JPS5969408A - Manufacture of composite carbon-carbon material - Google Patents

Manufacture of composite carbon-carbon material

Info

Publication number
JPS5969408A
JPS5969408A JP57178485A JP17848582A JPS5969408A JP S5969408 A JPS5969408 A JP S5969408A JP 57178485 A JP57178485 A JP 57178485A JP 17848582 A JP17848582 A JP 17848582A JP S5969408 A JPS5969408 A JP S5969408A
Authority
JP
Japan
Prior art keywords
carbon
carbon fiber
fiber
laminate
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57178485A
Other languages
Japanese (ja)
Inventor
Hiroshi Shirogane
博 白銀
Hiroshi Sato
博 佐藤
Megumi Nakanose
中之瀬 恩
Seizo Ishikura
石倉 精三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP57178485A priority Critical patent/JPS5969408A/en
Publication of JPS5969408A publication Critical patent/JPS5969408A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture the titled material without cracking each layer between fabrics of carbon fiber by laminating fabrics of carbon fiber or fiber as a starting material for carbon fiber and prepreg impregnated with thermosetting resin and by stitching up the laminate with stitching thread of said fiber before heating under pressure.. CONSTITUTION:Fabrics 10 woven from weft 10a of carbon fiber and warp 10b of carbon fiber and prepreg impregnated with thermosetting resin 11a as a starting material for a carbonaceous material are laminated in a prescribed shape. The laminate is stitched up with stitching thread 12 of carbon fiber, and it is heated under pressure to form a curved preform. After finishing the preforming stage, the preform is repeatedly subjected to carbonization, graphitization and pitch impregnation so as to provide prescribed specific gravity. Thus, a composite carbon-carbon material is completed.

Description

【発明の詳細な説明】 本発明は、炭素繊維で強化された炭素質材料、すなわち
炭素・炭素複合材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a carbonaceous material reinforced with carbon fibers, that is, a carbon-carbon composite material.

炭素・炭素複合材は、軽量(比重1.5〜1.6程度)
で、耐熱性が著しく優れ(2500〜3000 ’0程
度)、更に高温下における強度が大きいという性質を有
し、高熱にさらされる部分に用いる材料、例えば飛翔体
におけるノズル部等に用いる材料として極めて有用なも
のである。
Carbon/carbon composite materials are lightweight (specific gravity around 1.5 to 1.6)
It has extremely excellent heat resistance (approximately 2,500 to 3,000'0) and has high strength at high temperatures, making it an extremely suitable material for use in parts exposed to high heat, such as the nozzle part of a flying object. It is useful.

そして、従来、この炭素・炭素複合材は第1図に示すよ
うな工程を経て製造されている。
Conventionally, this carbon-carbon composite material has been manufactured through a process as shown in FIG.

まず、ブリフオーム工程1にて、炭素繊維の織布10に
フェノール樹脂等の熱硬化性樹脂11を含浸させたプリ
プレグを、その製品形状に応じて、例えば第2図に示す
ような板形状や第3図に示すような円筒形状となるよう
に積層し、この積層体と加圧しながら100〜240°
Cで加熱して硬化成形体にする。次いで、炭化処理工程
2にて、」二記硬化成形体ト450〜900°Cの範囲
で徐々に加熱して炭化処理を施し、黒鉛化処理工程3に
て、2000〜2900°Cの範囲で徐々に加熱して黒
鉛化処理を施す。この炭化処理、黒鉛化処理における熱
硬化性樹脂11の熱分解によりガスが発生して疎の状態
きなった成形体に、ピッチ含浸工程4にて、ピッチ材を
含浸させ、更に炭化処理工程5、黒鉛化処理工程6にて
再度の炭化、黒鉛化を施す。そして、更に成形体の比重
が所定値(1,5〜1.6程度)に述するまでピッチ含
浸、炭化処理、黒鉛化処理を繰返し、所定比重になった
ところで、炭素・炭素複合材となる成形体が完成する。
First, in the Briform process 1, a prepreg made by impregnating a carbon fiber woven fabric 10 with a thermosetting resin 11 such as a phenolic resin is prepared according to the shape of the product, such as a plate shape as shown in FIG. Laminate the layers to form a cylindrical shape as shown in Figure 3, and press the laminate at 100 to 240 degrees.
C. to form a hardened molded product. Next, in the carbonization treatment step 2, the cured molded product described above is gradually heated in the range of 450 to 900 ° C to perform carbonization treatment, and in the graphitization treatment step 3, the cured molded product is heated in the range of 2000 to 2900 °C. Graphitization treatment is performed by gradual heating. Gas is generated by thermal decomposition of the thermosetting resin 11 in this carbonization treatment and graphitization treatment, and the loosely formed molded body is impregnated with a pitch material in a pitch impregnation step 4, and then further carbonized in a carbonization treatment step 5. In graphitization treatment step 6, carbonization and graphitization are performed again. Then, pitch impregnation, carbonization, and graphitization are repeated until the specific gravity of the compact reaches a predetermined value (approximately 1.5 to 1.6), and when the specific gravity reaches the predetermined specific gravity, it becomes a carbon-carbon composite material. The molded body is completed.

