JPS5970742A - Shape memory copper alloy - Google Patents

Shape memory copper alloy

Info

Publication number
JPS5970742A
JPS5970742A JP17965782A JP17965782A JPS5970742A JP S5970742 A JPS5970742 A JP S5970742A JP 17965782 A JP17965782 A JP 17965782A JP 17965782 A JP17965782 A JP 17965782A JP S5970742 A JPS5970742 A JP S5970742A
Authority
JP
Japan
Prior art keywords
alloy
weight
shape memory
present
alloys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17965782A
Other languages
Japanese (ja)
Other versions
JPS6045697B2 (en
Inventor
Yuko Hanatachi
花立 有功
Masakazu Miyagi
宮城 政和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOSAKAFU
Osaka Prefecture
Original Assignee
OOSAKAFU
Osaka Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOSAKAFU, Osaka Prefecture filed Critical OOSAKAFU
Priority to JP17965782A priority Critical patent/JPS6045697B2/en
Publication of JPS5970742A publication Critical patent/JPS5970742A/en
Publication of JPS6045697B2 publication Critical patent/JPS6045697B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

PURPOSE:To make the resulting titled alloy inexpensive and easy to cut and to enable the melting and heat treatment in the air by providing a specified composition consisting of Mn, Zn and Cu. CONSTITUTION:This shape memory Cu alloy consists of, by weight, <=12% Mn, 26-44% Zn and 62-65% Cu. Al may be added to the alloy so as to provide a composition consisting of <=12% Mn, <=3% (X%) Al, (26-4X)-44% Zn and (62+3X)-(56-X)% Cu. The working (transformation) temp. of the ternary alloy is usually about -150 deg.C- room temp. The working temp. can be raised up to a temp. above room temp. by adding Al.

Description

【発明の詳細な説明】 本発明は、新規な銅基形状記憶合金に関する。[Detailed description of the invention] The present invention relates to a novel copper-based shape memory alloy.

一般に形状記憶合金は、形状記憶効果、超弾性及び防振
効果を有して居り、これらの特性を利用して各種の用途
が開発されつつある。形状記憶効果とは、特定の組成の
合金よりなる物品に、形状記憶熱処理を施した後、ある
定まった温度域で変形さぜ、ついで所定の温度以上に加
熱するとその物品の形状が変形前の形状に復帰する現象
である。
In general, shape memory alloys have shape memory effects, superelasticity, and vibration damping effects, and various uses are being developed using these properties. Shape memory effect refers to an article made of an alloy with a specific composition that undergoes shape memory heat treatment, deforms in a certain temperature range, and then when heated above a predetermined temperature, the shape of the article changes to its original shape. This is a phenomenon of returning to the shape.

即ち、合金の変態温度域を挾んで高温側での形状と、低
温側での形状との間に一方向的または可逆的な形状の復
元がなされる現象で、熱弾性型マルテンサイト変態に起
因するとされている。また、超弾性とは応力によって既
記されたマルテンサイト相が変形時の温度領域では熱力
学的には安定に存在し得ないので、見掛は上の大きな塑
性変形ひずみが、応力除去後に殆んど完全に回復する現
象を指すものである。更に防振効果は、層状に形成され
たマルテンサイト相が振動エネルギーを吸収するときに
よるといわれている。
In other words, it is a phenomenon in which the shape is unidirectionally or reversibly restored between the shape at the high temperature side and the shape at the low temperature side across the transformation temperature range of the alloy, and is caused by thermoelastic martensitic transformation. It is said that then. In addition, superelasticity means that the martensitic phase, which has already been described due to stress, cannot exist thermodynamically stably in the temperature range at the time of deformation. This refers to the phenomenon of complete recovery. Furthermore, the vibration-proofing effect is said to be due to the fact that the layered martensite phase absorbs vibration energy.

形状記憶合金として、従来からTi−Ni合金、Ni−
Al合金等の低調基合金として、Cu−Zn合金、Cu
−Zn−Al合金、Cu −A I −N i合金、C
u−Al−Be合金等が知られており、これらのうち実
用化されている合金は、主に”l’1−Ni合金、Cu
−Zn−Al合金及びCu−Al−Be合金である。
As shape memory alloys, Ti-Ni alloy, Ni-
Cu-Zn alloy, Cu
-Zn-Al alloy, Cu-AI-Ni alloy, C
u-Al-Be alloy etc. are known, and among these alloys, the alloys that have been put into practical use are mainly "l'1-Ni alloy, Cu
-Zn-Al alloy and Cu-Al-Be alloy.

