JPS5969103A - Separation of solvent in raffinate and/or back extraction liquid in solvent extraction method - Google Patents

Separation of solvent in raffinate and/or back extraction liquid in solvent extraction method

Info

Publication number
JPS5969103A
JPS5969103A JP17843282A JP17843282A JPS5969103A JP S5969103 A JPS5969103 A JP S5969103A JP 17843282 A JP17843282 A JP 17843282A JP 17843282 A JP17843282 A JP 17843282A JP S5969103 A JPS5969103 A JP S5969103A
Authority
JP
Japan
Prior art keywords
solvent
raffinate
extraction
ccl4
tbp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17843282A
Other languages
Japanese (ja)
Other versions
JPH0220283B2 (en
Inventor
Tadao Nagai
永井 忠雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP17843282A priority Critical patent/JPS5969103A/en
Publication of JPS5969103A publication Critical patent/JPS5969103A/en
Publication of JPH0220283B2 publication Critical patent/JPH0220283B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To recover easily solvent in a high yield by washing the raffinate after extraction of the solvent with carbon tetrachloride. CONSTITUTION:The raffinate obtd. by subjecting an aq. soln. to be treated to an extraction treatment using TBP, etc. as a solvent is washed by CCl4. The solvent-contg. CCl4 is then separated from the raffinate and is distilled under an atmospheric pressure or reduced pressure whereby the solvent and the CCl4 are fractionated. The distillation residue obtd. after removal of CCl4 is further fed to a refining stage according to need where the residue is fractionated to pure CCl4 and a pure solvent. The solvent is thus quickly and efficiently recovered.

Description

【発明の詳細な説明】 本発明は溶媒抽出法を実施したあとのラフイイ・−トお
よび/捷だけ逆抽出液からこの中に随伴する溶媒葡簡便
かつ高収率で回収するラフイイ・−トお工び/″またに
逆抽出液中の溶媒分離法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for easily and high yield recovery of rough-t and/or solvent accompanying the back-extracted solution after carrying out a solvent extraction method. The present invention also relates to a method for separating a solvent in a back-extract solution.

溶媒抽出法ケ分析化学の手法として古くから知られてい
るが、最近に工業生産技術の分野″″Cも多用されるよ
うになっている。例えば、一般金属の製錬分野や廃水処
理分野において、種々の金属イオンを含む浴液から目的
金属イオンだけ全選択的に採取するεいにこの溶媒抽出
法の適用が試みられ実効ケあげている。
Solvent extraction method has long been known as a method of analytical chemistry, but recently it has also been widely used in the field of industrial production technology. For example, in the field of general metal smelting and wastewater treatment, attempts have been made to apply this method of solvent extraction, which selectively extracts only the target metal ions from a bath solution containing various metal ions, and it has been successfully applied. .

この溶媒抽出法は、一般的に言えば、抽出剤全希釈剤に
混合した溶媒と、被処理水溶液と全接触させ、目的とす
るイオノ全溶媒中に抽出し、目的イオンが除去された抽
残液を得るものである。この抽残液aラフィネートと呼
ばれ次後工程に回わされる。目的イオンを抽出した溶媒
げ酸寸たげアルカリ、ときとして水で逆抽出し、この逆
抽出液からは金属などケ回収し、溶媒に抽出工程へ再循
環される。この間の代表的工程を第1図の右方に示しだ
。この種の溶媒抽出F用いられる抽出剤とじてに目的イ
オンに応じて種々のものが開発されているが、例示すれ
ば、TBP () !J  ブチルフォスフ−一ト)、
Versatic 1[]、 MIBK、ナフテン酸、
DEHPA 、  LIX 64、アミン類、KELE
X、  トリアルキル酸、ヒドロキヅキノリン酸、エー
テル等があげられ、希釈剤としてはケロ゛/ンなどが代
表的である。
Generally speaking, this solvent extraction method involves bringing a solvent mixed with a total extractant diluent into full contact with the aqueous solution to be treated, extracting the target ion into the total solvent, and leaving a raffinate from which target ions have been removed. It is used to obtain liquid. This raffinate is called raffinate and is sent to the next subsequent process. The target ions are extracted from the solvent, acidified, alkali, and sometimes back-extracted with water, and metals and other substances are recovered from the back-extracted liquid and recycled to the extraction process as a solvent. The typical process during this period is shown on the right side of Figure 1. Various types of extractants have been developed depending on the target ions used for this type of solvent extraction F, but an example is TBP ()! J butyl phosphate),
Versatic 1[], MIBK, naphthenic acid,
DEHPA, LIX 64, amines, KELE
X, trialkyl acid, hydroxyquinolinic acid, ether, and the like, and a typical diluent is kerosene.

