JPS5970903A - Automatic measuring apparatus of endoscope - Google Patents

Automatic measuring apparatus of endoscope

Info

Publication number
JPS5970903A
JPS5970903A JP57180818A JP18081882A JPS5970903A JP S5970903 A JPS5970903 A JP S5970903A JP 57180818 A JP57180818 A JP 57180818A JP 18081882 A JP18081882 A JP 18081882A JP S5970903 A JPS5970903 A JP S5970903A
Authority
JP
Japan
Prior art keywords
endoscope
distance
output signal
length
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57180818A
Other languages
Japanese (ja)
Other versions
JPH0472162B2 (en
Inventor
Osamu Komiya
小宮 修
Kunio Kinoshita
国夫 木下
Katsuyuki Kanehira
金平 克之
Yuji Ikuno
勇二 生野
Hiroyuki Furuhata
降「はた」 広行
Koji Tanigawa
谷川 廣治
Takeaki Nakamura
剛明 中村
Mototsugu Ogawa
小川 元嗣
Taketo Kawasaki
川崎 武人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp, Olympus Optical Co Ltd filed Critical Olympus Corp
Priority to JP57180818A priority Critical patent/JPS5970903A/en
Publication of JPS5970903A publication Critical patent/JPS5970903A/en
Publication of JPH0472162B2 publication Critical patent/JPH0472162B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1076Measuring physical dimensions, e.g. size of the entire body or parts thereof for measuring dimensions inside body cavities, e.g. using catheters

Abstract

PURPOSE:To obtain an automatic measuring apparatus for an endoscope capable of measuring the actual length of a subject, by emitting laser beam from the objective part of the endoscope. CONSTITUTION:Laser beam is emitted to a subject as shown by a broken line from the light guide 12 contained in an endoscope 14 and, at the same time, illumination light is diffusedly emitted as shown by a solid line. In addition, a television camera 16 is mounted to the ocular part of a light guide 10 and a measuring part 26 calculates the distance between the objective part of the endoscope 14 and the subject from the illumination position of laser beam to be used in distance measurement. An actual length is calculated from this distance and the length between two arbitrary points of the endoscope image on a display part 28 and the numerical value showing the length measuring result is displayed along with the endoscope image.

Description

【発明の詳細な説明】 この発明は、患部の実際の長さを測ることができる内視
鏡自動計測装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automatic endoscope measuring device that can measure the actual length of an affected area.

一般に、内視鏡を用いて体腔内を現察する場合、対物端
と体腔壁との距離によって得られる酸の倍率が変わる。
Generally, when observing the inside of a body cavity using an endoscope, the magnification of the acid obtained changes depending on the distance between the objective end and the body cavity wall.

そのため、内視鏡像そのものだけでは患部の実際の長さ
の計測は不可能である。これに対処するために、従来は
鉗子を使って患部にスケールを置いて長さを測定してい
る。ここで、体腔壁は常に動いているので、スケールを
置くことは困難であり、計測に時間がかかるという欠点
がある。捷だ、スケールを置くことにより、視野が妨げ
られ、観察に支障をおよぼす虞れがある。
Therefore, it is impossible to measure the actual length of the affected area using only the endoscopic image itself. To deal with this, traditionally, forceps are used to place a scale on the affected area to measure the length. Here, since the body cavity wall is constantly moving, it is difficult to place a scale, and there is a drawback that measurement takes time. Unfortunately, placing a scale may obstruct the field of view and interfere with observation.

この発明の目的は、観察に支障をおよぼすことなく簡単
に被写体の実際の長さを計測することができる内視鏡自
動計測装置を提供することである。
An object of the present invention is to provide an endoscope automatic measuring device that can easily measure the actual length of a subject without interfering with observation.