尚、ブリフオーム工程1にて使用するプリプレグの織布
10は、炭素繊維に限られず、炭素繊維の原料イA繊維
、例見はポリニトロアクリル(PAN )繊維、レーヨ
ン繊維等による織布としても良い。これは、炭素・炭素
複合材の製造過程において、炭化処理、黒鉛化処理が施
されるため、このポリニトロアクリル繊維、レーヨン繊
維等も炭化、黒鉛化されて炭素繊維とほぼ同等の組成に
変化するからである。但し、強度的には、炭素結晶が同
一方向に並んでいる炭素繊維の織布を使用した方が優れ
たものとなる。
The prepreg woven fabric 10 used in the Briform process 1 is not limited to carbon fiber, but may also be a woven fabric made of carbon fiber raw material A fiber, for example polynitroacrylic (PAN) fiber, rayon fiber, etc. . This is because carbonization and graphitization treatments are performed during the manufacturing process of carbon-carbon composite materials, so polynitroacrylic fibers, rayon fibers, etc. are also carbonized and graphitized, changing their composition to almost the same as carbon fibers. Because it does. However, in terms of strength, it is better to use a woven carbon fiber fabric in which carbon crystals are aligned in the same direction.

ところで、このような従来の製造方法にあっては、炭素
繊維の織布10に熱硬化性樹脂11を含浸きせたプリプ
レグの積層体を、100〜240°C程度の比較的低い
温度から2000〜2900℃の高温に致るまで徐々に
温度を」二げて焼成していく過程において、熱硬化性樹
脂11が熱分解してガスが発生し、成形体内部に気泡か
生じ、また、炭素繊維と熱硬化性樹脂11との熱膨張率
の差から膨張収縮r(よって内部熱応力が生し、更に、
熱硬化性樹脂11と炭素繊維とでは炭素繊維の方が熱伝
導率が大きいため、炭素繊維の絋’4J10の積層平面
内での熱伝導に比べ成形体の厚み方向での熱伝導が悪く
なることから、成形体内での温度分布が不均一となって
、成形体内の熱応力分布も不均一になってしまう。この
ような原因が複雑に影響しあって特に成形体内の組成が
急激に変化する炭化処理工程2で、炭素繊維織布10の
各層間にひび割れ(層間剥離)が牛じゃすくなり、成形
体の肉厚が厚かったり形状が複雑化すると、ひび割れの
発生による製品不良が増大し、炭素・炭素複合材でなる
成形体の製造歩留が非常に悪くなるという問題点があっ
た。
By the way, in such a conventional manufacturing method, a prepreg laminate in which a carbon fiber woven fabric 10 is impregnated with a thermosetting resin 11 is heated from a relatively low temperature of about 100 to 240°C to a temperature of 2000 to 200°C. During the firing process, the temperature is gradually lowered until it reaches a high temperature of 2900°C, the thermosetting resin 11 thermally decomposes, gas is generated, bubbles are formed inside the molded body, and carbon fibers are Due to the difference in thermal expansion coefficients between the
Since carbon fiber has a higher thermal conductivity than thermosetting resin 11 and carbon fiber, heat conduction in the thickness direction of the molded body is worse than heat conduction within the lamination plane of carbon fiber Kaki '4J10. Therefore, the temperature distribution within the molded body becomes non-uniform, and the thermal stress distribution within the molded body also becomes non-uniform. In the carbonization process 2, in which the composition within the molded article changes rapidly due to the complex effects of these factors, cracks (delamination) between the layers of the carbon fiber woven fabric 10 occur, causing damage to the molded article. If the wall thickness is thick or the shape is complicated, product defects due to the occurrence of cracks will increase, and the manufacturing yield of molded bodies made of carbon/carbon composite material will be extremely poor.