この溶媒抽出法を工業的に実施する場合の問題点の1つ
に、ラフィネートへの溶媒流出に基づく溶媒ロスである
。溶媒に非常に高価であるので溶媒抽出法を適用するか
否かげ七の経済性にあると言っても過言で汀なく、この
溶媒ロスは実操業上の大きな問題である。このラフイ坏
−トへの溶媒ロスニ、溶媒がエマルジョンになって流出
するロスと、被処理水溶液に溶解して流出するロスがあ
り、両者が同時に生じることが多い。この溶媒ロスは逆
抽出に際しても逆抽出液への溶媒の流出が同様に起り、
これらは経済的損失となるばかりではなく、ラフィイ・
−トおよび/またげ逆抽出液の後処理工程が、例えば金
属の電解採取?″ある場合[iその溶媒の混入lKよっ
て電着金属の形態や純度に悪影響全与え、寸だ排水処理
である場合には排水中のBODの増加や希釈剤として使
われたケロシンなどlLJ:る油分含有量の増加を、捷
だ抽出剤がTBPなどのリン酸塩であるときにはリン含
有量を増加きせることになるので、溶媒抽出法の適用の
可否Vcも関係してぐる。
One of the problems when this solvent extraction method is carried out industrially is solvent loss due to the solvent flowing into the raffinate. Since the solvent is very expensive, it is no exaggeration to say that the cost of applying the solvent extraction method is extremely low, and this solvent loss is a major problem in actual operations. There is a loss of solvent to the rough molding, a loss of the solvent becoming an emulsion and flowing out, and a loss of the solvent dissolving in the aqueous solution to be treated and flowing out, and both often occur at the same time. This solvent loss also occurs during back extraction, as the solvent flows out into the back extraction solution.
These are not only economic losses, but also
- Is the post-processing process of the extract and/or reverse extraction liquid, for example, electrowinning of metals? In some cases, the contamination of the solvent may have a negative effect on the morphology and purity of the electrodeposited metal, and in the case of wastewater treatment, there may be an increase in BOD in the wastewater or the presence of kerosene used as a diluent. The increase in oil content is also related to the applicability of the solvent extraction method, Vc, since the phosphorus content increases when the extractant is a phosphate such as TBP.

このラフィイ・−トへの溶媒ロスについテニ、Flet
tの総説て第1表の如きデータが示されている。
About this solvent loss to Rafiito, Flet
Data as shown in Table 1 are shown as a review of t.

第1表 EXPEOTED  5OLVKNT  LO8SES
  工N  PROCESSRAFF工NATES  
(by Flett、D、S、)このデータはエマルジ
ョンを最小限に止めだ時のものであり、実稼動される工
業運転、操業の場合の溶媒ロスH%つと増大するものと
推定される。
Table 1 EXPEOTED 5OLVKNT LO8SES
ENGINEERING N PROCESSRAFF ENGINEERING NATES
(by Flett, D.S.) This data is for when the emulsion is kept to a minimum, and it is estimated that the solvent loss increases by H% in actual industrial operation.