以下、図面を参照してこの発明による内視鏡自動計測装
置の一実MM例を説明する。第1図はその概略的ブロッ
ク図である。ライトガイド10とイメージガイド12を
有する内視鏡14の接眼部にテレビジョンカメラ16が
取付けられる。ライトガイド12の一端は光源ユニット
18I/C導びかれる。光源ユニット18は照明用ラン
プ20とレーザ発振器22を有し、両者からの光がハー
フミラ−24を介してライトガイド12の一端に入射さ
れるように構成される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An actual MM example of an endoscope automatic measuring device according to the present invention will be described below with reference to the drawings. FIG. 1 is a schematic block diagram thereof. A television camera 16 is attached to an eyepiece of an endoscope 14 having a light guide 10 and an image guide 12. One end of the light guide 12 is guided to a light source unit 18I/C. The light source unit 18 has an illumination lamp 20 and a laser oscillator 22, and is configured so that light from both is incident on one end of the light guide 12 via a half mirror 24.

ライトガイドI2の先端(対物端)からは、照明光が第
1図に実線で示すように拡散的に放射され、2同圧用ビ
ーム光としてのレーザブLが第1図に破線で示すように
所定角度で(ここでは、ライトガイド12に沿って)放
射される。テレビジョンカメラ16の出力信号が計測部
26および表示部28に供給される。計測部26の出力
信号も表示部28に供給される。
From the tip (objective end) of the light guide I2, illumination light is emitted in a diffused manner as shown by the solid line in FIG. It is emitted at an angle (here along the light guide 12). The output signal of the television camera 16 is supplied to the measurement section 26 and the display section 28. The output signal of the measuring section 26 is also supplied to the display section 28 .

第2図は、この実施レリの電気的構成を示すブロック図
である。テレビジョンカメラ16は撮像素子としてC,
CD 32を用いる。CCD32は2次元マトリクス状
に配列された画素を有し、走r「回路34により定配さ
れ、各画素毎の画素情報を出力する。CCD32の出力
信号がコンパレータ36およびプロセスアンプ38に供
給される。コンパレータ36はCCD32の出力信号を
基準レベルVRと比較し、その出力はCPU40に供給
される。プロセスアンプ38はCCDJ2の出力信号を
テレビジョン信号のフォーマットに合った1面作信号と
し、その出力画像信号はビデオコントローラ42に供給
される。
FIG. 2 is a block diagram showing the electrical configuration of this implementation. The television camera 16 has C as an image sensor,
CD 32 is used. The CCD 32 has pixels arranged in a two-dimensional matrix, which are regularly arranged by a scanning circuit 34 and outputs pixel information for each pixel.The output signal of the CCD 32 is supplied to a comparator 36 and a process amplifier 38. The comparator 36 compares the output signal of the CCD 32 with the reference level VR, and its output is supplied to the CPU 40.The process amplifier 38 converts the output signal of the CCDJ 2 into a single-screen signal that matches the format of the television signal, and outputs the signal. The image signal is provided to a video controller 42.

ビデオコントローラ42、ROM44、CRTモニタ4
8がシステムバス50を介してCPU40に接続される
。ライトペン52がCPU40に接続される。
Video controller 42, ROM 44, CRT monitor 4
8 is connected to the CPU 40 via the system bus 50. A light pen 52 is connected to CPU 40.

この実施例の動作を説明する。この発明では、テレビジ
ョンカメラ16の出力信号を表示する画面上に写る被写
体の実際の大きさは波写体唸での距離に応じることが利
用される。すなわち、被写体までの距離がわかっていれ
ば、画面上での長さから実際の長さがわかる。そのため
、まず、第3図を参照して、この発明における測距の原
理を説明する。上述したように、ライトガイド12の先
端からは破線で示すようにライトガイド12t/C沿っ
てレーザ光が放射されている。
The operation of this embodiment will be explained. The present invention utilizes the fact that the actual size of the object shown on the screen displaying the output signal of the television camera 16 depends on the distance in the wave image. In other words, if you know the distance to the subject, you can find the actual length from the length on the screen. Therefore, first, the principle of distance measurement in this invention will be explained with reference to FIG. As described above, laser light is emitted from the tip of the light guide 12 along the light guide 12t/C as shown by the broken line.