本発明は上記に鑑みてなされたもので、その目的とする
ところは、炭素繊維で強化された炭素質材料、すなわち
炭素・炭素複合材の製造過程において、炭素繊維織布の
積層間で生ずるひび割れを防止することであり、そして
、本発明の要旨とするところは、炭素繊維又は炭素繊維
の原料材繊維でなる織布に炭素材原料の熱硬化性樹脂を
含浸させたプリプレグの積層体を加圧下で加熱して硬化
成形体にするブリ7オームエ程度において、上記プリプ
レグの積層体の加圧下での加熱前に炭素繊維又は炭素繊
維の原料材繊維でなる剰余により当該積層体を縫い合わ
せるようにしたことである。
The present invention has been made in view of the above, and its purpose is to prevent cracks that occur between layers of carbon fiber woven fabric in the manufacturing process of carbon fiber-reinforced carbonaceous materials, that is, carbon-carbon composite materials. Therefore, the gist of the present invention is to add a prepreg laminate in which carbon fiber or a woven fabric made of carbon fiber raw material fiber is impregnated with a thermosetting resin of carbon material raw material. Before heating the prepreg laminate under pressure to form a hardened molded body by heating under pressure, the laminate was sewn together using a surplus of carbon fibers or raw material fibers of carbon fibers. That's true.

以下本発明を添付図面に示す実施例に基づいて説明する
The present invention will be described below based on embodiments shown in the accompanying drawings.

第4図は本発明の11t!!造方法におけるプリプレグ
の積層体の一例を示す説明図である。
Figure 4 shows 11t! of the present invention! ! FIG. 2 is an explanatory diagram showing an example of a prepreg laminate in the manufacturing method.

第41Aにおいて、10は炭素繊維でなる横糸10a、
縦糸10bで織られた織布である。まず、この織布用に
熱硬化性樹脂であるレゾール系フェノール樹Ill¥1
13を含浸させたプリプレグを積層して所定形状にし、
この積層体をポリニトロアクリル(PAN)の耐炎化繊
維、すなわち炭素繊維でなる剰余12によって縫い合わ
せる。次いで、剰余12によって縫い合わせを行なった
プリプレグの積層体を従来と同様に加圧しながら100
〜240゜Cの温度で加熱し、硬化成形体にすることで
ブリフオーム工程1を経了する。
In No. 41A, 10 is a weft 10a made of carbon fiber,
It is a woven fabric woven with warp yarns 10b. First, for this woven fabric, we will use resol type phenolic resin, which is a thermosetting resin, for ¥1
Prepreg impregnated with No. 13 is laminated to form a predetermined shape,
This laminate is sewn together with a surplus 12 of polynitroacrylic (PAN) flame-retardant fibers, ie carbon fibers. Next, the prepreg laminate sewn together using the surplus 12 is sewn together with 100 ml of laminate while applying pressure in the same manner as before.
The briform step 1 is completed by heating at a temperature of ~240°C to form a hardened molded product.

このようにブリ7オームエ程1にてできた硬化成形体は
、以後第1図に示す従来の処理工程と同様に、炭化処理
、黒鉛化処理、ピッチ含浸の各処理が繰り返し/aされ
、所定比重となったところで炭素・炭素複合相でなる成
形体として完成する。
The hardened molded body produced in Buri 7 Ohm E step 1 is then subjected to repeated carbonization, graphitization, and pitch impregnation treatments in the same way as the conventional treatment steps shown in FIG. Once the specific gravity has been reached, a molded body made of carbon/carbon composite phase is completed.