本発明の目的は、この溶媒抽出法におけるラフイネ−1
・および/−またに逆抽出液への溶媒ロス全回避するこ
とであり、この目的において種々の実1験検討を重ねだ
結果、溶媒抽出処理音節しだラフイイ・−トおよび/ま
たは逆抽出液を四塩化炭素で洗浄(スクラビング)する
と、ラフィネートおよび/″!!たは逆抽出液中の溶媒
が簡単かつ高収率で採取できることがわかった。この場
合、溶媒がラフイイ・−!・お工び7寸たは逆抽出液中
にエマルジョン形態で存在していても寸たその水溶液に
溶解していても迅速、かつ効率よく除去できる。このよ
うな効果的除去が可能となる理由に、スクラビング段に
おいて逆抽出液(水相)と四塩化炭素(有機相)の両相
への溶媒の新たな分配を行なわせることにあり、したが
って四塩化炭素中の溶媒濃度が低い程、完全な溶媒の回
収が可能である。本発明法のざらに有利な点は、四塩化
炭素(CCl4. ) u比重が約1.6と大きくかつ
粘性も小さいので、ラフイイ・−トと極端【激しいかく
ケん機を用いて接触させ?%エマルンヨンに全くと、言
ってよいほど生成せず、シタがってラフイ坏−1・のC
Cl4エマルショア 1cよる二次汚染の心配がなく、
スクラビング段は抽出段に較べて強力なかくげん機全備
えた小型装置で十分であること、並びに水溶液と接触さ
せると下層に沈むのでミキサー・セントラ−型接触器を
使用する場合にげεキサ−を水溶液て液封(7た形で使
用でき、また、処理後の分相も簡単・迅速にできること
などが挙げられる。
The object of the present invention is to obtain Roughine-1 in this solvent extraction method.
・And/-Also, the purpose is to completely avoid solvent loss to the back-extraction solution.For this purpose, after conducting various experiments, we have found that solvent extraction processing syllable rough-height and/or back-extraction solution is completely avoided. It was found that the solvent in the raffinate and /''!! or back extract can be collected easily and in high yield by washing (scrubbing) with carbon tetrachloride. Even if the particles are present in the emulsion form in the aqueous solution or are dissolved in the aqueous solution, they can be quickly and efficiently removed.Scrubbing is the reason why such effective removal is possible. The goal is to cause new partitioning of the solvent into both the strip extract (aqueous phase) and carbon tetrachloride (organic phase) in the stage, and therefore, the lower the solvent concentration in carbon tetrachloride, the more complete the solvent is. The advantage of the method of the present invention is that the specific gravity of carbon tetrachloride (CCl4. When I contacted it with a machine, it did not form at all on the % emulsion, and I sat down and the C of 1.
There is no need to worry about secondary contamination due to Cl4 Emulshore 1c.
Compared to the extraction stage, the scrubbing stage requires a small device equipped with a powerful agitator, and since it sinks to the bottom layer when it comes into contact with an aqueous solution, when using a mixer/centrer type contactor, the It can be used in an aqueous solution and in a liquid sealed form, and phase separation after treatment can be performed easily and quickly.

ざらπ本発明法F従ってCCl4[fるラフィ、ネート
および/丑たけ逆抽出液洗浄全実施する場合にげ、その
洗浄液から純CCl4と溶媒を常圧1だは減圧下での蒸
留操作によって簡単に分別できる。
According to the method of the present invention, when carrying out all the washing with CCl4 [f Raffi, Nate and/or Ushitake back extracts], pure CCl4 and the solvent can be easily extracted from the washing liquid by distillation operation under normal pressure or reduced pressure. It can be separated into

その工程例を第1図に示した。An example of the process is shown in FIG.

第1図に示すように、溶媒抽出工程(イ)から得られた
ラフィネート(ロ)にCCl4(ハ)に裏って本発明の
溶媒回収工程(ニ)で洗浄処理され、随伴溶媒が分離さ
れたラフイ坏−ト(ホ)を得、これ汀後処理工程(へ)
vc送られる。一方、溶媒回収工程(ニ)金繰てラフイ
イ・−ト(ホ)から分相採取された含溶媒CC14(ト
)は、含溶媒量が少ない場合はこれ?その11溶媒回収
工程(ニ)に循環使用するか寸だけその1部孕CCl4
(ハ)に混合して再使用できる。
As shown in Figure 1, the raffinate (b) obtained from the solvent extraction step (a) is washed with CCl4 (c) in the solvent recovery step (d) of the present invention to separate the accompanying solvent. Obtain the raw material (e), and then proceed to the post-soil treatment process (e)
vc sent. On the other hand, if the solvent-containing CC14 (g) collected from the solvent recovery process (d) is separated into phases from the gold-finishing rough pipe (e), the amount of solvent contained is small. Part 11: A small portion of CCl4 is used for recycling in the solvent recovery step (d).
Can be reused by mixing with (c).