一方、イメージガイド10の先端には、一点鎖線で示す
ように距離の増加とともに大きな画像が入射される。そ
のため、距離に応じて画像中のレーザ光の照@位置が異
なる。この発明では、画像の直径(ntl常、イメージ
ガイドは円形断面を有するので、画[象は円形である)
の一端から飼った照射位置゛までの間QAa 、 a’
が距1rtt=に比レリすることを利用する。具体的に
は、CCD32のどの画素がレーザ光を受光したかによ
って距離を測定する。すなわち、C0D32は2次元マ
トリクス状に配列された画素を有するので、そのうちの
−列の画素からの出力期間中のどのタイミングでレーザ
光が検出されるかによって611]距する。まず、あら
かじめ、距離に対する照射位置を光学系の諸条件を考慮
して求めて、これをROM44に%5納しておく。RO
M44は、画素位置に応じたアドレスにその距離情報を
記憶する。CCD32の出力信号はプロセスアンプ38
を介してビデオコントローラ42に供給され、CRTモ
ニタ48で内視鏡隊が表示される。一方、CCD32の
出力信号はコンパレータ36で7i9準レベルVRと比
較される。この法準レベルは、レーザ光の照射位置に対
応する画素からの信号がコンパレータ36vc供給され
たときのみ、コンパレータ36から信号が出力されるよ
うに設定される。CPU40は、CCD32の走査のだ
めのクロック信号となる走査回1烙34の出力信号から
同期信号を検出して、コンパレータ36からの信号の出
力タイミングが一列中のどの画素に対応するか判断する
。CPU40がこの1而素泣置を検出すると、ROk4
44のこの位置に応じたアドレスからl(μ内「情報が
Bfr出される。これにより、対物柘完と体腔壁との距
離が測定される。
On the other hand, a large image is incident on the tip of the image guide 10 as the distance increases, as shown by the dashed line. Therefore, the position of the laser beam in the image differs depending on the distance. In this invention, the diameter of the image (ntl, since the image guide has a circular cross section,
QAa, a' from one end to the irradiation position
The fact that is compared to the distance 1rtt= is utilized. Specifically, the distance is measured based on which pixel of the CCD 32 receives the laser beam. That is, since the C0D 32 has pixels arranged in a two-dimensional matrix, the distance 611] depends on at which timing during the output period the laser light is detected from the - column of pixels. First, the irradiation position with respect to the distance is determined in advance by taking into account various conditions of the optical system, and this is stored in the ROM 44 by 5%. R.O.
M44 stores the distance information at an address corresponding to the pixel position. The output signal of the CCD 32 is sent to the process amplifier 38.
The video is supplied to the video controller 42 via the CRT monitor 48, and the endoscope team is displayed on the CRT monitor 48. On the other hand, the output signal of the CCD 32 is compared with the 7i9 quasi-level VR by a comparator 36. This standard level is set so that the signal is output from the comparator 36 only when the signal from the pixel corresponding to the irradiation position of the laser beam is supplied to the comparator 36vc. The CPU 40 detects a synchronizing signal from the output signal of the first scanning circuit 34, which serves as a clock signal for scanning of the CCD 32, and determines which pixel in one row the output timing of the signal from the comparator 36 corresponds to. When the CPU 40 detects this single element location, ROk4
From the address corresponding to this position of 44, the information in 1 (μ) is outputted from Bfr. As a result, the distance between the objective lens and the body cavity wall is measured.

次に、操作者はCRTモニタ48上で長さをi!i11
1)だい線分の両端をライトペン52で指示する。これ
によI)、cpU4oにCRTモニタ48上での技さが
入力される。CPU40ばこの長さと先に求めたi(セ
離に基づいて、実際の長さを求め、ビデオコントローラ
42に供給し、第4図に示すように内視鏡隊とともに測
長結果を表わす数値が表示される。図中、点はレーザ光
の照射位置を示す。
Next, the operator measures the length i! on the CRT monitor 48. i11
1) Indicate both ends of the diagonal line segment with the light pen 52. As a result, the technique on the CRT monitor 48 is input to the cpU 4o. The CPU 40 calculates the actual length based on the length of the lamp and the previously determined i (separation), supplies it to the video controller 42, and as shown in FIG. In the figure, dots indicate the irradiation position of the laser beam.

