JPS5969614A - Control device for water heater - Google Patents

Control device for water heater

Info

Publication number
JPS5969614A
JPS5969614A JP57180258A JP18025882A JPS5969614A JP S5969614 A JPS5969614 A JP S5969614A JP 57180258 A JP57180258 A JP 57180258A JP 18025882 A JP18025882 A JP 18025882A JP S5969614 A JPS5969614 A JP S5969614A
Authority
JP
Japan
Prior art keywords
fan motor
temperature
overshoot
hot water
control circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57180258A
Other languages
Japanese (ja)
Inventor
Shinichi Murashige
村重 伸一
Takeshi Yamada
武 山田
Toru Shimomura
徹 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Tateisi Electronics Co
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateisi Electronics Co, Omron Tateisi Electronics Co filed Critical Tateisi Electronics Co
Priority to JP57180258A priority Critical patent/JPS5969614A/en
Publication of JPS5969614A publication Critical patent/JPS5969614A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/24Preventing development of abnormal or undesired conditions, i.e. safety arrangements
    • F23N5/245Preventing development of abnormal or undesired conditions, i.e. safety arrangements using electrical or electromechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N3/00Regulating air supply or draught
    • F23N3/08Regulating air supply or draught by power-assisted systems
    • F23N3/082Regulating air supply or draught by power-assisted systems using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • F23N2233/08Ventilators at the air intake with variable speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

PURPOSE:To prevent a sudden rise in the temperature of hot water even when the quantity of the hot water is suddenly reduced by a method wherein when an overshoot is detected, a brake means operates immediately so as to reduce the number of revolutions of a fan motor to a predetermined lowest value. CONSTITUTION:A switching element 21 (for example, a triac) is provided between a fan motor 5 and an AC power source 20 and a trigger signal (e) from a phase control circuit 22 is inputted to the switching element. Further, an overshoot detecting circuit 24 is provided in a PID control circuit 23 and a detecting signal is outputted to a brake control circuit 25. The fan motor 5 is provided with a r.p.m. detector 26 whose output is applied to a r.p.m. discriminating circuit 28 which is adopted to detect the lowest r.p.m. of the fan motor 5 and outputs the detected r.p.m. to the brake control circuit 25. The brake control circuit 25 operates such that when it receives a lowest r.p.m. discrimination signal, the brake means 27 is stopped to thereby return the number of revolutions of the fan motor to the original condition.

Description

【発明の詳細な説明】[Detailed description of the invention]

(1)発明の分野 この発明は、出湯温度と目標温度との偏差から所定の制
御量をPrD演算によって求め、バーナでの燃焼状態を
出′aωに応じて制御し、使用温潤や水濡変化に無関係
に湯温を目標温度に保持するにうに動作”ツる湯沸器の
tlltlll装置に係り、特に出湯量等の変更時に生
ずるオーバシ]−1〜を抑制する技術の改良に関する。 (2)従来技術とぞの問題点 第1図はこの発明が対象とする制御I装置を備えた湯沸
器の草木(ト1成を示η。同図において、この渇>jl
i器(ま、熱交換器1の出湯温度を検出するサーミスタ
2と、[1標記度を設定Jる温度設定器3と、バーナ4
に燃焼空気を供給する)7ンモータ5と、リーミスタ2
の温湿検出信号ど目標温度設定器3の[]標温度設定信
号との偏差から上記ファンモー ゛り5の回転数を制御
1TIる制御回路6ど、バーナ1へのガス供給経路に設
けられ、上記ファンモータ5の送風空気圧に応じて弁開
度が変り、バーナ4に供給するガス圧が該空気圧に比例
づ゛るよう作動′!j−る均圧弁7とを」↓木的に有し
ている。熱交換器1に至る水入口には熱交換器1を通過
する水流を検出し、これを起動侶舅として制御回路6に
入力りるモロ−スイッチ8が股
(1) Field of the Invention This invention calculates a predetermined control amount from the deviation between the hot water outlet temperature and the target temperature by PrD calculation, controls the combustion state in the burner according to the outlet 'aω, and controls the operating temperature and water wetness. It relates to a tlltllll device for a water heater that operates to maintain the water temperature at a target temperature regardless of changes, and particularly relates to improvements in technology for suppressing overflow]-1 which occurs when changing the amount of hot water etc. (2) ) Problems with the prior art FIG.
A thermistor 2 that detects the hot water temperature of the heat exchanger 1, a temperature setting device 3 that sets the temperature, and a burner 4.
(supplies combustion air to the
A control circuit 6 is installed in the gas supply path to the burner 1, and controls the rotation speed of the fan motor 5 based on the deviation of the temperature and humidity detection signal from the target temperature setting signal of the target temperature setting device 3. The valve opening changes according to the blowing air pressure of the fan motor 5, and the valve operates so that the gas pressure supplied to the burner 4 is proportional to the air pressure! It has a pressure equalizing valve 7 as shown in the figure. At the water inlet leading to the heat exchanger 1, there is a Morrow switch 8 that detects the water flow passing through the heat exchanger 1 and inputs it to the control circuit 6 as a starter.