含溶媒0014(ト)から溶媒とcC!14’iCl採
取する場合、これを蒸留工程(チ)に送り、常圧寸たに
減圧下て蒸留処理してその留分として純COI、 (1
月を、残油として蒸留残分(ヌ)を得る。CCl4の沸
点ぼ76Cであるので、この蒸留処理はたとえば100
C近傍の湯煎加熱で行ない、減圧下の場合[100mm
Hg程度の減圧下で同様に加熱して実施するとよい。純
CCl4に溶媒回収工程(二〕に再循環し、蒸留残分(
ヌ)から純溶媒を回収する場合に、ざらに蒸留処理など
(たとえば減圧下1.Cり高温での蒸留処理)による再
精工程(ル)に送り、純CCl4(オ)と純溶媒(ワ)
を得る。純CC14(第2げ溶媒回収工程(ニ)に、ま
た純溶媒(ワ)げ溶媒抽出工程(イ)VC送り再利用す
れば、全体としてクローズドサイクルで溶媒並び[CC
l4の循環利用ができる。
From solvent-containing 0014 (g) to solvent and cC! When collecting 14'iCl, it is sent to the distillation process (H) and distilled under normal pressure or reduced pressure to obtain pure COI as a fraction.
The distillation residue (nu) is obtained as residual oil. Since the boiling point of CCl4 is approximately 76C, this distillation process requires, for example, 100C.
When heating in a water bath near C, under reduced pressure [100mm
It is preferable to carry out heating in the same manner under a reduced pressure of about Hg. The pure CCl4 is recycled to the solvent recovery step (2) and the distillation residue (
When recovering the pure solvent from the water, it is sent to a repurification process (e.g. distillation at a high temperature under reduced pressure) to collect pure CCl4(o) and the pure solvent (water). )
get. If pure CC14 (2nd solvent recovery step (d) and pure solvent (wa) solvent extraction step (a) VC feed is reused, the solvent is lined up in a closed cycle as a whole [CC
14 can be reused.

以下に本発明法の代表的実施例を挙げ、本発明法の効果
全具体的に示す。
Typical examples of the method of the present invention are listed below to specifically illustrate all the effects of the method of the present invention.

実施例1 本実施例は、第2図に示すように、銅電解の電解液(硫
酸酸性水溶液〕をTBPIC,J:る溶媒抽出処理して
電解液中のヒ酸全亜砒酸として回収するヒ素除去法F本
発明法金適用した例を示す。第2図の溶媒抽出工程(A
)’を経たラフィネート(B)中1?]−1通常数10
〜数i o o mg7i:のTBPがエマルジョンお
工び/またに溶解分として混入している。
Example 1 As shown in Fig. 2, this example is about arsenic removal in which the electrolyte solution (sulfuric acid acidic aqueous solution) of copper electrolysis is subjected to solvent extraction treatment using TBPIC, J: to recover arsenic acid and total arsenite in the electrolyte solution. Method F An example in which the method of the present invention is applied is shown.The solvent extraction step (A
)' Raffinate (B) middle 1? ]-1 normal number 10
~ several i o o mg7i: of TBP is mixed into the emulsion as a dissolved component.

(i)  CCl4スクラビング工程(C)の実施例T
BP f 35.2 ppm含むラフィネート(B) 
k、TBP?容積でO係、1係、6係、10係の割合で
含むC0l4(D) vClそれぞれ1:1の容量比で
常温でスクラビングした。分相後、電解液(ラフイネ−
1−(E) )と洗浄液CF)と全分取し、その電解液
(ラフイイ;−1(E))中のTBP濃度1c−Hボン
ドの赤外吸収法によって測定し、第2表の結果を得だ。
(i) Example T of CCl4 scrubbing step (C)
Raffinate (B) containing BP f 35.2 ppm
k, TBP? Scrubbing was performed at room temperature with a volume ratio of 1:1 of C0l4(D) vCl containing 0 parts, 1 parts, 6 parts, and 10 parts by volume. After phase separation, electrolyte solution (rough
1-(E)) and cleaning solution CF) were collected, and the TBP concentration in the electrolyte solution (rough-1(E)) was measured by the infrared absorption method of 1c-H bond, and the results are shown in Table 2. I got it.