このように、この実7/ai例によれば、被写体にビー
ム光を照射しこの照射位置を検出するだけで被写体まで
の距離を求め、この距離と表示画面上の長さとにより、
m)単、かつ、観察に支障をおよぼさずに、実際の長さ
を求めることのできる内視鏡自動計測装置が提供される
In this way, according to this Example 7/ai, the distance to the subject is determined simply by irradiating the subject with a beam of light and detecting the irradiation position, and using this distance and the length on the display screen,
m) An automatic endoscope measuring device is provided that can easily determine the actual length without interfering with observation.

なお、上述の説明では、測距用ビーム光は可視レーザ光
としたが、Nd−YAC)レーザ光のような不可視レー
ザ光、あるいは、赤外光を用いてもよい。赤外光を用い
る場合は、イメージガイド10とCCD32の間に入射
光を画は用のR,G、B成分および赤外成分に分ける4
色分解光学系を設け、CCD32も4色分設ける。
In the above description, the distance measuring beam light is a visible laser light, but an invisible laser light such as a Nd-YAC (Nd-YAC) laser light or an infrared light may also be used. When using infrared light, the incident light is divided between the image guide 10 and the CCD 32 into R, G, B components and infrared components.
A color separation optical system is provided, and a CCD 32 is also provided for four colors.

捷だ、テレビジョンカメラ16は全て接眼部に設けるの
ではなく、CCD等の撮鐵累子は対物端に設けてもよい
。あるいは、測距用レーザダイオードを内視鏡の先端に
設けてもよい。さらに、測距用には撮鐵用とは別のライ
ンセンサを用いてもよい。また、C’RTモニタ48上
での長さの入力は、キーボード等から行なってもよい0 以上説明したように、この発明によれば、簡単な構成で
、かつ、観察に支障をおよぼさない内視鏡自動計測装置
lが提供される。
However, instead of installing the television camera 16 entirely at the eyepiece, a camera device such as a CCD may be installed at the objective end. Alternatively, a distance measuring laser diode may be provided at the tip of the endoscope. Furthermore, a line sensor different from that for distance measurement may be used for distance measurement. Further, the length may be entered on the C'RT monitor 48 using a keyboard, etc. As explained above, according to the present invention, the length can be input with a simple configuration and without interfering with observation. An automatic endoscope measuring device l is provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による内視鏡自動計測装置の一実施例
のブロック図、第2図はその′I@7気的構気分構成ブ
ロック図、第3図はこの発明にお・ける1測距の原理を
説明するだめの図、第4図はこの実施例の表示の一例を
示す図である。 12・・・ライトガイド、22・・・レーザ発娠器、3
2・・・CCD、36・・・コンパレータ、38・・・
プロセスアンプ、40・・・CPU、42・・・ビデオ
コントローラ、44・・・ROVl 4B・・・CRT
モニタ、52・・・ライトペン。 出願人代理人  弁理士 鈴 江 弐 彦第1頁の続き 0発 明 者 降籏広行 東京都渋谷区幡ケ谷2丁目43番 2号才リンパス光学工業株式会 社内 0発 明 者 谷用廣治 東京都渋谷区幡ケ谷2丁目43番 2号才リンパス光学工業株式会 社内 0発 明 者 中村川明 東京都渋谷区幡ケ谷2丁目43番 2号才リンパス光学工業株式会 社内 0発 明 者 小川光調 東京都渋谷区幡ケ谷2丁目43番 2号才リンパス光学工業株式会 社内 0発 明 者 川崎武人 東京都渋谷区幡ケ谷2丁目43番 2号才リンパス光学工業株式会 社内 昭和 年 月  日 特許庁長官  若 杉 和 夫  殿 1、事件の表示 特願昭57−180818号 2、発明の名称 内視鏡自動計測装置 3、補正をする者 事件との関係  特許出願人 (037)  オリン・ぞス光学工業株式会社4、代理
人 6、補正の対象 明細書 7、補正の内容 ゛願書に添付の明細書第2頁第19行目に記載の「10
とイメージガイド12」を「12とイメージガイド10
」と訂正する。 9
FIG. 1 is a block diagram of an embodiment of the automatic endoscope measurement device according to the present invention, FIG. 2 is a block diagram of its configuration, and FIG. FIG. 4, which is a diagram for explaining the principle of distance, is a diagram showing an example of the display of this embodiment. 12...Light guide, 22...Laser generator, 3
2...CCD, 36...Comparator, 38...
Process amplifier, 40...CPU, 42...Video controller, 44...ROVl 4B...CRT
Monitor, 52...Light pen. Applicant's representative Patent attorney Nihiko Suzue Continued from page 1 0 Author Hiroyuki Furiyo 2-43-2 Hatagaya, Shibuya-ku, Tokyo Lymphus Optical Industry Co., Ltd. 0 Author Hiroharu Taniyo Shibuya-ku, Tokyo 2-43-2 Hatagaya 2-43-2 Lymphus Optical Co., Ltd. Inventor Kawaaki Nakamura 2-43-2 Hatagaya, Shibuya-ku, Tokyo Lymphus Optical Co., Ltd. 0 Inventor Kosho Ogawa Shibuya-ku, Tokyo 2-43-2 Hatagaya, Tokyo Inventor: Takehito Kawasaki, 2-43-2, Hatagaya, Shibuya-ku, Tokyo, 2-43-2, Lymphus Optical Industry, Ltd. Showa, 1920, Director General of the Japan Patent Office Kazuo Wakasugi. 1. Indication of the case Japanese Patent Application No. 180818/1982 2. Name of the invention Endoscope automatic measuring device 3. Person making the correction Relationship to the case Patent applicant (037) Olin Zos Optical Industry Co., Ltd. 4. Agent Person 6, Specification to be amended 7, Contents of amendment ``10 stated in page 2, line 19 of the specification attached to the application.
and Image Guide 12” to “12 and Image Guide 10”
” he corrected. 9