【プられ、また上記均圧
弁7に〒るガス供給経路には、ガスの供給を入・切する
元バルブ9およびガスガバナ10が配設されている。イ
し−Cバーナ4に関連して点火火花を発生する点火器1
1ど、点火動作によって正常に着火したか否かを検出覆
る炎検出器12と、ココた一ノアンモータ5の作動確認
を行なうための風圧スイッチ13とが設(′Jられてい
る。 第2図は、制御回路6が行なう渇ff1A fllll
 IO動作を示す概念図で、この制御系はフィードバッ
クループにより構成される。以下第2図に従って基本f
l+作を説明する。まず、フロースイッチ8ににり熱交
換器1の水流が検出されると、制御回路6は元バルブ9
を開にするとともに、点火器11を作動さ口、同時にフ
ァンモータ5を駆動する。ファンモータ5の送1!1f
ilが所定の値に向かって増大づるに伴い、イの空気圧
に比例して均圧弁7の弁開度が増加し、バーナ4でのガ
ス燃焼が所定の状態に向かい成長する。次いで、熱交換
器1の出湯111Hαの−1−芹がサーミスタ2により
検出されると、制御回i 6 t;L第2図に示す動作
を行なう。すなわIう、このi編検出信号aと目標温度
信号すとの偏差Cを求め、この偏差Cに対してPID演
粋全行ない所定の制御mdを作成する。次いでこの制御
品11に基づきファンモータ5の回転子をドライブづる
回転磁界の位相角を演算決定し、これによってファンモ
ータ5の駆動電流をAン・A)−りるスイツブンク索了
にトリガ(Fi号eを出力りる。スイッヂング素子はこ
のトリガ信号cにより定まる導通角て゛フッ・ンモータ
5の駆動電流の位相を制御し、これによる所定位相の回
転磁界のもとに、フッ7ンモーク:;+、I所定の回転
数どなる。その結果所定の空気圧fが均圧弁7に伝達さ
れる。これにより均圧弁7の弁開mが所定の開度になり
、バーナ4に供給されるガス吊が適宜なものとなって、
出湯温度L:I: 設定湿度と4’iるべく制御される
。以上の動作が繰り返されて出I F度が設定温度に保
持され、バーナ/I tJ:所定のガスmで燃焼を継続
する。そして設定調度あるいは出1ffiの変更があっ
た場合には出湯温度の変化がフィードバックされ、−1
−述の制御動作ににり出i温度が修正される。 ところで、周知のようにファンモータの起動・停止には
tm性等ににる応答遅れがある。M3図はこれを示ηも
のぐ、電源;をAンづると、ファンモータの回転数は立
ち上がり時定数T1で回転数を増大さゼ定値に向かう。 また、電源をA)すると、立ち下がり時定数T2で回転
数が定値から低下す5− る。この時定数TI、T2は一般に数秒程度の6のであ
るが、これにJ、って次のようなΔ−バシコートの問題
が生ずる。なお、アンダーシ1−−1・b生ずるが、こ
れは実用上支障ないの′C:′以上の説明では省略する
。 第4図において、湯温が安定的に111移しているある
出湯量をTa時点で急激に減少させると、これが出湯温
度の土?Pとして現れる、1そこで、l−’+t1’r
したように、フン・ンモータの回転数を減少させるべく
フィードバック制御がなされる。ところがノアンモータ
は」二記立ち下がり時定数−r2で回転数を減少するl
)r +ら、イのinは゛[1)時点j、では略一定で
、その後回転数の減少に応じて減少し、所定の回転数と
なる一Ua時点で定値に達する。そしく、均圧弁の弁開
度はこの[1の変化に従うlp rら、バーナにイハ給
されるガスmはTb時点J:で番3L変史nIIの高出
泪醋に対応したものとなり、これによって出湯温度は史
に上Rする。Tb時点以後は均11弁の弁開度を減少し
バーナへの供給カス邑が抑制されるので、この出fA 
2m度はあるビーク1直に)全した6− 後段定温度に向かい減少する。このj;うな湯温の過渡
的な急1−昇がオーバシ]−1・である。このオーバシ
ュートの継続時間が短いと、熱交換器から蛇[1までの
配管による低減作用により、蛇口から出湯される湯温の
十I/rり僅かである。しかし、継続時間が数秒以上と
なると、i瀉のピークレベルが高いから、配管の低減作
用だ【)では不充分で、蛇1]から111渇される測温
はかなりの温度に達し、熱温が出湯される場合もあり、
甚だ危険である。 そこで、従来はオーバシュート検出回路を設け、出湯温
1印が設定湿度から所定の温石に上がしたときはこれを
オーバシュートを判断し、このどきにはファンモータの
駆動電流をオン・Δフするスイッチング素−rの導通角
を最小にして7アンモータの回転数を速やかに降下させ
るべく位相演算を行なうことで対処していた。 しかし、これによりある程度のA−バシュートGel、
低減できるものの、このオーバシュートの稈反は出湯量
の減少量等にJニー)で区々であり、上述1ノだ処置だ
けでは不充分で有効な対策が切望されていた。 (3)発明の1]的 この発明の目的はオーバシュートの稈mに拘わらずこれ
を効果的に低減させることのできる湯沸器の制t11装
置を提供することである。 (4)発明の構成と効果 この発明は、上記目的を達成するために、32 温のオ
ーバシュートを検出するオーバシュート検14回路と、
ファンモータの出力軸に作用して軸回転を阻止りるよう
に作動する制動手段と、上記ファンモータの回転数を検
出し、回転数が所定の最低回転数以Fになったことを弁
別する回転数検出手段と、上記オーバシュート検出回路
の検出信号に応答して上記制動手段を作動させ、かつ上
記回転数検出手段の検出信号に応答して上記制動手段の
作動を停止させる制動制御手段とを備えたことを特徴ど
する゛。 この構成によれば、オーバシュートが検出されると、直
ちに制動手段が作動し、ファンモータは所定の最低回転
数になるので、オーバシュートの抑制が速やかに行なわ
れ、かつそのピークレベルを極めて低いものどすること
ができる。従って出湯n1を急激に低減変更しても出湯
の急激な温度上昇がなくなる。また、オーバシュートの
継続時間が短<<Kす、出湯変更後短時間に所定の出湯
が1gられるから、使い勝手の勝れた湯沸器が提供でき
る。− く5〉実施例の説明 第5図はこの発明に係る制御装置をファンモータの駆動
回路を中心に示tW略図である。同図において、]−記
フアンモータ5と交流電源20間にはスイッチング素子
21(例えばトライアック)が設【プられ、このスイッ
チング素子21には位相制御回路22から上記トリガ信
号eが入力される。 位相制御回路22は上述した位相演算を行なう回路で、
またPIDIIII11回路23は上述したPID演算
を行むう回路である。このP I l)制御回路23に
は上記オーバシュート検出回路24が設けられ、このオ
ーバシュート検出回路24は検出信号を制動制御回路2
5に出力する。 9− ファン[−夕5には回転数検出器26と、制動手段27
とが段(プてあり、回転数検出器26の検出値は回転数
弁別回路28に与えられる。回転数弁別回路28はファ
ンモータ5の最低回転数を弁別し、これを制動制御回路
25に出〕jする。この制動制御回路25は上記オーバ
シュート検出信号を受&プて上記制動手段27を作動さ
せ、まlこ、L記最低回転数弁別信号を受けて制動手段
27の作動を停止させる。 第6図において、上記回転数検出器26は、ファンモー
タ5の回転軸5aに固定された回転板31と7オトセン
サ32とからなる。回転板31は複数の羽根31aが等
間隔に設けられた一種の羽根車で、各羽根318.31
a間には光透過部31bが形成される。上記フォトセン
サ32は上記光透過部31bを介して光の送受を行なう
発光素子32a、、受光素子32bを有する。 第7図において、上記制動手段27はソレノイド35と
ブレーキベルト36で構成される。ソレノイド35は、
上記制動制御回路25の出力で励    ′10− 磁・消磁される二】イル35 aと、一端がスプリング
35Gに付勢され、コイル35aの励磁・消磁tこつれ
てコイル35aに対して自在に移tJJl−dる可動鉄
芯35bとを備える。また上記ブレーキベルト36はフ
ァンモータ5の回転軸5aを跨がり、一端がモータ本体
5b側面に立設されたビン37に固定され、他端が連結
棒38を介して」−記可動鉄芯351)の他端に連結さ
れる。 次に第8図に従って本実施例装置のオーバシュート抑制
動作を説明する。まず、出湯温度がある出湯量で安定し
ているときは制動手段27は作動していない。つまり、
d動鉄芯35bは一端がスプリング335Cに付勢され
て他端がブレーキベルト36の他端を押し上げ、ブレー
キベルト36は回転軸5aと接触Vず浮ぎ−Lがってい
る。従って、ノアン[−夕5は所定の回転数で図示矢印
の向きに回転し、安定した風fikをバーナ4に供給し
ている。そして、時刻Taで出湯温を急減させると、前
述のJ:うに湯温が上昇に転じ、やがてオーバシュート
検出回路Tを越え、オーバシュート検出回路24は検出
信号を出力する。このオーバシュート検出回路を受」プ
て制動制御回路25はコイル35aに励磁電流を供給す
