JPS5970717A - Production of steel pipe having high collapsing strength - Google Patents

Production of steel pipe having high collapsing strength

Info

Publication number
JPS5970717A
JPS5970717A JP18197182A JP18197182A JPS5970717A JP S5970717 A JPS5970717 A JP S5970717A JP 18197182 A JP18197182 A JP 18197182A JP 18197182 A JP18197182 A JP 18197182A JP S5970717 A JPS5970717 A JP S5970717A
Authority
JP
Japan
Prior art keywords
pipe
tube
strength
steel pipe
central angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18197182A
Other languages
Japanese (ja)
Other versions
JPS6364487B2 (en
Inventor
Kenichi Tanaka
健一 田中
Katsuyuki Tokimasa
時政 勝行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP18197182A priority Critical patent/JPS5970717A/en
Publication of JPS5970717A publication Critical patent/JPS5970717A/en
Publication of JPS6364487B2 publication Critical patent/JPS6364487B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Forging (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To improve the collapsing strength of a steel pipe by applying parallel load at two points having a specific central angle in the same section of a steel pipe in the direction opposite to each other from both opposed sides at the periphery of the pipe and subjecting the pipe to such loading over the entire length of the pipe and in the entire directions of the pipe diameter. CONSTITUTION:A pair of working jigs 2 having a sectional shape like a V block are placed to face each other in such a way that both edges 3 each having a V- shaped recess are pressed to a steel pipe 1. The jigs are then pressed from behind to apply parallel load P on the pipe 1. The pressing is executed for each of the directions D1, D2- in the pipe diameter at every other central angle 2theta within the same section of the pipe 1. The central angle 2theta ranges to 40-90 deg.. If such operation is carried out over the entire length of the pipe 1, the residual tensile strength in the circumferential direction on the inside surface of the pipe contributing to the improvement in the collapsing strength of the pipe 1 is assured.

Description

【発明の詳細な説明】 この発明は、とくに油井営向けで重視されるコラプス強
度(外圧による圧潰に対する強度)にすぐれた鋼管の製
造方法に係シ、更に詳しくは管のコラプス強度向上に寄
与する管内面における周方向引張残留応力が確保できる
鋼管の加工方法に関する。
[Detailed Description of the Invention] The present invention relates to a method for manufacturing steel pipes with excellent collapse strength (strength against crushing due to external pressure), which is particularly important for oil well operations, and more specifically, it contributes to improving the collapse strength of pipes. This invention relates to a steel pipe processing method that can ensure circumferential tensile residual stress on the inner surface of the pipe.

近時、石油・天然ガス事情の逼迫から、油井・天然ガス
井は深井戸化の傾向著しく、加えて産出ガフ中に湿潤な
硫化水素の含まれる事例が多くなってきたが、かかる傾
向の中、油井管に関しても、耐食性とコラプス強度につ
いて高度な要求が出されている。
In recent years, due to the tight oil and natural gas situation, there has been a marked trend toward deeper oil and natural gas wells, and in addition, there have been an increasing number of cases in which wet hydrogen sulfide is contained in the production gaff. For oil country tubular goods, there are also high demands regarding corrosion resistance and collapse strength.

しかるに、一般に鋼管の耐食性とコラプス強度とは互い
に相反するものとして位置づけられる。
However, the corrosion resistance and collapse strength of steel pipes are generally considered to be contradictory to each other.

つまシ、コラプス強度の向上には、降伏強度を高めるこ
とが必要であるが、降伏強度の上昇には引張強度の上昇
が伴うのが通例で、この引張強度の上昇(rf−m食性
の劣化に直結するのである。こうした事情から、耐食性
とコラプス強度の両立は本質的に成り難く、例えば管素
材の成分調整といった如き安易な手段をもっては、最近
の使用条件の苛酷化に伴う要求性能の高度化に対処する
ことは到底不可能でろる。
To improve the crush and collapse strength, it is necessary to increase the yield strength, but an increase in the yield strength is usually accompanied by an increase in the tensile strength. For these reasons, it is essentially difficult to achieve both corrosion resistance and collapse strength, and it is difficult to achieve both corrosion resistance and collapse strength by simple means such as adjusting the composition of pipe materials. It would be impossible to deal with the change.

かかる要求の高度化に対処するVC−(d、耐食性とは
独立してコラプス強度を向上δせる手法が必要といえる
It can be said that there is a need for a method to improve the collapse strength δ independently of VC-(d) and corrosion resistance to meet such increasingly sophisticated requirements.

この種の方法としては、現在次のようなものが知られて
いる。
The following methods are currently known as this type of method.

■ 鋼管に縮径加工を施す。■ Perform diameter reduction processing on steel pipes.

■ ストレートナ加工を省略する。■ Omit straightener processing.