Claims (1)

【特許請求の範囲】[Claims] (1)内視鏡によシ得られた光学縁を撮隊する手段と、
内視鏡の対物部からビーム光を放射する手段と、前記撮
作手段の出力信号から求められる撮影画面におけるビー
ム光の照射位置に基づいて内祝雑の対物部と被写体との
距離を求める測距手段と、前記撮1象手段の出力信号を
表示するモニタ手段と、前記モニタ手段の画面上での2
点の間隔と1lllJ IB+j手段の出力信号に応じ
て前記2点間の実際の長さを求める副長手段とを具%+
する内視鏡囲動計測装置。 12)前記副長手段の出力信号が前記モニタ手段で表示
されることを特徴とする特許請求の範囲第1項に記載の
内視鏡自動計測装置。
(1) means for photographing the optical edge obtained by the endoscope;
Distance measurement that calculates the distance between the objective part of the endoscope and the subject based on the irradiation position of the beam light on the photographic screen determined from the output signal of the objective part of the endoscope and the output signal of the photographing means. means, a monitor means for displaying the output signal of the image capturing means, and a display means for displaying the output signal of the image capturing means on the screen of the monitor means;
sub-length means for determining the actual length between the two points according to the interval between the points and the output signal of the 1lllJ IB+j means;
Endoscope circumference measurement device. 12) The endoscope automatic measuring device according to claim 1, wherein the output signal of the sub-length means is displayed on the monitor means.
JP57180818A 1982-10-15 1982-10-15 Automatic measuring apparatus of endoscope Granted JPS5970903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57180818A JPS5970903A (en) 1982-10-15 1982-10-15 Automatic measuring apparatus of endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57180818A JPS5970903A (en) 1982-10-15 1982-10-15 Automatic measuring apparatus of endoscope

Publications (2)

Publication Number Publication Date
JPS5970903A true JPS5970903A (en) 1984-04-21
JPH0472162B2 JPH0472162B2 (en) 1992-11-17

Family

ID=16089889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57180818A Granted JPS5970903A (en) 1982-10-15 1982-10-15 Automatic measuring apparatus of endoscope

Country Status (1)