しかしながら、T i −N i合金は優れた特性を有
するが、Ti及びNiを主成分きするため高価であり、
又活性な1゛コを含む合金であるため溶解や熱処理は真
空中で行わねばならないという製造上の何り点を有し、
且つ切削加工が極めて困難であるきいう欠点がある。
However, although Ti-Ni alloy has excellent properties, it is expensive because it mainly contains Ti and Ni.
In addition, since it is an alloy containing active 1, it has a manufacturing disadvantage in that melting and heat treatment must be performed in a vacuum.
Another drawback is that cutting is extremely difficult.

一方、Cu−Zn−Al合金及びCu −A I −B
 e合金のような鋼基合金は、原料が安価なうえ、溶解
、熱処理等を大気中で行うことができ且つ切削加工が容
易であるため、形状記憶合金の実用的使用を促進させる
材料として今後大いに期待されている。
On the other hand, Cu-Zn-Al alloy and Cu-A I-B
Steel-based alloys such as e-alloys are inexpensive raw materials, can be melted and heat treated in the atmosphere, and are easy to cut, so they are expected to be used as materials to promote the practical use of shape memory alloys. There are high expectations.

しかしながら、これらの銅基合金は、Al を多量に含
有することにより合金自体が硬化するため靭性に劣り、
鋳造性が低下するという欠点がある。
However, these copper-based alloys have poor toughness because they harden due to containing a large amount of Al.
There is a drawback that castability is reduced.

従って、上記の如き利点を有する銅基合金において、A
I に代わる或いはA1を減少さぜることができる新し
い添加元素の発見が待たれているのが現状である。
Therefore, in copper-based alloys having the above advantages, A
At present, the discovery of a new additive element that can replace I or reduce A1 is awaited.

本発明者は、上記現状に鮎み、この柚の合金特に銅基合
金における上記欠点を解消する新たな銅基合金を開発す
るべく鋭意研究した結果、従来使用可能温度範囲が過度
に低温であるため実用性に乏しかったCu−Zn合金に
特定量のMnを添加含有させることにより使用可能温度
範囲が上昇し実用化できること、このCu−Zn−Mn
合金に少量のAIを添加することにより該温度範囲が広
範囲に調節できること、これらのCu −Z n −M
 n合金及びCu −Z n −M n −A I合金
はいずれも良好な形状記憶効果を示すこと、及びこれら
はAIを含有しないか又は少1(1シか含有しないこと
により、従来の銅基合金に比して、靭性が著しく向」−
シており且つ鋳造性が良好であることを見出し、本発明
を完成するに至った。
The inventor of the present invention took note of the current situation and conducted intensive research to develop a new copper-based alloy that eliminates the above-mentioned drawbacks of this yuzu alloy, especially copper-based alloys, and found that the conventional usable temperature range was excessively low. Therefore, by adding a specific amount of Mn to the Cu-Zn alloy, which was not practical, the usable temperature range is increased and it can be put into practical use.
The temperature range can be adjusted over a wide range by adding a small amount of AI to the alloy, and these Cu-Zn-M
Both the n-alloy and the Cu-Zn-Mn-A I alloy show good shape memory effects, and by containing no or only a small amount of AI, they are superior to conventional copper-based alloys. Toughness is significantly improved compared to alloys.
The present inventors have discovered that the present invention has excellent castability and good castability, and has completed the present invention.

即ち本発明は、Mn12重量%以下、Zn26〜44重
1+t:%及びCu62〜56重景%からな重量とを特
徴きする銅基形状記憶合金、並びにMn12卓量%以下
、A13重社%以下(X重量%とする)、Zn(26−
4x)〜44重皿%及びCu(62+8X)〜(56−
X)重量%からなることを特徴とする銅基形状記憶合金
に係る。
That is, the present invention provides a copper-based shape memory alloy characterized by a weight of Mn of 12% by weight or less, Zn of 26 to 44 weight 1+t:%, and Cu of 62 to 56 weight%, as well as Mn of 12 weight% or less and A13 weight of % or less. (X weight %), Zn(26-
4x)~44 heavy plate% and Cu(62+8X)~(56-
X) It relates to a copper-based shape memory alloy characterized in that it consists of % by weight.

