機(1)の加振軸(5)の軸心
と一致するように取付部員に第7図に示す如く台座α■
を介して取付配置し、該検出器(9)と加振軸(5)と
の間に試験片αυを同軸上に挾持する構成としである。
The pedestal (3) is approximately U-shaped from the front, and the guide shaft (4) serves as a support part (force (8)) for the vibration generator (1) on both left and right sides of the pedestal (3).
)... is fixedly installed. In addition, the center is the mounting part (II) of the load detector (9).
) is placed on the pedestal α■ by the mounting member as shown in Fig. 7 so that its center coincides with the axis of the excitation shaft (5) of the vibration generator (1).
The test piece αυ is coaxially held between the detector (9) and the excitation shaft (5).

尚、検出器(9)上面には、第7図に示す如く試験片0
υを載置する為の受座a→が取付固定しである。しかし
て、振動発生機(1)駆動による加振軸(5)の上下(
Q(至)方向への振動により試験片αυを加振させ、こ
のとき該試験片0])に加わる荷重を荷重検出器(9)
により検出する。
In addition, the test piece 0 is placed on the upper surface of the detector (9) as shown in FIG.
The catch seat a→ for placing υ is fixed and fixed. Therefore, the vibration generator (1) is driven to move the vibration shaft (5) up and down (
The test piece αυ is vibrated by vibration in the Q (to) direction, and the load applied to the test piece at this time is detected by a load detector (9).
Detected by.

Q諺は架台(3)の右支持部(8)側面に螺着したバラ
ンス錘であって、該バランス錘a功により左右支持部(
7)(8)のバランスをとって、振動発生機(1)E動
による左右支持部(7) (8)の振動が検出器(9)
の測定精度に悪影響を与えない構成としている。即ち、
図示の下向き加振方式の測定装置(8)においては、検
出器(9)は前述の如く架台(3)の取付部00に固定
しである為、検出器(9)作動時に、もし、取付部ac
hが振動すると検出器(9)に加速度を生じ、これが為
、該検出器(9)は測定すべき荷重に対応した荷重信号
に加えて、上記加速度と検出器(9)の等価質量との積
に対応した荷重信号も同時に出力することとなり、これ
によりその荷重測定に誤差を生じてしまう。一方、振動
発生機(1)は、例えば空気バネ等の防振機構(財)を
該振動発生機(1)と架台(3)との間に配設して、一
応の防振対策を施してはあるが、試験片01)の軸心か
らのズレ、振動発生機(1)の加振力発生機構(図示せ
ず)の軸心からのズレ等があると、これらが要因となっ
て、振動発生機(1)がその駆動時に試験片α1)から
受ける反力は、該発生機(1)に軸方向べ 運動ばかシでなく、重心(G)回9にも回転運動を発生
させることとなる。そして、この回転運動の回転モーメ
ントは、第3図に示す如くガイド軸(4)・・・を左右
(Q(財))方向へ動かす力となり、これにより架台(
3)は同図に示す如く、その共振振動数により置屋5 叉のような振動モードを示す。尚、この振動モードは第
3図における架台(3)の(旧υ及び(C)点での振動
を検出して計測したものである(以下同じ)。
The Q proverb is a balance weight screwed to the side of the right support part (8) of the pedestal (3), and the left and right support parts (
7) By balancing (8), the vibration of the left and right support parts (7) (8) caused by the vibration generator (1) E motion is detected by the detector (9).
The structure is designed so that it does not adversely affect the measurement accuracy. That is,
In the downward vibration type measuring device (8) shown in the figure, the detector (9) is fixed to the mounting part 00 of the pedestal (3) as described above. part ac
When h vibrates, it causes an acceleration in the detector (9), which causes the detector (9) to generate a load signal corresponding to the load to be measured, as well as a combination of said acceleration and the equivalent mass of the detector (9). A load signal corresponding to the product is also output at the same time, which causes an error in the load measurement. On the other hand, the vibration generator (1) is provided with a vibration isolation mechanism such as an air spring between the vibration generator (1) and the pedestal (3) to provide some measure of vibration isolation. However, if there is a deviation from the axis of the test specimen 01) or deviation from the axis of the excitation force generating mechanism (not shown) of the vibration generator (1), these may become factors. , the reaction force that the vibration generator (1) receives from the test piece α1) when it is driven causes the generator (1) to generate not only an axial movement but also a rotational movement around the center of gravity (G). That will happen. The rotational moment of this rotational motion becomes a force that moves the guide shaft (4) in the left and right (Q) direction as shown in Fig. 3, and this causes the mount (
3) exhibits a five-pronged vibration mode due to its resonance frequency, as shown in the figure. Note that this vibration mode was measured by detecting vibrations at points (old υ and (C)) of the pedestal (3) in FIG. 3 (the same applies hereinafter).