上記のようにブリフオーム工程1にてプリプレグの積層
体を剰余12によって縫い合わせると、ブリ7オームエ
稈1、炭化処理工程2等での加熱により、レゾール系フ
ェノール樹脂11aが熱分解してガスが発生しても、そ
のガスは剰余12に沿って板厚方向の最短経路で成形体
外部に出てゆき易くなり、焼成後に成形体内に気泡が残
りにくくなる。また、従来炭素繊維によって補強されず
に強度の弱い積層間も、剰余12によって機械的に補強
されることとなり、更に、板厚方向に剰余12が配置さ
れていることから、焼成過程において、熱が剰余12に
沿って板厚方向に逃げやすくなるため、従来成形体内で
発生した温度分布の不均一性が緩和されるようになる。
As mentioned above, when the prepreg laminate is sewn together using the surplus 12 in the buriform process 1, the resol-based phenolic resin 11a is thermally decomposed and gas is generated due to heating in the buri7ohme culm 1, carbonization process 2, etc. Even if the molded body is fired, the gas easily escapes to the outside of the molded body along the shortest path in the thickness direction along the surplus 12, making it difficult for air bubbles to remain inside the molded body after firing. In addition, the laminated layers, which are weak in strength and have not been reinforced with carbon fibers, are mechanically reinforced by the surplus 12.Furthermore, since the surplus 12 is arranged in the thickness direction, heat is applied during the firing process. Since it becomes easier to escape in the plate thickness direction along the surplus 12, the non-uniformity of temperature distribution that conventionally occurred in the molded body is alleviated.

こ11らの理由により従来炭素繊維で補強されていない
各M間で発生したひび割れ(層間剥離)を防11−する
ことができる。
For these 11 reasons, it is possible to prevent cracks (delamination) that have conventionally occurred between the M's that have not been reinforced with carbon fibers.

尚、本実施例では剰余12にポリニトロアクリル(pA
h+)の耐炎化繊維、すなわち炭素繊維を使用したが、
これに限られることなく、炭素繊維の坤材料繊維である
ポリニトロアクリル繊維、レーヨン繊維等をそのまま使
用しても良い。これは、炭素繊維の織布10のイわりに
どリニトロアクリル繊維等の織布を使用することができ
ることと同様で、炭素・炭素複合材の製造過程の炭化処
理、黒鉛化処理でポリニトロアクリル繊維も炭素化され
るためである。但しこの場合も、炭素繊維の剰余12を
使用した方が強度的に優れたものとなる。
In this example, the remainder 12 is polynitroacrylic (pA
h+) flame-resistant fiber, that is, carbon fiber, was used,
Without being limited thereto, polynitroacrylic fibers, rayon fibers, etc., which are carbon fiber material fibers, may be used as they are. This is similar to the fact that a woven fabric such as nitroacrylic fiber can be used instead of the woven fabric 10 of carbon fiber, and polynitroacrylic fiber can be This is because the fibers are also carbonized. However, in this case as well, the use of the carbon fiber remainder 12 provides superior strength.

次に、本発明の製造方法によって製造された炭素・炭素
複合材の試験体におけるひび割れ(層間剥離)の発生状
況を、従来の製造方法によって製造された試験体と比較
して第1表に示す。尚、ひび割れの確認は肉眼でヂエツ
クするのみならず、複合材表面にアルコールを塗布して
その蒸発と観察し、蒸発が遅れた部分があればアルコー
ルがその部分の割れ目に侵入したということで、ひびt
−1れが発生したと判断した。
Next, Table 1 shows the occurrence of cracks (delamination) in the carbon-carbon composite specimen manufactured by the manufacturing method of the present invention in comparison with the specimen manufactured by the conventional manufacturing method. . In addition, cracks can be confirmed not only by visually inspecting them, but also by applying alcohol to the surface of the composite material and observing its evaporation.If there are areas where evaporation is delayed, this means that alcohol has entered the cracks in those areas. Crack
-1 It was determined that a failure had occurred.