」二記本発明合金の内、Cu−Zn−Mn三元合金にお
いては、Mnが12重里%以下好ましくは0.5〜10
重爪%爪形nが26〜44重量%好ましくは28〜41
.5重量%、MnとZnの合計量が38〜44重景%(
重量Cuが62〜56重量%)好ましくは38〜42重
量%である。Mnが含有されない場合、Mn含有量が1
2重爪形を越える場合、Znが上記範囲外にある場合及
びM nとZnの合計量が上記範囲外にある場合には、
いずれも合金の形状回復の作動温度が極めて低温度にな
るため、実用性が乏しい。本発明Cu−Zn−Mn三元
合金の組成範囲を図示すれば、第1図の通りである。
In the Cu-Zn-Mn ternary alloy of the alloys of the present invention, the Mn content is 12% or less, preferably 0.5 to 10%.
Heavy nail % nail shape n is 26-44% by weight, preferably 28-41
.. 5% by weight, and the total amount of Mn and Zn is 38-44% by weight (
Weight Cu is 62 to 56% by weight), preferably 38 to 42% by weight. When Mn is not contained, the Mn content is 1
If the double claw shape is exceeded, if Zn is outside the above range, or if the total amount of Mn and Zn is outside the above range,
In either case, the operating temperature for shape recovery of the alloy is extremely low, so they are of little practical use. The composition range of the Cu-Zn-Mn ternary alloy of the present invention is illustrated in FIG. 1.

即ち、Mnが0重量%(0は含まれないので破線で示す
)及び122重化、並びにM n + Z 11が38
重爪形及び44重星形を示す4つの直線で囲まれる範5
囲である。
That is, Mn is 0% by weight (0 is not included, so it is shown by a broken line) and 122 times, and Mn + Z 11 is 38% by weight.
Range 5 surrounded by four straight lines showing double claw shape and 44 double star shape
It is surrounded.

上記本発明三元合金は、その作動(変態)温度が通常−
150℃〜室温程度であるが、これにA1を添加するこ
とにより、室温以上にまで作動温度を上昇させることが
出来る。また、AIの添加により形状記憶挙動を示す組
成範囲を拡大出来る。
The above ternary alloy of the present invention has an operating (transformation) temperature of -
The operating temperature is about 150° C. to room temperature, but by adding A1 to this, the operating temperature can be raised to above room temperature. Furthermore, the composition range exhibiting shape memory behavior can be expanded by adding AI.

得ることが実験的に確認出来た。It was experimentally confirmed that this could be obtained.

従って、本発明のCu −Z n −M n −A I
  四元合金においては、Mnが122重化以下好まし
くは0.5〜10重i1%、AIが8重社%以下(X重
量%とする)好ましくは0.2〜2,5重量%、Znが
(26−4x)〜44重爪爪形ましくは(28−4x 
)〜(48,5−4x )重量%、MnとZnの合計量
が(88−4x) 〜44重舐%〔即ちCuが(62+
8x)〜(56−x’)重県%]好ましくは(38−4
x)〜(44−4X)重量%である。これらの各範囲の
内、AI以外のいずれが範囲外になっても形状回復の作
動温度が画めて低温度になるため実用性が乏しくなる。
Therefore, Cu-Zn-Mn-AI of the present invention
In the quaternary alloy, Mn is 122 weight or less, preferably 0.5 to 10 weight i1%, AI is 8 weight % or less (X weight %), preferably 0.2 to 2.5 weight %, Zn (26-4x) ~ 44 double claw shape or (28-4x
) ~ (48,5-4x)% by weight, the total amount of Mn and Zn is (88-4x) ~44% by weight [i.e., Cu is (62+
8x) ~ (56-x') heavy prefecture%] Preferably (38-4
x) to (44-4X)% by weight. If any of these ranges other than AI falls outside the range, the operating temperature for shape recovery will be significantly lower, resulting in poor practicality.