■ 温間にてストレートナ加工を行う。■ Perform straightener processing at warm temperature.

しかしながら、これら何れの方法も七五それ問題を抱え
ている。まず■は縮径加工によりコラプス強度の向上に
直接関与する管周方向の降伏強度のみ限定的に上昇させ
るというものであるが、これに鋼管の縮径手段そのもの
に問題がある。すなわち、縮径手段としては周方向に多
数に分割されたセグメントを用いるものが考えられてい
るが、これでハ管周方向でセグメントの当シ方に微妙に
差ができ、このため管周方向各部の降伏強度の上昇率が
ばらつき、安定で効果的なコラプス強度向上は望み得な
い。
However, both of these methods have their own problems. First, (2) is a method in which the diameter reduction process increases only the yield strength in the circumferential direction of the tube, which is directly involved in improving the collapse strength, to a limited extent, but there is a problem with this diameter reduction method itself. In other words, as diameter reduction means, it has been considered to use segments that are divided into a large number of segments in the circumferential direction, but this creates a slight difference in the contact side of the segments in the circumferential direction of the tube. The rate of increase in yield strength varies in each part, making it impossible to expect a stable and effective improvement in collapse strength.

次に■ば、上下に配置したつづみ形ロール間を通す通常
のストレートナ加工が、鋼管内面における周方向圧縮残
留応力の発生および/<ウジンガー効果による降伏強度
の低下を伴い、コラプス強度の劣化に結びつくとの見方
から、ストレートナ加工そのものを省略するというので
あるが、これに鋼管の品質維持の点から高度の製管技術
が必要とでれる詐りでなく、とくに小径管では成品価値
低下を避けることは到底無理でるる。
Next, the normal straightening process, which passes between the upper and lower chain-shaped rolls, causes the generation of compressive residual stress in the circumferential direction on the inner surface of the steel pipe and the decrease in yield strength due to the Uzinger effect, resulting in a deterioration of the collapse strength. The straightener process itself is omitted because of the view that it will lead to problems, but this is not a lie that requires advanced pipe manufacturing technology from the viewpoint of maintaining the quality of the steel pipe, and it may reduce the value of the finished product, especially for small diameter pipes. It is completely impossible to avoid it.

また■にストレートナ加工を温間で行うことによシ、上
記鋼管の圧縮残留応力の発生および降伏強度の低下を阻
止しようというものでるるか、この方法で残留応力の発
生を抑えるためにはかなり高温で加工をする必要があり
経済的に間頭がある。
In addition, (2) is it possible to prevent the generation of compressive residual stress and decrease in yield strength of the steel pipe by performing the straightening process at a warm temperature? It requires processing at fairly high temperatures, making it economically viable.

また前記■も含めて、そもそもこのように銅管の圧縮残
留応力の発生を防ぐものは積極的な策ではなく、それ単
独でに効果が薄いのに否めない。
In addition, including the above-mentioned item (2), measures to prevent the occurrence of compressive residual stress in copper pipes are not proactive measures, and it cannot be denied that they have little effect on their own.

このように、耐食性と独立してコラプス強度を高める方
法として従来知られるものは、その何れもが天川上十分
とは云えない。
As described above, none of the conventionally known methods of increasing collapse strength independently of corrosion resistance can be said to be sufficient.

でて、本発明者らばか力・る状況を打開すべ〈従来よシ
、鋼管のコラプス強度を高める有効策について、鋭意研
究を重ねてきたが、その中で、管内面周方向の残留応力
と鋼管のコラプス強度の間に存在する有用な関連性を見
い出した。すなわち、第1図に示す関係であって、上記
残留応力(σR)け、圧縮側(図中負の符号を何して示
す、以下圧縮応力の表現はこれに準するものとする)で
i−股に云われるとおりコラプス強度に弊害を与えるが
、引張側になると降伏強度(σy)の0.15倍以下の
応力値のとき、むしろコラプス強度向上に寄与するので
るる。この関係が、鋼管の強度レベ/L′1その他の条
件に拘わシなく成立つ普遍的なものであることも確認さ
れている、 本発明者らは、この第1図の関係に着目し、コラプス強
度にとって最適な管内面周方向引張残留応力を安定的に
得る方法、とくに管の加工法について実験、検討を重ね
、その結果、以下に示す本発明を完成することに成功し
たものでるる。
The inventors of the present invention need to overcome this situation.In the past, we have been conducting intensive research on effective measures to increase the collapse strength of steel pipes, but in the course of our research, we have investigated the residual stress in the circumferential direction of the inner surface of the pipe. We found a useful relationship existing between the collapse strength of steel pipes. In other words, the relationship shown in Fig. 1 is the above residual stress (σR) multiplied by i on the compression side (what is the negative sign in the figure? The expression of compressive stress will be based on this below). - As said, it has a negative effect on collapse strength, but on the tensile side, when the stress value is 0.15 times or less of yield strength (σy), it actually contributes to improving collapse strength. It has also been confirmed that this relationship is universal and holds true regardless of the strength level/L'1 of the steel pipe and other conditions.The inventors focused on this relationship shown in Figure 1. As a result of repeated experiments and studies on methods for stably obtaining the optimal tensile residual stress in the circumferential direction of the inner surface of tubes for collapse strength, in particular tube processing methods, we have succeeded in completing the present invention shown below. .