/ 7−″ /′ / 記フリ“7オームエ稈におけるプリプレグの積層体の加
H(下での加熱前に、炭素繊維又は炭素繊維の原料材繊
維でなる剰余によりプリプレグの積層体を縫い合わせる
ようにしたため、炭素・炭素複合材の製造週程で炭素繊
維の積層間に生ずるひび割れを防Iヒすることができ、
成形する炭素・炭素複合材の形状が大型化、複雑化して
も剰余の本数分布等を調整することによって炭素・炭素
複合Hの成形体の不良品発生’を最小限に抑えることが
でき製造歩留が向上するという効果が得られる。
/ 7-''/' / Recording "7-ohm culm heating of the prepreg laminate (before heating at the bottom, the prepreg laminate is sewn together using carbon fibers or carbon fiber raw material fibers) As a result, it is possible to prevent cracks that occur between carbon fiber layers during the manufacturing process of carbon-carbon composite materials.
Even if the shape of the carbon/carbon composite material to be molded becomes larger or more complex, by adjusting the distribution of the number of surplus fibers, it is possible to minimize the occurrence of defective products in the molded product of carbon/carbon composite H and improve the manufacturing process. This has the effect of improving retention.

また、炭素・炭素俟合材成形体の積層面での剪断強度、
及び積層面方向の耐熱衝撃性が著しく向上するため、炭
素・炭素値合材によって形成される製品、例えばロケッ
トモータノズル等の構造強度が著しく向上するという付
随的効果も得られる。
In addition, the shear strength of the laminated surface of the carbon/carbon composite material molded body,
Furthermore, since the thermal shock resistance in the direction of the laminated plane is significantly improved, an additional effect of significantly improving the structural strength of products formed from the carbon/carbon composite material, such as rocket motor nozzles, etc., can also be obtained.

【図面の簡単な説明】 第1図は炭素・炭素複合材の製造工程を示すブロック図
、第2図は従来の製造方法におけるプリプレグの積層体
の一例を示す説明図、第3図は従来の製造方法における
プリプレグの積層体の他の一例を示す説明図、第4図は
本発明におけるプリプレグの積層体の一例を示す説明図
である。 1・・・プリフォーム工程 2,5・・・炭化処理工程
3.6・・・黒鉛化処理工程10・・・織布10a・・
・横糸      10b・・・縦糸11・・・熱硬化
性樹脂    11a・・ルゾール系フェノール樹脂1
2・・・剰余 特許出願人  日産自動車株式会社 ・−、:  二)
[Brief explanation of the drawings] Fig. 1 is a block diagram showing the manufacturing process of carbon-carbon composite material, Fig. 2 is an explanatory drawing showing an example of a prepreg laminate in the conventional manufacturing method, and Fig. 3 is a block diagram showing the manufacturing process of carbon-carbon composite material. FIG. 4 is an explanatory diagram showing another example of the prepreg laminate in the manufacturing method. FIG. 4 is an explanatory diagram showing an example of the prepreg laminate in the present invention. 1... Preform process 2, 5... Carbonization process 3.6... Graphitization process 10... Woven fabric 10a...
・Weft thread 10b... Warp thread 11... Thermosetting resin 11a... Luzol-based phenolic resin 1
2...Residual patent applicant Nissan Motor Co., Ltd.: 2)

Claims (1)