るから、可動鉄芯3511は一端がスプリング35Cの
付勢力に打ち勝って二]イル35a内に吸引され、他端
がブレーキベルト36の他端を強く引っ張る。その結果
、ブレーキベルト36はファンモータ5の回転軸5aに
強く圧接し、その摩擦力により回転軸5aは回転が絹害
され急速に回転数が減少する。 よって、風量は時間遅れなく減少し、これに伴いバーナ
4への供給ガス量が減じ燃焼状態が低燃焼に移行する。 その結果、湯温の1胃湿度が急速に衰え、低いビーク温
度に早々と到達し、A5がで下降に転する。 この間のファンモータ5の回転数が回転数検出器26を
介して回転数弁別回路28に入力され、回転数弁別回路
28はファンモータ5の回転数が所定の最低回転数(停
止に至らない適宜な回転数)を越えると、制動解除信号
を出力する。この制動解除信号を受けて制動制御回路は
コイル35aに供給していた励磁電流を断にする。その
結果、制動手段27は上述したJ:うにして回転軸5a
の回転m +)−動作を停止する。 従って、ファンを一夕5は制動時間TO経過後その回転
数が上背に転じ、風量や供給ガス澁も増大に転する。こ
の頃には湯温がオーバシュート検出渇痕T以下に降下し
でおり、その後は前述したP T D #粋動作や位相
制御動作によって、変更後の出1ffiについて通常の
湯温調節が行なわれる。 かくして、ここで発!1−シたオーバシュートはピーク
レベルが低いもので、かつその継続時間が短いものとな
り、大半が配管の前述した低減作用により更に温度降下
し、実際に蛇口から出潮される潟のwaFJtは設定温
度と大差ないものになる。
In the gas supply path leading to the pressure equalizing valve 7, a source valve 9 for turning on and off the supply of gas and a gas governor 10 are provided. igniter 1 that generates an ignition spark in connection with the Ishi-C burner 4;
First, a flame detector 12 is installed to detect whether the ignition is normally ignited by the ignition operation, and a wind pressure switch 13 is installed to check the operation of the motor 5. is the exhaustion performed by the control circuit 6.
This is a conceptual diagram showing IO operation, and this control system is configured by a feedback loop. Basic f according to Figure 2 below.
Explain l+ work. First, when the flow switch 8 detects the water flow in the heat exchanger 1, the control circuit 6
At the same time, the igniter 11 is turned on and the fan motor 5 is driven. Fan motor 5 feed 1!1f
As il increases toward a predetermined value, the opening degree of the pressure equalizing valve 7 increases in proportion to the air pressure (a), and gas combustion in the burner 4 grows toward a predetermined state. Next, when the thermistor 2 detects the -1-point of the hot water 111Hα from the heat exchanger 1, the control circuit i 6 t;L performs the operation shown in FIG. 2. That is, the deviation C between this i-edition detection signal a and the target temperature signal S is determined, and a predetermined control md is created by performing all PID calculations on this deviation C. Next, the phase angle of the rotating magnetic field that drives the rotor of the fan motor 5 is calculated and determined based on this control component 11, and the drive current of the fan motor 5 is thereby triggered (Fi The switching element controls the phase of the drive current of the motor 5 with the conduction angle determined by the trigger signal c, and under the rotating magnetic field of a predetermined phase caused by this, the switching element outputs a signal e. , I. The predetermined number of rotations increases.As a result, a predetermined air pressure f is transmitted to the pressure equalizing valve 7.As a result, the valve opening m of the pressure equalizing valve 7 becomes a predetermined opening degree, and the gas supplied to the burner 4 is adjusted appropriately. Become something,
Hot water temperature L:I: Controlled to be 4'i with the set humidity. The above operations are repeated to maintain the output IF temperature at the set temperature, and burner/ItJ: continues combustion with the predetermined gas m. If there is a change in the set temperature or outlet 1ffi, the change in outlet temperature is fed back, and -1
- The output i temperature is corrected by the control operation described above. By the way, as is well known, there is a response delay in starting and stopping the fan motor due to TM characteristics and the like. Diagram M3 shows this. When η is increased and the power supply is increased by A, the rotation speed of the fan motor increases with a rising time constant T1 and approaches a constant value. Furthermore, when the power supply is turned on (A), the rotational speed decreases from the constant value with a falling time constant T2. The time constants TI and T2 are generally about 6 seconds, but J causes the following Δ-basicote problem. It should be noted that although an under-shield 1--1.b occurs, this does not pose any practical problem and will be omitted from the above explanation. In Figure 4, if the hot water temperature is stably moving at 111 and the amount of hot water that comes out is suddenly decreased at time Ta, this is the hot water temperature that is 111. appears as P, 1, then l-'+t1'r