すなわち本発明の要旨とするところは、鋼管の同一断面
において、管周囲の相対する両側から互いに対向する方
向の平行荷重をそれぞれ管中心角で40〜90°位置ず
れした管外面上の2点へ負荷する圧縮加工ヲ、管径の全
方位について、或いは特定の管径方位毎に行い、これを
管全長に亘って実施することを特徴とする高コラプヌ強
度鋼盲の製造法にある。この方法を冥施すれば、管内面
に所望の周方向引張残留応力を付与することができ、し
たがって第1図に示した降伏強度の0.15倍以下の上
記引張残留応力を現出させてコラプス強度の効果的な向
上が図られる。
In other words, the gist of the present invention is to apply parallel loads in opposite directions from opposite sides of the tube periphery to two points on the outer surface of the tube that are shifted by 40 to 90 degrees at the tube center angle in the same cross section of the steel tube. The present invention provides a method for manufacturing a high-collapse strength steel blind, which is characterized in that the compression process under load is carried out in all directions of the tube diameter or in each specific direction of the tube diameter, and is carried out over the entire length of the tube. By applying this method, it is possible to impart a desired circumferential tensile residual stress to the inner surface of the tube, and therefore, the above-mentioned tensile residual stress of 0.15 times or less of the yield strength shown in Fig. 1 can be produced. The collapse strength can be effectively improved.

管の同一断面において第2図に示す形で管外周上の4点
(G)に同時に平行荷重■をかけて圧縮した場合の管断
面における応力分布は、次のように考えることができる
The stress distribution in the tube cross section when the same cross section of the tube is compressed by simultaneously applying a parallel load (2) to four points (G) on the outer periphery of the tube in the form shown in FIG. 2 can be considered as follows.

管内面上の点(@の位置が、前記平行荷重(P)[F]
の作用点(G)(G)間の中央を通る管径方向の線(9
)を基準に、ここからとった中心角(ロ)で規定される
ものとすると、このαが0乃至前記作用点(G)の位置
を表わす同中心角(のの範囲にるるときの、m点に関す
るモーメント(M/) (ri、下記(1)式で与えら
れる。
The point on the inner surface of the tube (the position of @ is the parallel load (P) [F]
A line in the pipe radial direction (9
) is defined by the central angle (b) taken from this, then when this α is in the range of 0 to the concentric angle (of) representing the position of the point of action (G), m Moment regarding the point (M/) (ri) is given by the following equation (1).

−!!!−!−−1((π−2θ)sinθ−2cos
θ)=c <Q・・−(1)PD  π ここに、D=管の外径 C:定数 また、α−θ〜二の範囲での上記モーメントCM、2)
ほ、次式で求められる。
-! ! ! -! −-1((π-2θ)sinθ-2cos
θ)=c <Q...-(1) PD π Here, D=outer diameter of the tube C: constant Also, the above moment CM in the range of α-θ~2, 2)
It can be found by the following formula.

上記(1)、(2)式によれば、具体的には第3図に示
す如きモーメントの分布状態を知ることができる0同図
はθ−−の場合を例示したものであるが、基準線(支)
の通る管内面上の点(8)では曲げモーメントは負の値
で、したがって当該位置で管内面応力は引張を示し、一
方A点と中心角で90°位置ずれしだ点(ト)において
は曲げモーメントは正の値をとり管内面応力は圧縮とな
る。
According to the above equations (1) and (2), it is possible to know the distribution of moments as shown in Figure 3. This figure shows an example of the case of θ--, line (branch)
At point (8) on the inner surface of the tube through which the bending moment passes, the bending moment is a negative value, and therefore the stress on the inner surface of the tube exhibits tension at that position.On the other hand, at the point (g) which is 90° misaligned at the center angle from point A, the bending moment is a negative value. The bending moment takes a positive value and the stress on the inner surface of the tube becomes compressive.