ところが、この振動モードは左右完全対称ではないこと
が多い。これは、左支持部(7)の共振振動数による振
動モードと右支持部(8)の共振振動数による振動モー
ドとが一致しないからであり、通常これらのモードは各
々第4図及び第5図のようになることが多い。このモー
ドの不一致は、架台(3)製作時における加工上の狂い
が原因であり、このような左右のアンバランスは取付部
員を振動させて、前述の如く検出器(9)の測定精度を
著しく低下させることとなる。そこで、第6図に示す如
く、上記加工上の狂いを解消する為に必要な重量のバラ
ンス錘Q′4を必要個所(図示の場合は右支持部(8)
側面位置)に取付けることにより、上記左右の共振振動
数アンバランス状態を解消して上記振動モードを左右完
全対称とし、取付部a1の振動発生、延いては検出器(
9)の加速度発生を防止して、該検出器(9)の測定精
度の低下防止を計っている。
However, this vibration mode is often not completely symmetrical. This is because the vibration mode due to the resonance frequency of the left support part (7) and the vibration mode due to the resonance frequency of the right support part (8) do not match, and normally these modes are shown in Figures 4 and 5, respectively. It often looks like the picture. This mode discrepancy is caused by a machining error during the manufacture of the mount (3), and such lateral imbalance causes the mounting members to vibrate, significantly reducing the measurement accuracy of the detector (9) as described above. This will result in a decrease in Therefore, as shown in Fig. 6, a balance weight Q'4 of the weight necessary to eliminate the above-mentioned machining error is placed at the required location (in the case shown, the right support part (8)).
By attaching it to the side surface position), it eliminates the left and right resonance frequency unbalance and makes the vibration mode completely symmetrical between the left and right sides, which reduces the vibration generation of the mounting part a1 and, by extension, the detector (
9) is prevented from occurring in order to prevent the measurement accuracy of the detector (9) from deteriorating.

扁 6 051は上述のバランス錘σのと同様、検出器(9)の
測定精度の低下を防止する為の遮音体である。即ち、振
動発生機(1)の加振軸(5)が振動すると、該振動数
に同期して強い音響が発生する。この音響による音響エ
ネルギーは、比較的広い水平面を有する取付部σOに伝
搬されて該取付部00を励振させ、前述の如く検出器(
9)に加速度を発生し、その荷重測定に誤差を生じてし
まう。そこで、加振軸(5)と取付部(tJとの間に遮
音体α9を配設すれば、該遮音体α9が上記音響エネル
ギーの取付部aCtへの伝搬を遮断して、検出器(9)
の加速度発生を防止し、その測定精度の低下を防止する
ことができる。遮音体α囚は、具体的には第7図に示す
如く、遮音板OQを、防振部材αηを有する取付片(至
)・・・を介して取付部Qo上に取付固定して構成しで
ある。遮音板αQは遮音材料や吸音材料から成り、例え
ば第8図に示す如く合板Q9と鉛(イ)とを積層して構
成しであると共に、その形状寸法は検出器(9)部分を
除いた取付部qOの略全体を被覆する平板状としである
The flat plate 6051 is a sound insulator for preventing a decrease in the measurement accuracy of the detector (9), similar to the above-mentioned balance weight σ. That is, when the vibration shaft (5) of the vibration generator (1) vibrates, a strong sound is generated in synchronization with the vibration frequency. The acoustic energy caused by this sound is propagated to the mounting part σO having a relatively wide horizontal surface and excites the mounting part 00, and as described above, the detector (
9) generates acceleration, resulting in an error in the load measurement. Therefore, if a sound insulating body α9 is arranged between the vibration axis (5) and the mounting part (tJ), the sound insulating body α9 blocks the propagation of the acoustic energy to the mounting part aCt, and the detector (9 )
It is possible to prevent the generation of acceleration and to prevent a decrease in measurement accuracy. Specifically, as shown in FIG. 7, the sound insulating body α is constructed by mounting and fixing the sound insulating plate OQ on the mounting portion Qo via a mounting piece having a vibration isolating member αη. It is. The sound insulating plate αQ is made of a sound insulating material or a sound absorbing material, for example, as shown in FIG. It has a flat plate shape that covers almost the entire mounting part qO.