As described above, feedback control is performed to reduce the rotational speed of the motor. However, the Noan motor decreases the rotation speed by the falling time constant -r2.
. Then, the valve opening degree of the pressure equalizing valve follows the change of lp r, etc., and the gas m supplied to the burner corresponds to the high-output boiling point of No.3L change history nII at time Tb, J:, As a result, the hot water temperature reaches an all-time high. After time Tb, the valve opening of the 11 valves is reduced and the amount of waste supplied to the burner is suppressed, so this output fA
The temperature of 2m degrees decreases toward a constant temperature in the latter stage. This j; transient sudden rise in eel water temperature is over]-1. If the duration of this overshoot is short, the temperature of the hot water dispensed from the faucet will be only 10 I/r due to the reduction effect of the piping from the heat exchanger to the tap [1]. However, if the duration is longer than a few seconds, the peak level of the heat is high, so the piping reduction effect [) is insufficient, and the temperature measurement taken from the snake 1] reaches a considerable temperature. In some cases, hot water is poured out,
It's extremely dangerous. Therefore, in the past, an overshoot detection circuit was installed, and when the hot water temperature marked 1 rose from the set humidity to a predetermined hot stone level, it was judged as an overshoot, and at this time, the drive current of the fan motor was turned on and off. This problem was dealt with by performing phase calculations to minimize the conduction angle of the switching element -r and quickly reduce the rotational speed of the 7-arm motor. However, this results in a certain amount of A-Bachut Gel,
Although it can be reduced, the culm of this overshoot varies depending on the amount of decrease in the amount of hot water, etc., and the above-mentioned measure 1 is insufficient, and an effective countermeasure is desperately needed. (3) Object 1 of the Invention An object of the present invention is to provide a water heater control device that can effectively reduce overshoot regardless of its size. (4) Structure and effect of the invention In order to achieve the above object, the present invention includes 14 overshoot detection circuits for detecting an overshoot of 32°C.
A braking means that operates to act on the output shaft of the fan motor to prevent shaft rotation, and detects the rotation speed of the fan motor and discriminates when the rotation speed has become lower than a predetermined minimum rotation speed. a rotational speed detection means; and a braking control means for operating the braking means in response to a detection signal from the overshoot detection circuit and stopping operation of the braking means in response to a detection signal from the rotational speed detection means. It is characterized by having the following. According to this configuration, when an overshoot is detected, the braking means is immediately activated and the fan motor reaches a predetermined minimum rotation speed, so the overshoot is quickly suppressed and its peak level is extremely low. You can get it back. Therefore, even if the tapped hot water n1 is suddenly changed to a lower value, there is no sudden temperature rise of the tapped hot water. In addition, the duration of the overshoot is short<<K, and the predetermined amount of hot water of 1 g is delivered in a short time after changing the hot water supply, so that a water heater that is easy to use can be provided. 