でてこの場合、B点付近での圧縮応力(σB)の絶対値
がA点での引張応力(σA)に勝る、つまり−σB+>
σAの条件を満たすならば、B点付近の管内面部分を圧
縮降伏させることが可能でるシ、しだがってこの圧縮降
伏を管内面全周に亘って付与してやれば、管内面に引張
方向の残留応力を発生はせることができるのである。
In this case, the absolute value of the compressive stress (σB) near point B exceeds the tensile stress (σA) at point A, that is, −σB+>
If the condition of σA is satisfied, it is possible to compressively yield the inner surface of the tube near point B. Therefore, if this compressive yield is applied to the entire circumference of the inner surface of the tube, the inner surface of the tube in the tensile direction This allows residual stress to be generated.

ここに上記1σB+>σAを満たすということは、B点
付近の管内面上の点でのモーメン) (Mλ)が、下式
、 M、2−(−M/)>O・・・・・(3)を満足すると
いうことである。
Here, satisfying the above 1σB+>σA means that the moment at a point on the inner surface of the tube near point B (Mλ) is expressed by the following formula, M, 2-(-M/)>O... ( 3) is satisfied.

第3図に掲げたθ−二の例は、この(3)式を満たすケ
ースに他ならないが、ここで(3)式を満たす管内面上
のB点付近の範囲を表わす指標として、B点を通る管径
方向の線(3)を基準にしてとった中心角φ)を導入し
てみると、このβに、以下のように求められる。すなわ
ち、前出(3)の式に、(1)および(2)式を代入し
て、下記(4)式を得ることができる。
The example of θ-2 shown in Figure 3 is nothing but a case that satisfies this equation (3), but here, as an index representing the range around point B on the inner surface of the tube that satisfies equation (3), point B is Introducing the central angle φ) taken with reference to the line (3) in the pipe radial direction passing through , β can be determined as follows. That is, by substituting equations (1) and (2) into equation (3) above, equation (4) below can be obtained.

−((yr−2θ)Sinθ−2cosθ) +si、
nα−5inθ〉0π 5i−nα> (j−! −s inθ)−4−cos
θ  ・・・・・(4)π            π つ捷り、これは荷重[F]の作用点を示す中心角(のと
前出(3)の関係が成立つαとの間の関係を表わしてい
る。一方、(3)の条件を満たす限度のαを今仮シにα
lで表わすとすると、このαlとβの間には、β−−−
αl            ・・・・・・(5)(5
)式が成立つ。この(4)、(5)両式を連立δせてα
を消去すれば、θとβの関係が導かれるのである。
−((yr−2θ)Sinθ−2cosθ) +si,
nα−5inθ〉0π 5i−nα> (j−!−s inθ)−4−cos
θ ・・・・・・(4) π π This represents the relationship between the central angle (which indicates the point of action of the load [F]) and α for which the relationship in (3) above holds. On the other hand, the limit α that satisfies the condition (3) is now tentatively α
If it is expressed as l, then between αl and β, β---
αl ・・・・・・(5)(5
) holds true. By combining both equations (4) and (5) with δ, α
By eliminating , the relationship between θ and β can be derived.

第4図にこの関係を図化したものでるるか、同図からβ
はθ〉20°の範囲でのみβ〉0となることが理解でれ
る。これに、荷重作用点(G)をθが20゜以上となる
位置に設定すれば、必ず管内面の圧縮降伏を得ることが
できることを示すものでろる。
Is there a diagram of this relationship in Figure 4?
It can be seen that β>0 only in the range θ>20°. This also shows that if the load application point (G) is set at a position where θ is 20° or more, compressive yield on the inner surface of the tube can be obtained without fail.

したがって本発明の方法に基いて、前記平行荷重による
圧縮加工を、管径の全方位について、或いは特定の管径
方位毎に行うことにより、管内面を全周に亘って圧縮降
伏はせ、もって管内面周方向に引張の残留応力を付与す
ることができる。そうしてこの場合、管内面に付与する
周方向引張残留応力の大きさを、上記θおよび負荷荷重
(Dの調整によって所望レベルに制御し得、したがって
コラプヌ強度にとって最適レベルの上記引張残留応力ヲ
得ることができるものでるる。
Therefore, based on the method of the present invention, the compression process using the parallel load is performed in all directions of the tube diameter or in each specific tube diameter direction, thereby causing compression yielding of the inner surface of the tube over the entire circumference. A tensile residual stress can be applied in the circumferential direction of the inner surface of the tube. In this case, the magnitude of the circumferential tensile residual stress applied to the inner surface of the pipe can be controlled to a desired level by adjusting the above θ and the applied load (D), and therefore the above tensile residual stress can be adjusted to the optimum level for the collapse strength. It's what you can get.