【特許請求の範囲】[Claims] 炭素繊維又は炭素繊維の原料材繊維でなる織布に炭素材
原料の熱硬化性樹脂を含浸させたプリプレグの積層体を
加圧下で加熱して硬化成形体にするブリフオーム工程と
、その後に続く炭化処理工程、黒鉛化工程、及びピッチ
含浸工程とを有する炭素・炭素複合材の製造方法に於い
て、」二記ブリフォーム工程におけるプリプレグの積層
体の加圧下での加熱前に炭素繊維又は炭素繊維の原料材
繊維でなる剰余により当該積層体の縫い合わせを行なう
ことを特徴とする炭素・炭素複合材の製造方法。
A briform process in which a laminate of prepreg, which is made by impregnating a woven fabric made of carbon fiber or carbon fiber as a raw material fiber with a thermosetting resin as a carbon material raw material, is heated under pressure to form a hardened molded product, followed by carbonization. In a method for producing a carbon-carbon composite material having a treatment step, a graphitization step, and a pitch impregnation step, carbon fiber or carbon fiber A method for producing a carbon-carbon composite material, characterized in that the laminate is sewn together using a surplus of raw material fibers.
JP57178485A 1982-10-13 1982-10-13 Manufacture of composite carbon-carbon material Pending JPS5969408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57178485A JPS5969408A (en) 1982-10-13 1982-10-13 Manufacture of composite carbon-carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57178485A JPS5969408A (en) 1982-10-13 1982-10-13 Manufacture of composite carbon-carbon material

Publications (1)

Publication Number Publication Date
JPS5969408A true JPS5969408A (en) 1984-04-19

Family

ID=16049284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57178485A Pending JPS5969408A (en) 1982-10-13 1982-10-13 Manufacture of composite carbon-carbon material

Country Status (1)

Country Link
JP (1) JPS5969408A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6476965A (en) * 1987-06-22 1989-03-23 Kureha Chemical Ind Co Ltd Carbonaceous cylindrical unit and production thereof
US4975261A (en) * 1987-09-22 1990-12-04 Petoca Ltd. Process for producing high strength carbon-carbon composite
CN113816757A (en) * 2021-10-29 2021-12-21 西安美兰德新材料有限责任公司 Method for quickly preparing carbon-carbon composite material heat-insulating barrel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6476965A (en) * 1987-06-22 1989-03-23 Kureha Chemical Ind Co Ltd Carbonaceous cylindrical unit and production thereof
US4975261A (en) * 1987-09-22 1990-12-04 Petoca Ltd. Process for producing high strength carbon-carbon composite
CN113816757A (en) * 2021-10-29 2021-12-21 西安美兰德新材料有限责任公司 Method for quickly preparing carbon-carbon composite material heat-insulating barrel

Similar Documents

Publication Publication Date Title
US4983451A (en) Carbon fiber-reinforced carbon composite material and process for producing the same
US4847063A (en) Hollow composite body having an axis of symmetry
US5279892A (en) Composite airfoil with woven insert
US20070259185A1 (en) High-temperature-resistant composite and method of producing the composite
NO180287B (en) Process for producing a composite material part, in particular a sandwich plate, from a number of joined blanks
JP4468015B2 (en) Manufacturing method of fiber blank and manufacturing method of fiber reinforced composite material part
US11072432B2 (en) Method for manufacturing a part made of a composite material comprising at least one portion forming a force-insertion portion or local thickened portion
US5061414A (en) Method of making carbon-carbon composites
JP2012516254A (en) Composite laminate structure and method for producing a composite laminate structure formed thereby
KR101659591B1 (en) Method for manufacturing hybrid ceramic fiber reinforced composite material and hybrid ceramic fiber reinforced composite material manufactured thereby
RU2681708C2 (en) Method of producing double-layer heat-structured monolithic composite part and produced part
JPS5969408A (en) Manufacture of composite carbon-carbon material
CN113651630B (en) Carbon/carbon honeycomb sandwich structure for high-temperature heat insulation and preparation method thereof
JPS59107913A (en) Manufacture of composite carbon-carbon material
JPS5969410A (en) Manufacture of composite carbon-carbon material
CN213142376U (en) Carbon-carbon composite material flat plate
JP2018537303A (en) Composite parts
GB2114055A (en) Manufacturing fibre-reinforced composites
JPH09316217A (en) Ablator material and its production
JPH08183674A (en) Production of c/c composite material
JPH04160059A (en) Production of carbon fiber reinforcing carbon composite material
US20060118232A1 (en) Process of fabricating a laminated hollow composite cylinder with an arranged ply angle
JP3969600B2 (en) C / C composite and manufacturing method thereof
JPS5969409A (en) Manufacture of composite carbon-carbon material
JPH03138886A (en) Manufacture of carbon fiber/carbon composite heating element