Country Link
JP (1) JPS5970903A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6468233A (en) * 1987-09-10 1989-03-14 Fuji Photo Optical Co Ltd Object dimension measuring apparatus of electronic endoscope
JPH01236042A (en) * 1988-03-17 1989-09-20 Kazuo Baba Ultrasonic endoscope device
JPH0313805A (en) * 1989-06-12 1991-01-22 Welch Allyn Inc Method and device for observing inside of body
JPH08285541A (en) * 1995-04-17 1996-11-01 Shadan Kento Kai Method and device for distance measurement and method and device for medical support
WO1997043596A1 (en) * 1996-05-15 1997-11-20 Keymed (Medical & Industrial Equipment) Ltd. Digital measuring scope with thermal compensation
JP2006192280A (en) * 1999-09-24 2006-07-27 Natl Research Council Of Canada Method and apparatus for performing intra-operative angiography
US7881777B2 (en) 1999-09-24 2011-02-01 National Research Council Of Canada Method and apparatus for performing intra-operative angiography
US9421280B2 (en) 2005-04-26 2016-08-23 Novadaq Technologies Inc. Real time imaging during solid organ transplant
US9610021B2 (en) 2008-01-25 2017-04-04 Novadaq Technologies Inc. Method for evaluating blush in myocardial tissue
US9816930B2 (en) 2014-09-29 2017-11-14 Novadaq Technologies Inc. Imaging a target fluorophore in a biological material in the presence of autofluorescence
US10041042B2 (en) 2008-05-02 2018-08-07 Novadaq Technologies ULC Methods for production and use of substance-loaded erythrocytes (S-IEs) for observation and treatment of microvascular hemodynamics
US10219742B2 (en) 2008-04-14 2019-03-05 Novadaq Technologies ULC Locating and analyzing perforator flaps for plastic and reconstructive surgery
US10265419B2 (en) 2005-09-02 2019-04-23 Novadaq Technologies ULC Intraoperative determination of nerve location
US10278585B2 (en) 2012-06-21 2019-05-07 Novadaq Technologies ULC Quantification and analysis of angiography and perfusion
US10434190B2 (en) 2006-09-07 2019-10-08 Novadaq Technologies ULC Pre-and-intra-operative localization of penile sentinel nodes
US10492671B2 (en) 2009-05-08 2019-12-03 Novadaq Technologies ULC Near infra red fluorescence imaging for visualization of blood vessels during endoscopic harvest
US10631746B2 (en) 2014-10-09 2020-04-28 Novadaq Technologies ULC Quantification of absolute blood flow in tissue using fluorescence-mediated photoplethysmography
US10992848B2 (en) 2017-02-10 2021-04-27 Novadaq Technologies ULC Open-field handheld fluorescence imaging systems and methods