本発明の方法は、第2図に示した如き本発明に基く荷重
負荷状態をその形を維持したまま管周方向へ移動させ、
丁度当初の軸対称位置(180°反転位置)まで移行さ
せる゛ことによシ、管径の全方位への圧縮加工を行う、
或いは同上荷重負荷状態を、第5図に示す管全周に亘る
所定角度(γ)おきの管径方位CD/ ) (D−)・
・・毎に現出てせるものでるる。この後者における(’
)’) l’j:、前出第4図に示した関係で、θによ
って決まってくるβの範囲を考慮して、全周余すところ
なく管内面の圧縮降伏が確保でれる範囲に定めればよい
The method of the present invention involves moving the loaded state according to the present invention as shown in FIG. 2 in the pipe circumferential direction while maintaining its shape.
By moving it to the original axially symmetrical position (180° inverted position), compression processing is performed in all directions of the pipe diameter.
Alternatively, the same load condition as shown in FIG.
...There are things that appear every time. In this latter case ('
)') l'j: Based on the relationship shown in Figure 4 above, taking into account the range of β determined by θ, it is determined that the compressive yield of the inner surface of the tube can be ensured throughout the entire circumference. Bye.

本発明において、θを20°以上(2θ:40°以上)
とした理由に、前述の作用説明から自明であるが、との
θを45°以下(2θ:90°以下)に限定したのは、
45°をこえるθでは平行荷重■e)を負荷するのが実
際上困難で、(2)線方向への応力の発生が避は短いと
いう、実用性を考慮した理由による。
In the present invention, θ is 20° or more (2θ: 40° or more)
The reason for limiting θ to 45° or less (2θ: 90° or less) is obvious from the above explanation of the effect.
This is because it is practically difficult to apply the parallel load (e) when the angle θ exceeds 45°, and (2) the generation of stress in the linear direction takes a short time to avoid, considering practicality.

なお、本発明の方法に、第2図において互いに対向する
中心角(θ)(B)u必ずしも同一である必要になく、
それぞれの側のθが独立的に20°くθ<45゜の条件
を満たしでえすればよいものでるる。
In addition, in the method of the present invention, the center angles (θ) (B) u that are opposite to each other in FIG. 2 do not necessarily have to be the same,
It is sufficient that θ on each side independently satisfies the condition of 20° and θ<45°.

本発明の方法は、具体的には多種多様な方式にて実施す
ることができる。ここにその例を2.3挙げておく。
The method of the invention can be specifically implemented in a wide variety of ways. Here are 2.3 examples.

■ 第6図に示すよりな■ブロック様の断面形状をもつ
加工用治具(2)を一対、相対峙する格好で使用する。
■ A pair of machining jigs (2) having a block-like cross-sectional shape as shown in FIG. 6 are used facing each other.

治具(2)の■形凹部の両縁部(3)(3)を営(1)
に尚でて、その背後から加圧することによって、肯に第
2図のような形で平行荷重CP) CP)を負荷するも
のである。この圧縮加工操作’fx’ttの同−断面内
で、所定角度(γl)おきの管径方位(D/)(Dコ)
・・・毎に来施する。この(γ/)は、第5図に示しだ
(γ)でろシ、第4図で示δれる一回の加工で圧縮降伏
する管内面の範囲0から、全周に亘る管内面の圧縮降伏
が達成されるように決める。熱論、この加工は周方向へ
連続的に行ってもよく、この場合には、第7図に示すよ
うに前記治具(2)の管当接縁部にローラ(4)を組込
んで、前記加圧状態のまま管(1)に対し周方向へヌム
ーズに相対移動させられるようにすることが推奨でれる
。云う迄もないが、加工の際回転てせるのは管、治具の
何れでβってもよい。
Pinch both edges (3) of the ■-shaped recess of the jig (2) (1)
By applying pressure from behind, a parallel load CP) is applied in the form shown in Figure 2. Within the same cross section of this compression processing operation 'fx'tt, the pipe diameter direction (D/) (D co) at a predetermined angle (γl)
...I come every time to give alms. This (γ/) is the range from 0 to the range 0 of the inner surface of the tube where compression yields in one processing, shown in Figure 5 (γ), and δ in Figure 4, to the range of compressive yield of the inner surface of the tube over the entire circumference. decide so that it is achieved. In thermal theory, this processing may be performed continuously in the circumferential direction, in which case a roller (4) is incorporated into the tube contacting edge of the jig (2) as shown in FIG. It is recommended that the tube (1) be smoothly moved relative to the tube (1) in the circumferential direction in the pressurized state. Needless to say, it may be the pipe or the jig that is rotated during processing.

このような方法では、管の全長に亘って加工を与えるだ
けの長てを有する治具を使用するか、或いは長さの短か
い治具を用いて管の一端から他端へ単位長ずつ順次加工
を加えてゆくことで、管全長に対する加工を遂行する。
In this method, a jig is used that is long enough to machine the entire length of the pipe, or a jig with a short length is used to machine the pipe sequentially from one end of the pipe to the other in unit length increments. By adding processing, the entire length of the pipe can be processed.