5〉Explanation of Embodiment FIG. 5 is a schematic diagram showing a control device according to the present invention, focusing on a drive circuit for a fan motor. In the figure, a switching element 21 (for example, a triac) is provided between the fan motor 5 and the AC power source 20, and the trigger signal e is inputted to the switching element 21 from the phase control circuit 22. The phase control circuit 22 is a circuit that performs the above-mentioned phase calculation,
Further, the PIDIII11 circuit 23 is a circuit that performs the above-mentioned PID calculation. This P I l) control circuit 23 is provided with the above-mentioned overshoot detection circuit 24, and this overshoot detection circuit 24 sends a detection signal to the braking control circuit 2.
Output to 5. 9-Fan [-A rotation speed detector 26 and a braking means 27
The detected value of the rotation speed detector 26 is given to the rotation speed discrimination circuit 28. The rotation speed discrimination circuit 28 discriminates the lowest rotation speed of the fan motor 5 and sends it to the braking control circuit 25. This braking control circuit 25 operates the braking means 27 upon receiving the overshoot detection signal, and stops the operation of the braking means 27 upon receiving the lowest rotational speed discrimination signal. In Fig. 6, the rotation speed detector 26 includes a rotary plate 31 fixed to the rotation shaft 5a of the fan motor 5 and a rotary sensor 32.The rotary plate 31 has a plurality of blades 31a arranged at equal intervals. A kind of impeller with 318.31 blades each.
A light transmitting portion 31b is formed between the portions a. The photosensor 32 includes a light emitting element 32a and a light receiving element 32b that transmit and receive light through the light transmitting section 31b. In FIG. 7, the braking means 27 is composed of a solenoid 35 and a brake belt 36. The solenoid 35 is
The coil 35a is excited and demagnetized by the output of the braking control circuit 25, and one end of the coil 35a is biased by a spring 35G, and the coil 35a is excited and demagnetized so as to freely move against the coil 35a. A movable iron core 35b that moves tJJl-d is provided. The brake belt 36 straddles the rotating shaft 5a of the fan motor 5, one end is fixed to a pin 37 erected on the side of the motor body 5b, and the other end is connected to a movable iron core 351 via a connecting rod 38. ) is connected to the other end. Next, the overshoot suppressing operation of the device of this embodiment will be explained with reference to FIG. First, when the hot water temperature is stable at a certain amount of hot water, the braking means 27 is not activated. In other words,
One end of the d-dynamic iron core 35b is biased by a spring 335C, and the other end pushes up the other end of the brake belt 36, so that the brake belt 36 is in contact with the rotating shaft 5a and is floating. Therefore, the Noan 5 rotates at a predetermined rotational speed in the direction of the arrow shown in the figure, and supplies a stable wind fik to the burner 4. Then, when the outlet hot water temperature is suddenly decreased at time Ta, the above-mentioned J: sea urchin hot water temperature starts to rise and eventually exceeds the overshoot detection circuit T, and the overshoot detection circuit 24 outputs a detection signal. In response to this overshoot detection circuit, the brake control circuit 25 supplies an exciting current to the coil 35a, so one end of the movable iron core 3511 overcomes the biasing force of the spring 35C and is attracted into the coil 35a, and the other The end strongly