第9図は本発明に係る第2実施例であり、振動屋 7 発生機(1)を上方に向けて装置した」二向き加振方式
の動バネ定数測定装置CB)を示し、振動発生機(1)
は、略正面コ字形状の架台(3)中央部に装置しである
FIG. 9 shows a second embodiment of the present invention, and shows a dynamic spring constant measuring device (CB) of a two-way vibration method in which the vibration generator (1) is directed upward. (1)
The device is installed in the center of the pedestal (3) which is approximately U-shaped from the front.

Ql)は錘であって、架台(3)の左右支持部(7) 
(8)に取付固定したガイド軸(4)・・・に昇降自在
に支持させてあり、該錘121)の下面取付部a1には
、検出器(9)がその中心を加振軸(5)の軸心と一致
するように取付配置しである。そして、加振軸(5)と
取付部qOとの間には第1の実施例と同じく遮音体On
を配設して、振動発生機(1)から発生する音響エネル
ギーにより取付部00が励振されるのを防止している。
Ql) is a weight, and the left and right support parts (7) of the pedestal (3)
The guide shaft (4) attached and fixed to the weight 121 is supported so as to be able to rise and fall freely, and the detector (9) is mounted on the lower surface mounting part a1 of the weight 121, with its center centered on the vibration axis (5). ) is installed and arranged so that it coincides with the axis of the As in the first embodiment, there is a sound insulating body between the vibration shaft (5) and the mounting part qO.
is arranged to prevent the mounting portion 00 from being excited by acoustic energy generated from the vibration generator (1).

尚、遮音体09は架台(3)の左右支持部<7) (8
)に直接的に橋絡固定した遮音板OQから成る。従って
、その他の構成及び効果は第1の実施例と同様である。
In addition, the sound insulation body 09 is attached to the left and right support portions of the pedestal (3) <7) (8
) consists of a sound insulating plate OQ directly bridged and fixed. Therefore, other configurations and effects are similar to those of the first embodiment.

第10図は本発明に係る第3実施例を示し、上向き加振
方式の装置[F])において、遮音体Q51を第1実施
例と同じく取付部(10に取付固定したものであり、そ
の構成も全く同一である。従って、その他の構成及び効
果は第2実施例と同一である。
FIG. 10 shows a third embodiment of the present invention, in which a sound insulator Q51 is attached and fixed to the mounting part (10) in the upward vibration type device [F]) as in the first embodiment. The configuration is also exactly the same.Therefore, the other configurations and effects are the same as in the second embodiment.

本発明は、上述の実施例に限定されないことば勿論であ
って、種々設計変更自由である。例えは第1実施例にお
いて、バランス錘0’4に代えて、左支持部(7)側面
に左右支持部(7) (8)のバランスをとる為のバラ
ンス孔(イ)(第1図及び第2図仮想線参照)を形成す
るも好ましい。また、遮音体(5)の構成及び配設個所
も、同一機能を有する限り図示例に限定されるものでは
なく、例えば、第7図仮想線で示す如く、遮音板αQの
周縁部に垂下部(イ)を延設して蓋状とすればより遮音
効果を高めることができる。また、遮音板OQの構成材
料も第8図の合板a9及び鉛(イ)以外の他の遮音材料
及び吸音材料を積層して、若しくは単一材料で構成する
も好ましい。
It goes without saying that the present invention is not limited to the embodiments described above, and is open to various design changes. For example, in the first embodiment, instead of the balance weight 0'4, there is a balance hole (A) on the side surface of the left support part (7) for balancing the left and right support parts (7) and (8). It is also preferable to form (see imaginary lines in FIG. 2). Further, the configuration and location of the sound insulation body (5) are not limited to the illustrated example as long as they have the same function. For example, as shown by the imaginary line in FIG. If (a) is extended to form a lid shape, the sound insulation effect can be further enhanced. It is also preferable that the sound insulating plate OQ is formed by laminating sound insulating materials and sound absorbing materials other than the plywood a9 and lead (a) shown in FIG. 8, or by using a single material.