■ 第8図に示す如く、平行する2本1組の同軸固定型
対ロール(5) (5)を所要数タンデムに配置すると
ともに、その各段のロール軸(ト)を、ロール間を通る
管(1)と直角の面内で互いに適当な角度ずつ傾斜でせ
ておき、この対向する対ロー/I/(5)(5)間に管
(1)を送り込み、通過させる。この方法は、管全長並
びに全周に亘る圧縮加工が、菅の軸方向への移動によっ
て一挙に行われるところに特徴がめシ、管の連続製造フ
ィン向きの高能率な方法と云えよう。ロールの設置段数
および各段のロー/し軸■の傾斜角については、前出の
における(γ/)と全く同゛様の考え方で、第4図のβ
に基いて、決められる。
■ As shown in Figure 8, a set of two parallel fixed coaxial rolls (5) (5) are arranged in the required number of tandems, and the roll axis (T) of each stage passes between the rolls. The pipes (1) are inclined at appropriate angles to each other in a plane perpendicular to the pipe (1), and the pipe (1) is fed between the opposing rows/I/(5) and (5) to pass through. This method is characterized by the fact that the entire length and circumference of the tube is compressed all at once by moving the tube in the axial direction, and it can be said to be a highly efficient method suitable for continuous production of tube fins. Regarding the number of rolls to be installed and the inclination angle of the row/low axis of each stage, the concept is exactly the same as (γ/) in the previous section, and β in Fig. 4 is determined.
can be decided based on.

この方法の場合、各ロールは積極的に駆動して管(1)
の走行に使うのが合理的というものである。ただし、加
工を与えるという純粋な意味からは、駆動してもしなく
ても特に変わυはなく、したがって管の駆動手段を別途
設り“、ロールについては管の走行に伴って回転させる
だけとしても何ら差支えない。
In this method, each roll is actively driven to
It is reasonable to use it for driving. However, from the pure point of view of processing, there is no particular difference whether the drive is driven or not, so even if a means for driving the tube is provided separately, and the rolls are simply rotated as the tube travels, There is no problem.

因みに従来より管の加工法としては、管の矯正を目的と
したつづみ形ロールによる手法がろるが、この方法では
、第9図に示すように管(1)は外周面上の対向位置に
集中荷重■(ト)を受ける形となシ、荷重が作用する位
置の管内面上の点(2)に引張応力が、まだ同時にA点
と中心角で90°位置ずれした点CB)i/c圧縮応力
がそれぞれ発生する。ところが、この場合には、条件に
よらずつねにA点での引張応力が、B点の圧縮応力よシ
も絶対値が上廻ることとなる。すなわち、先述のlσB
l>σAを満たす力学的形態を得ることは全く不可能と
いうわけでろる。
Incidentally, as a conventional method for processing pipes, a method using a chain-shaped roll for the purpose of straightening the pipe has been used, but in this method, the pipe (1) is placed at opposing positions on the outer circumferential surface as shown in Figure 9. If the shape is such that it receives a concentrated load (g), tensile stress is applied to point (2) on the inner surface of the pipe at the location where the load is applied, and at the same time, point CB) i is shifted by 90 degrees at the central angle from point A. /c compressive stress is generated respectively. However, in this case, the absolute value of the tensile stress at point A always exceeds the compressive stress at point B, regardless of the conditions. In other words, the aforementioned lσB
It is completely impossible to obtain a mechanical form that satisfies l>σA.

次に本発明の実施効果について述べる。Next, the effects of implementing the present invention will be described.

第1表に示す化学成分を有する外径17’1.FDg;
Outer diameter 17'1. having the chemical composition shown in Table 1. FDg;
.

肉厚18.54*jl、長さ500朋の調音(降伏強度
:66、2 #f/w*2)に対し、本発明に基く加工
を施しだ。
Processing based on the present invention was applied to a tuning piece with a wall thickness of 18.54*jl and a length of 500 mm (yield strength: 66, 2 #f/w*2).

第   1   表  (wt%) 加工は、第7図に示した治具を一対第6図のように使用
して、前記■の方式で、管を回転δせながら、周方向へ
連続的に加工を行う方法によった。
Table 1 (wt%) Processing was carried out using the pair of jigs shown in Fig. 7 as shown in Fig. 6, and continuous processing in the circumferential direction while rotating the pipe by the method described in (■) above. Depends on how you do it.

使用した治具に、対象管の全長50011ffを上廻る
長でをもち、しだがって上記の加工1回で、管全長に亘
る加工ができた。第2図における2θハロ0゜であった
The jig used had a length that exceeded the total length of the target pipe, which was 50,011 ff, and therefore the entire length of the pipe could be processed in one process. The 2θ halo in FIG. 2 was 0°.