第2表の結果から、TBP 35.2 ppm含有する
ラフィネート(B)汀、本発明法による0CI4スクラ
ビング工程(Hvcよって、TBPの実質止金てか除去
されたラフィネート(E)が得られ、これを電解工場に
再循環してもTBPによる電解液の汚染が回避できるこ
とがわかる。
From the results in Table 2, a raffinate (B) containing 35.2 ppm of TBP was obtained, and a raffinate (E) from which the TBP was substantially removed by the 0CI4 scrubbing process (Hvc) according to the method of the present invention was obtained. It can be seen that contamination of the electrolyte by TBP can be avoided even if it is recirculated to the electrolysis factory.

(ii)洗浄液(F)の蒸留工程((lの実施例(−f
:の−)洗浄、夜(F)にTBP i含有したCCl4
であるが、こノLからCCl4’1 の常圧蒸留法を実施した。試験に、TBP金10チ含有
する0CI4と、TBP ’i 20チ含有するClC
14を、それぞれiooml採り、これを沸騰水にフラ
スコ球部を浸して常圧蒸留した。これvcより、純OC
I。
(ii) Distillation step of cleaning liquid (F) (Example of (l) (-f
:-) Washing, CCl4 containing TBP i at night (F)
However, the atmospheric pressure distillation method of CCl4'1 was carried out from this L. The test included 0CI4 containing 10g of TBP'i and ClC containing 20g of TBP'i.
Iooml of each of No. 14 was taken, and the flask bulb was immersed in boiling water and distilled under atmospheric pressure. From this vc, pure OC
I.

の留分が得られたが、その蒸留速度を第6図に示した。A fraction was obtained, and its distillation rate is shown in FIG.

第6図vcに、コンデンザー人口寸で熱水コイルで加温
した場合も併せて示したが、これにより蒸留速度に著し
く改善されることがわかる。得られた留分(H)に純C
CIうであるのでスクラビング工程(C) <再使用で
きる。一方、残油(1) HCCl3とTBPの約1:
1混合物であった。
FIG. 6vc also shows the case of heating with a hot water coil in a condenser, and it can be seen that the distillation rate is significantly improved by this. The obtained fraction (H) contains pure C
Because it is CI, the scrubbing process (C) can be reused. On the other hand, residual oil (1) approximately 1 of HCCl3 and TBP:
1 mixture.

(iiil洗浄1ffl (F)の蒸留工程(G)の実
施例(その二)蒸留部ケ沸騰水で加熱し、コンデンサ一
部を水道水で冷却した連続蒸留装置を使用してTBPl
[1% v、含むCC!14(F) f 10[] 7
171(Hgの減圧下で蒸留した。その結果を第3表に
示した。
(iii) Cleaning 1ffl Example (Part 2) of the distillation step (G) of (F) The distillation section was heated with boiling water and a part of the condenser was cooled with tap water.
[1% v, including CC! 14(F) f 10[] 7
171 (distilled under reduced pressure of Hg). The results are shown in Table 3.

第3表の結果から明らかなように、減圧蒸留ケくり返し
行なうと、残油げ実質よTBPからなり、洗浄液(F)
 1−1:純CCl4ノ留分(H)、(K)が得られ、
再精工程(J)IFJ:るTBP (L)の回収ができ
る。
As is clear from the results in Table 3, when vacuum distillation is repeated, the residual oil consists essentially of TBP, and the cleaning fluid (F)
1-1: Pure CCl4 fractions (H) and (K) were obtained,
Re-refining process (J) IFJ: TBP (L) can be recovered.