pulls the other end of the brake belt 36. As a result, the brake belt 36 comes into strong pressure contact with the rotating shaft 5a of the fan motor 5, and due to the frictional force, the rotation of the rotating shaft 5a is impaired and the number of revolutions rapidly decreases. Therefore, the air volume decreases without any time delay, and accordingly, the amount of gas supplied to the burner 4 decreases, and the combustion state shifts to low combustion. As a result, the stomach humidity of the water temperature rapidly declines, reaching a low peak temperature quickly, and A5 begins to decline. During this period, the rotation speed of the fan motor 5 is inputted to the rotation speed discrimination circuit 28 via the rotation speed detector 26, and the rotation speed discrimination circuit 28 detects that the rotation speed of the fan motor 5 is a predetermined minimum rotation speed (appropriate speed that does not lead to stopping). When the number of rotations exceeds the maximum number of rotations), a brake release signal is output. Upon receiving this brake release signal, the brake control circuit cuts off the excitation current supplied to the coil 35a. As a result, the braking means 27 operates as described above.
Rotation m +) - stops working. Therefore, after the braking time TO of the fan has elapsed, the rotational speed of the fan turns upward, and the air volume and supply gas level also start to increase. By this time, the hot water temperature has fallen below the overshoot detection mark T, and after that, the normal hot water temperature adjustment is performed for the changed output 1ffi by the PTD# mode operation and phase control operation described above. So, here we go! The peak level of the overshoot is low and its duration is short, and most of the time the temperature drops further due to the above-mentioned reduction effect of the piping, and the waFJt of the lagoon that actually comes out of the faucet is lower than the setting. It will not be much different from the temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明が対象とづる温情型を示寸塁木構成図
、第2図は温湯調節制御系を示す概念図、第3図はファ
ンモータの慣性動作を示覆概略図、第4図はオーバシュ
ートの発生過程の説明図、第5図はこの発明の実施例装
置をフッ1ンを一夕の駆13− 動回路を中心に示′tJ′概略構成図、第6図は回転数
検出器の一実施例を示す概略斜視図、第7図は制動手段
の一実施例を示づ概略図、第8図はこの発明の実施例装
置のオーバシュー1〜抑制動作を説明づる概略図である
。 1・・・・・・・・・熱交換器 2・・・・・・・・・温石検出器 3・・・・・・・・・tfA度設定設 定器4・・・・・・・バーナ 5・・・・・・・・・ファンモータ 5a・・・・・・回転軸 6・・・・・・・・・制御回路 24・・・・・・オーバシュート検出回路25・・・・
・・制動制御回路 26・・・・・・回転数検出器 27・・・・・・制動手段 28・・・・・・回転数弁別器 35・・・・・・ソレノイド 35a・・・コイル 35b・・・可動鉄芯 14− 3G・・・・・・プレm:1.ベルト・特V1出願人 立石電機株式会社 15− 67− 範5図 5 68− 箆6図 2 第7図
Fig. 1 is a block diagram showing the warm water type that this invention targets, Fig. 2 is a conceptual diagram showing the hot water adjustment control system, Fig. 3 is a schematic diagram showing the inertial operation of the fan motor, and Fig. 4 is a schematic diagram showing the inertial operation of the fan motor. Figure 5 is an explanatory diagram of the overshoot generation process, Figure 5 is a schematic block diagram of an embodiment of the present invention with a focus on the driving circuit of the engine, and Figure 6 is a schematic diagram of the rotation. 7 is a schematic diagram showing an embodiment of the braking means; FIG. 8 is a schematic diagram illustrating the overshoe 1 to suppressing operation of the embodiment device of the present invention. It is a diagram. 1... Heat exchanger 2... Warm stone detector 3... tfA degree setting device 4... Burner 5...Fan motor 5a... Rotating shaft 6... Control circuit 24... Overshoot detection circuit 25...
... Brake control circuit 26 ... Rotation speed detector 27 ... Braking means 28 ... Rotation speed discriminator 35 ... Solenoid 35a ... Coil 35b ...Movable iron core 14-3G... Prem: 1. Belt/Special V1 Applicant: Tateishi Electric Co., Ltd. 15- 67- Range 5 Figure 5 68- Broom 6 Figure 2 Figure 7