第10図は、上記加工時に負荷した荷重(単位長当9の
負荷荷重値)とその加工によって生じた管内面周方向残
留応力値とをグロットした図でるる。
FIG. 10 is a plot of the load applied during the above machining (the applied load value per unit length of 9) and the residual stress value in the circumferential direction of the inner surface of the tube caused by the machining.

同図から明らかなように本発明の方法では、管内面に周
方向引張残留応力を付与することができ、また負荷荷重
■の調節によってその引張残留応力値をコラプス強度に
とって好ましいo、15σyの範囲(図中σ)にて示す
)に管理することができる。
As is clear from the figure, in the method of the present invention, it is possible to apply a circumferential tensile residual stress to the inner surface of the tube, and by adjusting the applied load ■, the tensile residual stress value can be adjusted to a range of o, 15σy, which is preferable for collapse strength. (indicated by σ in the figure).

なお比較例として、第9図に示したっづみ形ロールによ
るストレートナ加工の場合について簡単に述べれば、第
11図に示す如くクラッシュ量、換言すれば負荷荷重(
P)(第9図参照)を何れに設定しても、管内面周方向
KUつねに圧縮方向の残留応力が生じ、引張の残留応力
は得られない。
As a comparative example, we will briefly describe the case of straightener machining using the pin-shaped rolls shown in Fig. 9. As shown in Fig. 11, the crush amount, in other words, the applied load (
P) (see FIG. 9) is set, residual stress in the compressive direction always occurs in the circumferential direction KU of the tube inner surface, and no residual stress in tension is obtained.

以上の説明から明らかなように本発明の方法は、>14
 管の内周面にコラプス強度向上に寄与する周方向引張
残留応力を発生てせることが可能であるから、と<v?
−耐食性とともに高コラプス強度が要求でれる油井管の
製造に適用して有効なものと云える。
As is clear from the above explanation, the method of the present invention is capable of >14
<v?
- It can be said to be effective when applied to the production of oil country tubular goods, which requires high collapse strength as well as corrosion resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は管内面周方向残留応力が管のコフプヌ強度に及
ぼす影響を示す図、第2図は本発明に基〈圧縮加工を説
明する模式図、第3図は同上圧縮加工時における管内面
のモーメント分布の一例を示すグラフ、第4図は本発明
法におけるθとβの間の関係を示す図、第5図は本発明
に基く圧縮加工を実施する要領を示す説明図、第6図は
同上圧縮加工を行う具体的手段の一例を示す正面図、第
7図は同上加工に用いる治具の好ましい一例を示す正面
図、第8図は同上圧縮加工を行う具体的手段の他の一例
を示す斜視図、第9図は従来のストレートナ加工時の力
学的関係を説明するための図、第10図は本発明法を実
施した場合の管内面周方向残留応力を負荷した荷重と対
応でせてプロットした図、第11図は従来のストレート
ナ加工″fI:笑施した場合のクラッシュ量と加工後の
管内面周方向残留応力との関係を示している。 図中、1:管、2:加工用治具、4:ロール、5:同軸
固定型対ロール 出願人  住友金属工業株式会社 第6図 第11図 自発手続補正帯 特許庁長官 若杉和夫  殿 2、発明の名称 高コラプヌ強度鋼管の製造法 3、補正をする者 事件との関係 特許出願人 住 所  大阪市東区北浜5丁目15番地名 称(21
1)住友金属工業株式会社代表者 熊谷典文 4代理人 6、補正の対象 明細書の「発明の詳細な説明」の欄 補正の内容 (1)明細書の第8頁第12行に とあるのを 4θ 「sinα>(−−1)sinθ+4−cO8θ・・・
(4月π              π に補正します。 以   上
Fig. 1 is a diagram showing the effect of residual stress in the circumferential direction on the inner surface of the tube on the strength of the tube, Fig. 2 is a schematic diagram illustrating compression processing based on the present invention, and Fig. 3 is the inner surface of the tube during compression processing. FIG. 4 is a graph showing the relationship between θ and β in the method of the present invention. FIG. 7 is a front view showing a preferred example of a jig used for the above compression process, and FIG. 8 is another example of a specific means for performing the above compression process. FIG. 9 is a diagram for explaining the mechanical relationship during conventional straightener processing, and FIG. 10 is a diagram showing the load of residual stress in the circumferential direction of the pipe inner surface when the method of the present invention is applied. Figure 11 shows the relationship between the crush amount and the residual stress in the circumferential direction of the inner surface of the tube after the conventional straightener processing. , 2: Machining jig, 4: Roll, 5: Coaxial fixed type vs. roll Applicant: Sumitomo Metal Industries, Ltd. Figure 6 Figure 11 Voluntary procedure amendment band Commissioner of the Patent Office Kazuo Wakasugi 2. Name of the invention: High collapse strength Manufacturing method for steel pipes 3, relationship with the amended case Patent applicant address 5-15 Kitahama, Higashi-ku, Osaka Name (21)
1) Sumitomo Metal Industries, Ltd. Representative Norifumi Kumagai 4 Agent 6 Contents of the amendment in the "Detailed Description of the Invention" column of the specification to be amended (1) It is stated on page 8, line 12 of the specification. 4θ "sinα>(--1)sinθ+4-cO8θ...
(Corrected to April π π.