(IV)逆抽出液のCCl4によるスクラビングの実施
例銅亜解液を蒸発濃縮して硫酸銅を回収したときの結晶
母液(612,31のヒ素を含有する。この結晶母液を
75 % TBP −25%ケロンンを中いて溶媒抽出
処理し、ヒ素25グ/lの逆抽出液?得た。液中のヒ酸
を硫化ヒ素で還元した後、凍結融解処理(N)すると、
僅かに黄砂色を帯びた亜ヒ酸結晶が回収されたが、凍結
融解処理の前l/i:CC1,スラビング工程(M) 
’r導入することにより純白色の亜ヒ酸結晶が回収され
た。
(IV) Example of scrubbing of back extract with CCl4 Crystal mother liquor (contains 612,31 arsenic) when copper sulfate is recovered by evaporation concentration of copper sublime solution.This crystal mother liquor is 75% TBP-25 % Keronn and solvent extraction treatment to obtain a back-extracted solution containing 25 g/l of arsenic.After reducing the arsenic acid in the solution with arsenic sulfide, a freeze-thaw treatment (N) was performed.
Slightly yellow sand-colored arsenite crystals were recovered, but before freeze-thaw treatment L/i: CC1, slabbing step (M)
By introducing 'r, pure white arsenite crystals were recovered.

実施例2 本実施例に、亜鉛浸出残渣中に含有されるGa、■nの
回収工程において、Versatic 10による溶媒
抽出処理したさいのラフィネートに本発明法ケ適用した
例金示す。亜鉛浸出残渣’(T7 So、、と硫酸で加
圧浸出し、この浸出液を炭酸カルシウムで中和して石膏
を生成させると、この中[Ga、工nに水酸化物として
濃縮されてぐる。この石膏中からVereatic 1
0の溶媒抽出てGa、工nの同時抽出を行ない、これエ
リGa f IPE (イソプロピルエーテル)で、寸
た工nをTBPで分離回収できる。このGa1 工n回
収法において、Versatic 10 Eよる溶媒抽
出時のラフィネート中に約200 ppm程度の溶媒が
混入する。本例にこの溶媒回収を目的としで実施したも
のである。
Example 2 This example shows an example in which the method of the present invention was applied to raffinate that had been subjected to solvent extraction treatment with Versatic 10 in the recovery process of Ga and n contained in the zinc leaching residue. The zinc leaching residue (T7 So) is leached under pressure with sulfuric acid, and this leachate is neutralized with calcium carbonate to produce gypsum, which is concentrated in the form of hydroxide. Vereatic 1 from this plaster
By solvent extraction of 0, Ga and n are simultaneously extracted, and Ga f IPE (isopropyl ether) can be used to separate and recover Ga f and n can be separated and recovered with TBP. In this Ga1n recovery method, about 200 ppm of solvent is mixed into the raffinate during solvent extraction with Versatic 10E. This example was carried out for the purpose of recovering this solvent.

試験に、Versatic 10 f 254 ppm
含むラフイ坏−ト(pH3,0)’を採り、これ’z 
Versatic 10?1%、5係、10係含むCC
l4にそれぞれ1:1の容量比で常温でスクラビングし
、分相後、ラフイイ・−ト中のVersatic 10
の濃度ゲタロマトク゛ラフイーで定量分析した。その結
果を第4表に示した。
For testing, Versatic 10 f 254 ppm
Take the rough fibre (pH 3,0) containing 'z
Versatic 10? CC including 1%, 5th section, 10th section
Versatic 10 in rough
The concentration was quantitatively analyzed by Getaromatochography. The results are shown in Table 4.