又、AIが3重Jiζ%を越えると靭性及び鋳造性が低
下する。本発明Cu−Z n −M n −A I  
四元合金の組成範囲は、AI含有ji+、をX重量%と
ずれば、Mnが0重量(%、M nが12重1%、Zn
+Mnが44重爪形及びZ n −1−M nが(88
−4x)重量%の4つの直線で囲まれる範囲であり、−
例としてAIが1.2及び3重量%の場合を第2.3及
び4図に示す。
Furthermore, if the AI exceeds 3-fold Jiζ%, the toughness and castability will decrease. Present invention Cu-Z n -M n -A I
The composition range of the quaternary alloy is as follows: If AI containing ji+ is shifted from X weight %, Mn is 0 weight (%, M n is 12 weight 1%, Zn
+Mn is 44 double claw type and Zn -1-Mn is (88
-4x) weight% range surrounded by four straight lines, -
As an example, cases where AI is 1.2 and 3% by weight are shown in Figures 2.3 and 4.

」二重のA1添加効果即ち作動温度」−昇及び組成範囲
の拡大は、AI以外でも、Ga、 Sb、 S i、 
I n。
``Double A1 addition effect, i.e., the operating temperature'' - increase and expansion of the composition range can be achieved not only with AI but also with Ga, Sb, Si,
I n.

Sn等の元素の添加で同様に期待出来る。Similar results can be expected by adding elements such as Sn.

本発明合金を含めて、一般に銅基合金には、製造工程中
の高温加熱によって結晶粒が生長し易く、結晶粒和犬化
のため疲労強度が劣るという欠点が見られるが、この欠
点は本発明者が別途発表した方法(大阪府立工業技術研
究T9’1lAA告、No、81、P、17.1982
 )により改善し得る。即ち、本発明のCu−Z n 
−M n三元合金又はこれにA1を含む四元合金は、結
晶粒が大きく、1mm以上になることもある。しかし、
本発明合金にB、Zr等の元素を0.3重量%以下程度
添加することにより結晶粒は著しく微細化される。この
場合B又はZrを単独で添加しても著しく微細化される
が、B及びZr両者を複合添加するときには、より一層
微細化される。例えは0.01重量%のBと0.2ii
%のZrを添加した場合には、結晶粒が数十ミクロン程
度にまで微細化し、疲労強度が著しく改善される。
In general, copper-based alloys, including the alloy of the present invention, have the disadvantage that crystal grains tend to grow due to high-temperature heating during the manufacturing process, and fatigue strength is inferior due to the crystal grains becoming smaller. A method separately announced by the inventor (Osaka Prefectural Industrial Technology Research T9'1lAA Notice, No. 81, P, 17.1982)
) can be improved. That is, the Cu-Z n of the present invention
The -Mn ternary alloy or the quaternary alloy containing A1 has large crystal grains, sometimes 1 mm or more. but,
By adding elements such as B and Zr to the alloy of the present invention in an amount of about 0.3% by weight or less, crystal grains are significantly refined. In this case, even if B or Zr is added alone, the grain size becomes extremely fine, but when both B and Zr are added in combination, the grain size becomes even finer. For example, 0.01% by weight of B and 0.2ii
% of Zr, the crystal grains become fine to about several tens of microns, and the fatigue strength is significantly improved.

本発明合金は、CuSZn、Mn又はこれらとA1、場
合により更にB5Zr等を所定H(配合して、常法に従
って合金とし、次いで焼鈍及び加工により所望の形状と
した後、B領域に加熱後充分な速度で急冷し、形状記憶
合金とする。この際、各金属としでは、単体で用いても
良いし、Cu−Mn母合金の様な予め一部合金化したも
のを用いても良い。
The alloy of the present invention is prepared by blending CuSZn, Mn, or these with A1, and optionally B5Zr, etc. in a predetermined amount of H (blending) to form an alloy according to a conventional method, and then annealing and processing to obtain a desired shape. The metals are rapidly cooled to form a shape memory alloy. At this time, each metal may be used alone or partially alloyed in advance, such as a Cu-Mn master alloy.

又”I’1−Niの合金の様に真空中で製造する必要は
なく、大気中でも好適に製造出来る。
Further, unlike the I'1-Ni alloy, it is not necessary to manufacture it in a vacuum, and it can be suitably manufactured in the atmosphere.

斯くして得られる本発明合金、即ちCu−Zn−Mn三
元合金及びCu−Zn−Mn−Al  四元合金は、い
ずれも新規な銅基形状記憶合金であり、高温でB相なる
組織を示す前記特定の組成範囲内において、前記形状記
憶効果、超弾性及び防振効果を充分に発揮する。本発明
合金は、使用可能温度範囲が広く利用価値が高い上に、
靭性に優れるため加工性が良好であり、又鋳造性も良好
である。
The alloys of the present invention thus obtained, that is, the Cu-Zn-Mn ternary alloy and the Cu-Zn-Mn-Al quaternary alloy, are both new copper-based shape memory alloys that develop a B-phase structure at high temperatures. Within the specific composition range indicated above, the shape memory effect, superelasticity, and vibration damping effect are fully exhibited. The alloy of the present invention has a wide usable temperature range and high utility value, and
Since it has excellent toughness, it has good workability and also good castability.