Claims (2)

【特許請求の範囲】[Claims] (1)熱交換器の出湯湿度を検出する温度検出器と、目
標温度を設定する温度設定器と、バーナに燃焼空気を供
給するファンモータと、上記温度検出器の検出信号と上
記温度設定器の目標渇度股定信号との偏差に応じて上記
ファンモータの回転数を制御する制御回路と、上記ファ
ンモータの送風空気圧に応じて弁開度が変化し、バーナ
への燃料供給量を調整する均圧弁とを備え、湯沸器の出
湯温度を一定に保持するように制御する制tlll装置
において、湯温のオーバシュートを検出するオーバシュ
ート検出回路と、上記ファンモータの出力軸に作用して
軸回転を阻止するように作動する制動手段と、上記ファ
ンモータの回転数を検出し、回転数が所定の最低回転数
以下になったことを弁別する回転数検出手段と、」−記
オーバシュート検出回路の検出信号に応答して上記制動
手段を作動させ、かつ上記回転数検出手段の検出信号に
応答して」記制動手段の作動を停J−さ1!る制動制御
1段とを備えたことを特徴とする湯沸器の制御装置。
(1) A temperature detector that detects the humidity of hot water coming out of the heat exchanger, a temperature setting device that sets the target temperature, a fan motor that supplies combustion air to the burner, a detection signal of the temperature detector, and the temperature setting device A control circuit that controls the rotation speed of the fan motor according to the deviation from the target thirst determination signal, and a valve opening that changes according to the air pressure of the fan motor to adjust the amount of fuel supplied to the burner. The control device is equipped with an overshoot detection circuit that detects an overshoot of the hot water temperature, and an overshoot detection circuit that acts on the output shaft of the fan motor. a braking means that operates to prevent the shaft from rotating; a rotational speed detection means that detects the rotational speed of the fan motor and determines when the rotational speed has fallen below a predetermined minimum rotational speed; The braking means is operated in response to a detection signal from the chute detection circuit, and the operation of the braking means is stopped in response to a detection signal from the rotation speed detection means. A control device for a water heater, characterized in that it is equipped with one stage of braking control.
(2)上記制動手段は、上記制動制御手段にJ、・)で
励磁・消磁されるソレノイドと、このソレノイドが励磁
されたどき、これに付勢されて上記ファンモータの出力
軸に圧接するブレーキベルトとを備えていることを特徴
とする特r[請求の範囲第1項記載の湯沸器の制御装置
(2) The braking means includes a solenoid that is energized and demagnetized by J, .) in the braking control means, and a brake that is energized by this solenoid and presses against the output shaft of the fan motor when the solenoid is energized. A water heater control device according to claim 1, characterized in that the water boiler control device has a belt.
JP57180258A 1982-10-14 1982-10-14 Control device for water heater Pending JPS5969614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57180258A JPS5969614A (en) 1982-10-14 1982-10-14 Control device for water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57180258A JPS5969614A (en) 1982-10-14 1982-10-14 Control device for water heater