第4表の結果エリ明らかな工うに、VersatiCl
o ’z 254 ppm含むラフイ不一トケ、その実
質止金てが分散除去されることがわかる。このスクラビ
ング処理後の洗浄液に、前記実施例1と同様に蒸留処理
して純ccl、と高濃度のVersatic 10 f
回収できる。
As shown in Table 4, it is clear that VersatiCl
It can be seen that the rough particles containing 254 ppm of o'z were substantially dispersed and removed. After this scrubbing, the cleaning solution was distilled in the same manner as in Example 1 to add pure CCL and a high concentration of Versatic 10F.
It can be recovered.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明法の一般的適用例を示す工程図、第2図
に本発明性金銅電解液の溶媒抽出ラフィネートニ適用し
た例を示す工程図、第6図は含溶媒C!014’i常圧
蒸留した場合の生成留分(0014)の生底速度図であ
る。 出2(組人 永井忠雄 手続補正書(自発)6゜ 昭和58礪月14日      (1)特許庁長官  
若杉和夫 殿 (1) 1、事件の表示 昭和57年 特 許 願第1784.32  号   
 (2)3、 補正をする者 事件との関係 特許出願人 (4] (2゜ 4、 代  理  人  〒162 (1)明細書の発明の詳細な説明の欄 補正の内容 発明の詳細な説明を下記のとおシ補正します。 記 明細書10頁1行の「(B)は、」を「(B)から、」
に補正します。 明細書11頁の第3表中1段目の「残留(1)」を「残
油(1)」に補正します。 明細書11頁下から6行の「銅電解液」を「銅電解液」
に補正します。 1 明細書15頁下から5行の「分散除去」を「分離除
去」に補正します。 ) 図面の簡単な説明を下記のとおり補正します。 記 ) 明細書14頁6行の1−ccl、を」を1m CC
l4100 mAを」に補正します。
Fig. 1 is a process diagram showing a general application example of the method of the present invention, Fig. 2 is a process diagram showing an example of applying the solvent extraction raffinate of the gold copper electrolyte of the present invention, and Fig. 6 is a process diagram showing an example of applying the method of the present invention to solvent extraction raffinate. 014'i is a raw bottom velocity diagram of the produced fraction (0014) when distilled at atmospheric pressure. Issue 2 (Kuminto Tadao Nagai Procedural Amendment (Voluntary) 6゜14th month of 1982 (1) Commissioner of the Japan Patent Office
Kazuo Wakasugi (1) 1. Indication of the incident 1982 Patent Application No. 1784.32
(2) 3. Relationship with the case of the person making the amendment Patent applicant (4) (2゜4, Agent 〒162 (1) Column for detailed explanation of the invention in the specification Contents of the amendment Detailed explanation of the invention will be corrected as follows. In the first line of page 10 of the statement, "(B) is" will be replaced with "(B),"
will be corrected. Correct "Residual (1)" in the first row of Table 3 on page 11 of the specification to "Residual oil (1)". "Copper electrolyte" in the 6th line from the bottom of page 11 of the specification is "copper electrolyte"
will be corrected. 1 Correct "dispersion removal" in the 5th line from the bottom of page 15 of the specification to "separation removal". ) The brief description of the drawing has been corrected as follows. 1m CC of 1-ccl on page 14, line 6 of the specification
Correct 14100 mA to .

Claims (4)

【特許請求の範囲】[Claims] (1)を容媒抽出法を実施したあとのラフイイ・−トお
よび/またに逆抽出液?四塩化炭素で洗浄することから
なるラフイ坏−トおよび/またa逆抽出液中の溶媒分離
法。
(1) Rough-fit and/or back-extracted liquid after carrying out the vehicle extraction method? 1. A method for separating solvents in rough tissue and/or a back extract comprising washing with carbon tetrachloride.
(2)溶媒抽出法に溶媒としてTBPを用いた抽出法で
ある特許請求の範囲第1項記載のラフイイ・−トおよび
/またけ逆抽出液中の溶媒分離法。
(2) A method for separating a solvent in a rough extract and/or back extract according to claim 1, which is an extraction method using TBP as a solvent.
(3)溶媒抽出en溶媒としてversat’ic 1
0 ?用いた抽出法である特許請求の範囲第1項記載の
ラフィネートお工び/または逆抽出液中の溶媒分離法。
(3) Versat'ic 1 as solvent extraction en solvent
0? The extraction method used is a method for separating a solvent in a raffinate process/or back extraction solution according to claim 1.
(4)溶媒抽出法全実施したあとのラフィネートお工び
/またげ逆抽出液ケ四塩化炭素で洗浄し、この洗浄処理
によって得られる溶媒含有四塩化炭素を常圧またげ減圧
下で蒸留して溶媒と四塩化炭素ケ分取し、繰返し利用す
ることからなるラフィネートおよび/またげ逆抽出液中
の溶媒分離′FP:、。
(4) After carrying out all the solvent extraction methods, the raffinate is washed with carbon tetrachloride, and the solvent-containing carbon tetrachloride obtained by this washing process is distilled under normal pressure and reduced pressure. FP: Solvent separation in raffinate and/or reverse extract, which consists of separating the solvent and carbon tetrachloride and using it repeatedly.
JP17843282A 1982-10-13 1982-10-13 Separation of solvent in raffinate and/or back extraction liquid in solvent extraction method Granted JPS5969103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17843282A JPS5969103A (en) 1982-10-13 1982-10-13 Separation of solvent in raffinate and/or back extraction liquid in solvent extraction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17843282A JPS5969103A (en) 1982-10-13 1982-10-13 Separation of solvent in raffinate and/or back extraction liquid in solvent extraction method