更に、第11図に示す如く、試験片(11)の横断面積
が受座α4)の上面面積に比較してはるかに小さい場合
は、加振軸(5)から発生する音響エネルギーが受座α
4)を励振させて検出器(9)に加速度を発生させ、該
検出器(9)の荷重測定に誤差を生じる虞れがあるが、
このような場合、加振軸(5)と受座σ4)との間に補
助遮音体(ハ)を配設する構成として、上記音響エネル
ギーの受座σ→への伝搬を遮断して、検出器(9)の加
9 速度発生を防止する構成としても良い。尚、補助遮音体
(ハ)は、第11図の具体例においては、遮音板QfD
’を防振部材0がを介して遮音体(15+上面に載置固
定して成るが、遮音体09」二面ではなく架台(3)の
適宜個所に取付固定する構成とするのも好ましい。また
、遮音板f)efF!、遮音体a9の遮音板αQと同様
に平板状とするも好ましいが、カメラの絞り装置のよう
な構成として中央孔(イ)の開口径寸法を可変とすれば
、横断面積の異なる種々の試験片01)に適宜対応使用
することができる。
Furthermore, as shown in FIG. 11, when the cross-sectional area of the test piece (11) is much smaller than the upper surface area of the seat α4), the acoustic energy generated from the vibration shaft (5)
4) to generate acceleration in the detector (9), which may cause an error in the load measurement of the detector (9).
In such a case, an auxiliary sound insulating body (c) is installed between the vibration axis (5) and the catch seat σ4) to block the propagation of the acoustic energy to the catch seat σ→, thereby preventing detection. It may also be configured to prevent acceleration of the device (9) from occurring. In addition, in the specific example of FIG. 11, the auxiliary sound insulation body (c) is a sound insulation plate QfD.
Although the vibration isolating member 0 is mounted and fixed on the top surface of the sound insulating body (15+) through the vibration isolating member 0, it is also preferable that the sound insulating body 09 is mounted and fixed at an appropriate location on the frame (3) instead of on two sides. Also, sound insulation board f) efF! It is preferable to use a flat plate like the sound insulating plate αQ of the sound insulating body a9, but if the opening diameter of the central hole (A) is made variable as in a configuration like a camera aperture device, various tests with different cross-sectional areas can be performed. It can be used as appropriate for piece 01).

本発明は、以上詳述したような構成であって、所期目的
を有効達成した。特に、振動発生機(1)の加振軸(5
)と検出器(9)の取付部σOとの間に遮音体Q51を
配役したから、振動発生機(1)駆動時における、加振
軸(5)の振動により発生する音響エネルギーの上記取
付部01への伝搬が防止され、従って、上記エネルギー
による取付部QOの励振が発生せず、延いては上記検出
器(9)の加速度発生が防止されて、極めて精度の高い
荷重測定を保証することができる。
The present invention has the configuration as described in detail above, and has effectively achieved its intended purpose. In particular, the vibration axis (5) of the vibration generator (1)
) and the mounting part σO of the detector (9), the sound insulator Q51 is placed between the mounting part σO of the detector (9), so that the acoustic energy generated by the vibration of the vibration shaft (5) when the vibration generator (1) is driven is absorbed by the mounting part. Therefore, the energy does not excite the mounting part QO, and the acceleration of the detector (9) is prevented, thereby ensuring highly accurate load measurement. I can do it.

扁 10Flat 10

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る第1実施例の平面図、第2図にそ
の正面図、第3図乃至第6図はそのバランス錘の機能を
説明する為の正面図、第7図はその要部を示す一部断面
正面図、第8図はその遮音板の断面図、第9図は第2実
施例の正面図、第10図は第3実施例の正面図、第11
図は第4実施例の要部を示す一部断面正面図である。 (1)・・・振動発生機、(9)・・・荷重検出器、(
]0・・・取付部、aυ・・・試験片、帥・・・遮音体
。 特 許 出 願 人   株式会社国際機械振動研究所
Me  Q   M 未 j  問 第5図 第6図 第7図 第8図 6 第9図 第10図 4 1 【B 4 ]0 7    −−−−−−−−−
Fig. 1 is a plan view of the first embodiment of the present invention, Fig. 2 is a front view thereof, Figs. 3 to 6 are front views for explaining the function of the balance weight, and Fig. 7 is its front view. 8 is a sectional view of the sound insulating plate, FIG. 9 is a front view of the second embodiment, FIG. 10 is a front view of the third embodiment, and FIG.
The figure is a partially sectional front view showing the main parts of the fourth embodiment. (1)...Vibration generator, (9)...Load detector, (
]0... Mounting part, aυ... Test piece, Wire... Sound insulator. Patent applicant International Mechanical Vibration Research Institute Co., Ltd. Me Q M Unj Question 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 4 1 [B 4 ] 0 7 ------- ------