Claims (1)

【特許請求の範囲】[Claims] (1)鋼管の同一断面において、管周囲の相対する両側
から互いに対向する方向の平行荷重をそれぞれ管中心角
で40〜90°位置ずれしだ管外面上の2点へ負荷する
圧縮加工を、管径の全方位について、或いは特定の管径
方位毎に行い、これを管全長に亘って笑施することを特
徴とする高コラプス強度鋼管の製造法。
(1) On the same cross section of a steel pipe, compression processing is performed in which parallel loads in opposing directions are applied from opposite sides of the pipe periphery to two points on the outer surface of the pipe that are offset by 40 to 90 degrees at the center angle of the pipe. A method for producing a high collapse strength steel pipe, which is characterized in that the process is performed in all directions of the pipe diameter or in each specific pipe diameter direction, and is applied over the entire length of the pipe.
JP18197182A 1982-10-15 1982-10-15 Production of steel pipe having high collapsing strength Granted JPS5970717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18197182A JPS5970717A (en) 1982-10-15 1982-10-15 Production of steel pipe having high collapsing strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18197182A JPS5970717A (en) 1982-10-15 1982-10-15 Production of steel pipe having high collapsing strength

Publications (2)

Publication Number Publication Date
JPS5970717A true JPS5970717A (en) 1984-04-21
JPS6364487B2 JPS6364487B2 (en) 1988-12-12

Family

ID=16110062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18197182A Granted JPS5970717A (en) 1982-10-15 1982-10-15 Production of steel pipe having high collapsing strength

Country Status (1)

Country Link
JP (1) JPS5970717A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020510140A (en) * 2017-02-14 2020-04-02 ユナイテッド ステイツ スチール コーポレイションUnited States Steel Corporation Compression molding process to improve collapse resistance of metal tubular products
RU2750225C1 (en) * 2020-08-19 2021-06-24 федеральное государственное бюджетное образовательное учреждение высшего образования "Тольяттинский государственный университет" Shaft blank cold straightener

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020510140A (en) * 2017-02-14 2020-04-02 ユナイテッド ステイツ スチール コーポレイションUnited States Steel Corporation Compression molding process to improve collapse resistance of metal tubular products
RU2750225C1 (en) * 2020-08-19 2021-06-24 федеральное государственное бюджетное образовательное учреждение высшего образования "Тольяттинский государственный университет" Shaft blank cold straightener

Also Published As

Publication number Publication date
JPS6364487B2 (en) 1988-12-12

Similar Documents

Publication Publication Date Title
US4825674A (en) Metallic tubular structure having improved collapse strength and method of producing the same
CA1073645A (en) Method of splitting bearing rings
JPS5970717A (en) Production of steel pipe having high collapsing strength
US6038758A (en) Production method of a spinning ring for a ring spinning machine
CN114273447B (en) Method for manufacturing metal pipe
KR100797198B1 (en) Dies for a bend correction of a long bolt
JPH01247532A (en) Manufacture of seamless steel pipe for spring
JPH06285546A (en) Manufacture of cold drawn steel tube improved inductility
JPS60221130A (en) Device for regulating residual stress of pipe
JPS61147930A (en) Forming and expanding method of steel pipe
JP3868797B2 (en) Method and apparatus for manufacturing deformed pipe for rock bolt
JPS606202A (en) Production of asymmetrical shape steel
JPH03243209A (en) Grooving method on inner surface of metallic tube
JP3496444B2 (en) Manufacturing method of dimple tube
JPH1110271A (en) Free forging anvil
JP2000042640A (en) Manufacture of stainless steel angle and its manufacturing device
JPS58196124A (en) Manufacture of flexible pipe
JPS63144896A (en) Production of flux cored wire for welding
JP2001137913A (en) Manufacture of high carbon steel seamless tube
JPH08174050A (en) Production of cut t-steel and apparatus thereof
JPS62124031A (en) Production of welded pipe
JP2013180311A (en) Welded steel pipe excellent in collapse resistance and internal pressure fracture resistance, and manufacturing method thereof
JPH0364210B2 (en)
JPH08300187A (en) Production of flux cored wire for stainless steel
JPH02179316A (en) Manufacture of resistance welded tube and its apparatus