Publications (2)

Publication Number Publication Date
JPS5969103A true JPS5969103A (en) 1984-04-19
JPH0220283B2 JPH0220283B2 (en) 1990-05-08

Family

ID=16048403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17843282A Granted JPS5969103A (en) 1982-10-13 1982-10-13 Separation of solvent in raffinate and/or back extraction liquid in solvent extraction method

Country Status (1)

Country Link
JP (1) JPS5969103A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5690137A (en) * 1995-08-11 1997-11-25 Kitamura Machinery Co., Ltd. Spindle device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5690137A (en) * 1995-08-11 1997-11-25 Kitamura Machinery Co., Ltd. Spindle device

Also Published As

Publication number Publication date
JPH0220283B2 (en) 1990-05-08

Similar Documents

Publication Publication Date Title
US5015447A (en) Recovery of rare earth elements from sulphurous acid solution by solvent extraction
US4401531A (en) Process for the production of electrolytic zinc or high purity zinc salts from secondary zinc raw-materials
CN108070720B (en) A kind of comprehensive recovering process of tin removal waste liquor
EA200000222A1 (en) METHOD OF EXTRACTION OF COPPER FROM SULPHIDE COPPER OR CONCENTRATE
JP3085549B2 (en) Recovery method of hydrochloric acid and copper sulfate from copper chloride waste liquid
US2962372A (en) Columbium and tantalum separation
EP0263539B1 (en) Process for treating zinc hydrometallurgy residues
US3709680A (en) Process for removal of arsenic from sulfo-ore
US3180812A (en) Process for the manufacture of indium of high purity
US4511541A (en) Process for the recovery of cadmium and other metals from solution
CA1139954A (en) Purification of wet process phosphoric acid as a pretreatment step in the recovery of uranium
NO821745L (en) PROCEDURE FOR AA REMOVING URANE FROM AN ORGANIC EXTRACTOR.
WO2016209178A1 (en) Recovering scandium and derivatives thereof from a leach solution loaded with metals obtained as a result of leaching lateritic ores comprising nickel, cobalt and scandium, and secondary sources comprising scandium
RU2576562C1 (en) Method for columbite concentrate processing
US4261959A (en) Process for extracting ferric iron from an aqueous solution
US6423238B2 (en) Method for separating entrained aqueous from loaded organic in an SX process
JPS5969103A (en) Separation of solvent in raffinate and/or back extraction liquid in solvent extraction method
Fletcher et al. Combining sulfate electrowinning with chloride leaching
Balesini et al. Solvent extraction of zinc from acidic solution obtained from cold purification filter cake of angouran mine concentrate using D2EHPA
US3573182A (en) Process for separating zinc and copper
CN106892479A (en) A kind of method that oxalic acid and hydrochloric acid are reclaimed in the waste water from rare earth oxalate precipitate
WO2022099366A1 (en) Process for separating hafnium and zirconium
RU2571763C1 (en) Method of extracting beryllium by ion exchange
US3514266A (en) Separation of aluminum,calcium,and magnesium from the alkali metals by solvent extraction
JP6989815B2 (en) Methods and systems for reducing impurity metals from refining electrolytes