以下、実施例を挙げて、1本発明を更に具体的に説明す
る。
Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1゜ 銅、亜鉛及び銅−マンガン母合金を所定爪配合してるつ
ぼに充填後、石英ガラス中に真空封入し、1100℃の
電、気炉中で1時間保持し本発明及び比較の三元合金を
製造した。
Example 1 Copper, zinc, and copper-manganese mother alloy were mixed in a predetermined ratio and filled into a crucible, then vacuum sealed in quartz glass and kept in an electric/air furnace at 1100°C for 1 hour to prepare the samples of the present invention and comparison. A ternary alloy was produced.

このようにして製造した合金を、焼鈍および加工により
、所望の形状とした後、B領域に加熱後、十分なる冷却
速度で急冷し、形状記憶合金を作製した。下記第1表に
、上記方法で作製した本発明及び比較の合金の代表的な
ものについて、組成と機能特性を示す。
The thus produced alloy was annealed and processed to form a desired shape, heated to region B, and then rapidly cooled at a sufficient cooling rate to produce a shape memory alloy. Table 1 below shows the composition and functional properties of typical alloys of the present invention and comparative alloys produced by the above method.

上記の内面錆を86重量パーセント、マンガンを3重量
パーセント含有する本発明合金8について、fil:無
抵抗測定法により各変態温度を測定したところ、Ms、
 Mf、 AsおよびAf(Msは母相からマルテンサ
イト変態への開始温度、Mfは同終了温度、Asは逆変
態の開始温度、Afは同終了温度である。)は、それぞ
れ約−55、−85、−75、−45°Cであり、形状
記憶合金特有のヒステリシスが認められ、Mf以下の温
度(約−100℃)で変形させた後、加熱するとAs、
Afに相当する温度付近で形状回復の開始ならひに終了
が観察された。
Regarding the above-mentioned alloy 8 of the present invention containing 86% by weight of internal rust and 3% by weight of manganese, each transformation temperature was measured by the fil: non-resistance measurement method, and it was found that Ms.
Mf, As and Af (Ms is the starting temperature of martensitic transformation from the matrix, Mf is the finishing temperature, As is the starting temperature of reverse transformation, and Af is the finishing temperature) are about -55 and -, respectively. 85, -75, and -45°C, and hysteresis peculiar to shape memory alloys is observed, and when heated after being deformed at a temperature below Mf (approximately -100°C), As,
It was observed that the shape recovery started and ended around the temperature corresponding to Af.

尚、本実施例では試験的な製造であるため、石英ガラス
中に真空封入する方法で行ったが回置時には大気中で好
適に製造出来る。
In this example, since this was a trial production, a method of vacuum sealing in quartz glass was used, but it can be suitably produced in the atmosphere when being transferred.

実施例2゜ 銅、亜鉛、銅−マンガン母合金及びアルミニウムを所定
量配合し、実施例1と同様にして本発明及び比較の四元
合金を製造した。下記第2表に、代表例としてアルミニ
ウムを1.2又は3重量%含有するものについて組成と
機能特性を示す。
Example 2 A quaternary alloy of the present invention and a comparison were produced in the same manner as in Example 1 by blending copper, zinc, a copper-manganese master alloy, and aluminum in predetermined amounts. Table 2 below shows the composition and functional properties of typical examples containing 1.2 or 3% by weight of aluminum.