Publications (1)

Publication Number Publication Date
JPS5969614A true JPS5969614A (en) 1984-04-19

Family

ID=16080108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57180258A Pending JPS5969614A (en) 1982-10-14 1982-10-14 Control device for water heater

Country Status (1)

Country Link
JP (1) JPS5969614A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6373017A (en) * 1986-09-16 1988-04-02 Kaneko Agricult Mach Co Ltd Combustion controller for burner in suction type grain drier
JP2014516806A (en) * 2011-04-15 2014-07-17 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Electric tool and its fan

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6373017A (en) * 1986-09-16 1988-04-02 Kaneko Agricult Mach Co Ltd Combustion controller for burner in suction type grain drier
JPH0421092B2 (en) * 1986-09-16 1992-04-08 Kaneko Agricult Machinery
JP2014516806A (en) * 2011-04-15 2014-07-17 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Electric tool and its fan

Similar Documents

Publication Publication Date Title
JPS5969614A (en) Control device for water heater
KR920009304B1 (en) Water heater
JPS60245947A (en) Hot-water supply control device
JPS6139565B2 (en)
JP2002130141A (en) Water feeding device
US4515307A (en) Hot water control system
JPS58102026A (en) Combustion controller for boiler
JPS6069429A (en) Combustion control device for water heater
JPS58184442A (en) Controlling device of water boiler
JP6052579B2 (en) Combustion device
KR950009122B1 (en) Boiler safety operation method
JPS59157422A (en) Safety device for forced combustion fan of gas hot water supplier
KR930002800B1 (en) Control apparatus for electric type the quantity of water control valve
JPH09210462A (en) Water volume control device
US2753119A (en) Fan control system
JP2002195508A (en) Feed water control device and method of steam boiler
JPS5855411B2 (en) Forced supply and exhaust combustion equipment
JPH0639207Y2 (en) Check valve abnormality detection device
JPH08161054A (en) Control valve device
JPH10103607A (en) Control of electric boiler
KR900008428B1 (en) Start ignition explosion prevention system in gas heater
JP2500127B2 (en) Flow controller
JP2828153B2 (en) Water supply device
JPH0346707B2 (en)
JP2005341750A (en) Motor starting device