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6468233A (en) * 1987-09-10 1989-03-14 Fuji Photo Optical Co Ltd Object dimension measuring apparatus of electronic endoscope
JPH0431252B2 (en) * 1987-09-10 1992-05-26
JPH01236042A (en) * 1988-03-17 1989-09-20 Kazuo Baba Ultrasonic endoscope device
JPH0698134B2 (en) * 1988-03-17 1994-12-07 和雄 馬場 Ultrasound endoscopy
JPH0313805A (en) * 1989-06-12 1991-01-22 Welch Allyn Inc Method and device for observing inside of body
JPH08285541A (en) * 1995-04-17 1996-11-01 Shadan Kento Kai Method and device for distance measurement and method and device for medical support
WO1997043596A1 (en) * 1996-05-15 1997-11-20 Keymed (Medical & Industrial Equipment) Ltd. Digital measuring scope with thermal compensation
US6100972A (en) * 1996-05-15 2000-08-08 Keymed (Medical & Industrial Equipment) Ltd. Digital measuring scope with thermal compensation
JP2006192280A (en) * 1999-09-24 2006-07-27 Natl Research Council Of Canada Method and apparatus for performing intra-operative angiography
US7881777B2 (en) 1999-09-24 2011-02-01 National Research Council Of Canada Method and apparatus for performing intra-operative angiography
US8892190B2 (en) 1999-09-24 2014-11-18 National Research Council Of Canada Method and apparatus for performing intra-operative angiography
US9421280B2 (en) 2005-04-26 2016-08-23 Novadaq Technologies Inc. Real time imaging during solid organ transplant
US10265419B2 (en) 2005-09-02 2019-04-23 Novadaq Technologies ULC Intraoperative determination of nerve location
US10434190B2 (en) 2006-09-07 2019-10-08 Novadaq Technologies ULC Pre-and-intra-operative localization of penile sentinel nodes
US9936887B2 (en) 2008-01-25 2018-04-10 Novadaq Technologies ULC Method for evaluating blush in myocardial tissue
US11564583B2 (en) 2008-01-25 2023-01-31 Stryker European Operations Limited Method for evaluating blush in myocardial tissue
US9610021B2 (en) 2008-01-25 2017-04-04 Novadaq Technologies Inc. Method for evaluating blush in myocardial tissue
US10835138B2 (en) 2008-01-25 2020-11-17 Stryker European Operations Limited Method for evaluating blush in myocardial tissue
US10219742B2 (en) 2008-04-14 2019-03-05 Novadaq Technologies ULC Locating and analyzing perforator flaps for plastic and reconstructive surgery
US10041042B2 (en) 2008-05-02 2018-08-07 Novadaq Technologies ULC Methods for production and use of substance-loaded erythrocytes (S-IEs) for observation and treatment of microvascular hemodynamics
US10492671B2 (en) 2009-05-08 2019-12-03 Novadaq Technologies ULC Near infra red fluorescence imaging for visualization of blood vessels during endoscopic harvest
US10278585B2 (en) 2012-06-21 2019-05-07 Novadaq Technologies ULC Quantification and analysis of angiography and perfusion
US11284801B2 (en) 2012-06-21 2022-03-29 Stryker European Operations Limited Quantification and analysis of angiography and perfusion
US10488340B2 (en) 2014-09-29 2019-11-26 Novadaq Technologies ULC Imaging a target fluorophore in a biological material in the presence of autofluorescence
US9816930B2 (en) 2014-09-29 2017-11-14 Novadaq Technologies Inc. Imaging a target fluorophore in a biological material in the presence of autofluorescence
US10631746B2 (en) 2014-10-09 2020-04-28 Novadaq Technologies ULC Quantification of absolute blood flow in tissue using fluorescence-mediated photoplethysmography
US10992848B2 (en) 2017-02-10 2021-04-27 Novadaq Technologies ULC Open-field handheld fluorescence imaging systems and methods
US11140305B2 (en) 2017-02-10 2021-10-05 Stryker European Operations Limited Open-field handheld fluorescence imaging systems and methods

Also Published As

Publication number Publication date
JPH0472162B2 (en) 1992-11-17

Similar Documents

Publication Publication Date Title
JPS5970903A (en) Automatic measuring apparatus of endoscope
US5202758A (en) Fluorescent penetrant measurement borescope
US5633675A (en) Shadow probe
JPS5969721A (en) Endoscope measuring device
US4980763A (en) System for measuring objects viewed through a borescope
JP3513419B2 (en) Coordinate input device, control method therefor, and computer-readable memory
JPS5970908A (en) Distance measuring apparatus of endoscope
JPH08285541A (en) Method and device for distance measurement and method and device for medical support
JPS641726B2 (en)
JPH0349567B2 (en)
US7164467B2 (en) Method and apparatus for electronically generating an outline indicating the size of an energy zone imaged onto the IR detector of a radiometer
JPH03231622A (en) Endoscope apparatus
JP3271813B2 (en) Calibration method and calibration device for image measurement device
JPS5969046A (en) Endoscope image system
JPS6354378B2 (en)
JPH0634779B2 (en) Eye measuring device
JP3199793B2 (en) Imaging device
JPH0380824A (en) Measuring endoscope device
JPH08229004A (en) Corneal shape meausuring device
KR20210131801A (en) Electronic length measuring device
Bhatnagar et al. Quantitative size measurement of features viewed through a video endoscope
JP6207226B2 (en) Endoscope system
JPH10221068A (en) Electronic level
JPH0618219A (en) Measuring method of object through endoscope
JPS6432171A (en) Speed measuring instrument by image processing