Claims (1)

【特許請求の範囲】[Claims] / 試験片0υを加振させる振動発生機(1)の加振軸
(5)と、上記試験片0])に加わる荷重を検出する荷
重検出器(9)の取付部αOとの間に、遮音体α9を配
設し、これにより、上記振動発生機(1)からの発生音
響エネルギーの上記取付部(10への伝搬を遮断して、
該エネルギーによる上記検出器(9)の加速度発生を防
止するよう忙構成したことを特徴とする動バネ定数測定
装置。
/ Between the excitation axis (5) of the vibration generator (1) that excites the test piece 0υ and the mounting part αO of the load detector (9) that detects the load applied to the test piece 0]), A sound insulator α9 is provided, thereby blocking the propagation of the acoustic energy generated from the vibration generator (1) to the mounting portion (10),
A dynamic spring constant measuring device characterized in that the device is configured to prevent acceleration of the detector (9) due to the energy.
JP18350282A 1982-10-18 1982-10-18 Measuring device of dynamic spring constant Granted JPS5972044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18350282A JPS5972044A (en) 1982-10-18 1982-10-18 Measuring device of dynamic spring constant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18350282A JPS5972044A (en) 1982-10-18 1982-10-18 Measuring device of dynamic spring constant

Publications (2)

Publication Number Publication Date
JPS5972044A true JPS5972044A (en) 1984-04-23
JPS6218852B2 JPS6218852B2 (en) 1987-04-24

Family

ID=16136946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18350282A Granted JPS5972044A (en) 1982-10-18 1982-10-18 Measuring device of dynamic spring constant

Country Status (1)

Country Link
JP (1) JPS5972044A (en)

Also Published As

Publication number Publication date
JPS6218852B2 (en) 1987-04-24

Similar Documents

Publication Publication Date Title
US7603903B2 (en) Vibration-type angular rate sensor
US6182508B1 (en) Structure of angular rate sensor
JP4848518B2 (en) Vibration test equipment
CA1082366A (en) Method and apparatus for determining weight and mass
JP2000258289A (en) Vibration table assembly for laboratory
JPS59500012A (en) Quantitative detection and monitoring device for substances filled in containers
JP3314187B2 (en) Force compensator for inertial mass measurement
JPS5972044A (en) Measuring device of dynamic spring constant
KR20090113445A (en) Apparatus for Testing Dynamic Vibration Damping Type Active Vibration-Proof Apparatus
EP0289113A2 (en) Counterbalanced weighing apparatus
Nadeau et al. Application of the direct complex stiffness method to engine mounts
JP3679886B2 (en) Support device for vibration pickup in shaker
JP4571333B2 (en) Method of measuring the overturning moment in a vibration generator
RU2247346C1 (en) Device for transmitting vibration from bench to vibration insulator
Yuki et al. Measuring the anelasticity of Cu Be film under tensile stress using the X-pendulum
JP2001142465A (en) Soundproof box
KR200296415Y1 (en) Semi-anechonic room and sound characteristic experiment apparatus of vibrated body, transmission loss experiment apparatus of sound interception body, support structure of heavy-weight vibrating body equipped in that
US2293288A (en) Vibration indicator
KR100422803B1 (en) Device for dynamic properties of materials
SU1629771A1 (en) Two coordinate vibration-testing machine
RU190244U1 (en) INSTALLATION FOR THE STUDY OF DYNAMIC CHARACTERISTICS OF SOUND INSULATION MATERIALS
SU139859A1 (en) Device for measuring dynamic elastic moduli of materials
Hansen et al. Vibration isolation and damping for long focal length synchrotron radiation instruments
SU1749777A1 (en) Vibrational viscosity meter
JPH0953973A (en) Level sensor