汀へ  2  完 第1表及び第2表から明らかな様に、本発明合金はいず
れも良好な形状回復挙動を示すのに対して、本発明特定
の組成範囲外である比較合金は、比較合金11を除いて
、いずれも形状回復挙動を示さなかった。また、比較合
金11は、従来のCu−Zn−Al合金であり靭性が劣
るため加工性が悪いのに対して、本発明合金8〜8及び
11〜14は、靭性に優れ加工性が良好であることが明
らかである。
As is clear from Tables 1 and 2, the alloys of the present invention all exhibit good shape recovery behavior, whereas the comparative alloys outside the specific composition range of the present invention Except for No. 11, none showed shape recovery behavior. Comparative alloy 11 is a conventional Cu-Zn-Al alloy and has poor workability due to poor toughness, whereas invention alloys 8 to 8 and 11 to 14 have excellent toughness and good workability. One thing is clear.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明Cu −Z n −M n三元合金の
各元素の組成範囲(斜線部分)を示す。第2.8及び4
図は、本発明Cu−Zn−Mn−Al四元合金において
、AIが1.2及び8重量%のときの他元素の組成範囲
(斜線部分)を示す。 (以上)
FIG. 1 shows the composition range (shaded area) of each element of the Cu-Zn-Mn ternary alloy of the present invention. 2.8 and 4
The figure shows the composition range (hatched area) of other elements when AI is 1.2 and 8% by weight in the Cu-Zn-Mn-Al quaternary alloy of the present invention. (that's all)

Claims (1)

【特許請求の範囲】 1、Mn12重量%以下、Zn26〜44重量%及びC
u62〜56重量%からなることを特徴とする銅基形状
記憶合金。 2、Mn12重量%以下、Al  8重量%以下(X重
量%とする)、Zn  (26−4x ) 〜44重量
形及びCu (62+8 x )〜(56−x )重量
%からなることを特徴とする銅基形状記憶合金。
[Claims] 1. Mn 12% by weight or less, Zn 26-44% by weight, and C
A copper-based shape memory alloy comprising 62 to 56% by weight of u. 2. It is characterized by comprising 12% by weight or less of Mn, 8% by weight or less of Al (referred to as X weight%), Zn (26-4x) to 44% by weight, and Cu (62+8x) to (56-x) by weight. Copper-based shape memory alloy.
JP17965782A 1982-10-12 1982-10-12 Copper-based shape memory alloy Expired JPS6045697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17965782A JPS6045697B2 (en) 1982-10-12 1982-10-12 Copper-based shape memory alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17965782A JPS6045697B2 (en) 1982-10-12 1982-10-12 Copper-based shape memory alloy

Publications (2)

Publication Number Publication Date
JPS5970742A true JPS5970742A (en) 1984-04-21
JPS6045697B2 JPS6045697B2 (en) 1985-10-11

Family

ID=16069596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17965782A Expired JPS6045697B2 (en) 1982-10-12 1982-10-12 Copper-based shape memory alloy

Country Status (1)

Country Link
JP (1) JPS6045697B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61137499U (en) * 1985-02-15 1986-08-26

Also Published As

Publication number Publication date
JPS6045697B2 (en) 1985-10-11

Similar Documents

Publication Publication Date Title
JPS63157831A (en) Heat-resisting aluminum alloy
JPS58151445A (en) Titanium-nickel alloy having reversible shape storage effect and its manufacture
JPS6339651B2 (en)
JP5353754B2 (en) Metastable β-type titanium alloy having low Young&#39;s modulus and method for producing the same
JP2007084864A (en) alpha-beta TYPE TITANIUM ALLOY SUPERIOR IN MACHINABILITY AND HOT WORKABILITY
JP3335224B2 (en) Method for producing high formability copper-based shape memory alloy
JP2001049375A (en) Al ALLOY HAVING EXCELLENT VIBRATION ABSORBABILITY AND ITS PRODUCTION
JP2014152355A (en) High temperature shape memory alloy, superelastic alloy and methods of producing them
JPS6130643A (en) Hard shape memory alloy having high workability
JPS626738B2 (en)
JP2000185999A (en) Production of alloy single crystal
JPH03219037A (en) Ni base shape memory alloy and its manufacture
JPS5970742A (en) Shape memory copper alloy
JPH0441641A (en) Nickel-base superalloy for die
US3005705A (en) High temperature alloys
JPH02270938A (en) Iron-based shape memorizing alloy and preparation thereof
JPS6326186B2 (en)
JPS59215448A (en) Functional alloy
JPS6328975B2 (en)
JP2541802B2 (en) Shape memory TiNiV alloy and manufacturing method thereof
JPH08144034A (en) Production of titanium-aluminium intermetallic compound-base alloy
JPH0310039A (en) Ni-base single crystal superalloy having excellent high temperature strength and high temperature corrosion resistance
JP2603463B2 (en) Low temperature reversible shape memory alloy
JPS6220272B2 (en)
JPH0437149B2 (en)