JPS5968560A - Fuel injection nozzle - Google Patents

Fuel injection nozzle

Info

Publication number
JPS5968560A
JPS5968560A JP17808282A JP17808282A JPS5968560A JP S5968560 A JPS5968560 A JP S5968560A JP 17808282 A JP17808282 A JP 17808282A JP 17808282 A JP17808282 A JP 17808282A JP S5968560 A JPS5968560 A JP S5968560A
Authority
JP
Japan
Prior art keywords
control member
needle
cam surface
control component
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17808282A
Other languages
Japanese (ja)
Inventor
Masatoshi Kuroyanagi
正利 黒柳
Masahiko Suzuki
昌彦 鈴木
Yasuhiro Horiuchi
康弘 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP17808282A priority Critical patent/JPS5968560A/en
Publication of JPS5968560A publication Critical patent/JPS5968560A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/161Means for adjusting injection-valve lift

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

PURPOSE:To contrive purification of exhaust gas and a reduction of a noise along with an improvement in fuel consumption efficiency, by controlling the maximum needle lift of a nozzle for changing fuel injection pressure arbitrarily according to a running condition of an internal combustion engine. CONSTITUTION:Guides 5 and 6 are fitted slidably over an external circumferential part 2c of a first control component 2 and two flat surface parts 2b for control of turning of a control rod 2 respectively. An external circumferential part 3b of a second control component 3 and an external circumferential part 3c of the second control component 3 are fitted slidably in the guide 5 and a cap 4 respectively. Force fit of a gear 24 over the second component 3 has been made and the bottom part of the second control component 3 and the top of the first component 2 are provided with a cam surfaces 3a and 2a of identical shape. The maximum lift of a needle 1 is controlled by adjusting a distance between surface 2a of the first control component 2 and the cam surface 3a of the second control component 3 by turning the first control component 2 and the second control component 3 relatively.

Description

【発明の詳細な説明】 本発明は内燃機関用燃料噴射ノズルに関するもので、特
にはノズルニードルのリフト量を機関状態に応じ可変制
御する燃料噴射ノズルに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel injection nozzle for an internal combustion engine, and more particularly to a fuel injection nozzle that variably controls the lift amount of a nozzle needle depending on the engine condition.

従来、噴霧特性に大きく影響を及ぼず噴射圧力を内燃機
関の運転状態に応じて広範囲にわたって制御する方法は
殆ど提案されていない。噴霧特性を制御することは、間
接的に燃焼を制御することを意味するので、噴霧状態に
よって性能が大きく変化するディーゼルエンジン、特に
直接噴射式ディーゼルエンジンにおいては噴霧特性つま
り噴射圧力の制御に関して強い要望があった。
Hitherto, almost no method has been proposed for controlling injection pressure over a wide range according to the operating state of an internal combustion engine without significantly affecting the spray characteristics. Controlling the spray characteristics means indirectly controlling combustion, so there is a strong desire to control the spray characteristics, that is, the injection pressure, in diesel engines whose performance changes greatly depending on the spray conditions, especially direct injection diesel engines. was there.

本発明は、燃料噴射圧力を変えるためにノズルの最大ニ
ードルリフl−量を内燃機関の運転条件に応じて任意に
制御することを目的とする。
An object of the present invention is to arbitrarily control the maximum needle reflux l-amount of a nozzle in accordance with the operating conditions of an internal combustion engine in order to change the fuel injection pressure.

以下本発明を実施例に基づいて説明する。The present invention will be explained below based on examples.

第1図ないし第6図は本発明の第1実施例に関するもの
であり、第1図は第1実施例の縦断面図(第2図のB−
B断面図)、第2図は第1図のA−A断面図、第3図お
よび第4図は構成部品の斜視図、第5図および第6図は
性能を表わす特性図を各々示している。
1 to 6 relate to the first embodiment of the present invention, and FIG. 1 is a longitudinal cross-sectional view of the first embodiment (B--B in FIG. 2).
Figure 2 is a cross-sectional view taken along the line A-A in Figure 1, Figures 3 and 4 are perspective views of the components, and Figures 5 and 6 are characteristic diagrams showing performance. There is.

第1実施例の構造を第1図ないし第4図を参照しながら
説明すると、ノズル本体8内にて軸線方向にニードル1
が往復可能に設けられる。12はホルダボデーで、リテ
ーニングナツト11のねじ部にねじ込まれ、ノズル本体
8をはさんで締め上げている。ニードル付勢スプリング
1oは第1制御部材2に当接していて、連結棒9を介し
てニードル1の頂部を燃料圧力によるニードル1の開弁
付勢力に抗して閉弁方向(図の下方)に付勢する働きを
している。ホルダボデー12には、噴射燃料を供給する
ための燃料孔12aと漏洩燃料の通過を許容する漏洩孔
12bが穿設されている。
The structure of the first embodiment will be explained with reference to FIGS. 1 to 4. In the nozzle body 8, the needle 1 is
is provided so that it can be reciprocated. A holder body 12 is screwed into the threaded portion of the retaining nut 11, and is tightened by sandwiching the nozzle body 8 therebetween. The needle biasing spring 1o is in contact with the first control member 2, and moves the top of the needle 1 via the connecting rod 9 in the valve closing direction (lower part of the figure) against the valve opening biasing force of the needle 1 due to fuel pressure. It functions to give an impetus to The holder body 12 is provided with a fuel hole 12a for supplying injected fuel and a leak hole 12b for allowing leakage fuel to pass through.

ガイド5は第1制御部材2の外周部2cに、ガイド6は
制御棒2の2面の回動規制用の平面部2bにそれぞれ摺
動自在に嵌合してあり、ガイド5及びガイド6はキャッ
プ4とホルダボデー12とではさまれ、ボルト17で締
め上げられることによって固定されている。
The guide 5 and the guide 6 are slidably fitted to the outer circumferential portion 2c of the first control member 2, and the guide 6 is fitted to the flat surface portion 2b for controlling rotation on two sides of the control rod 2, respectively. It is sandwiched between the cap 4 and the holder body 12, and is fixed by being tightened with a bolt 17.

第2制御部材3の外周部3bとガイド5及び第2制御部
材3の外周部3cとキャップ4はおのおの回動自在に嵌
合しており、回動抵抗を小さくするために第2制御部材
3の上端部とキャップ4の間にはわずかのクリアランス
が設けである。また、第2制御部材3にはギヤ24が圧
入してあり、第2制御部材3の下端部及び第1制御部材
2の上端部には同形状のカム面3a及び2aを有する。
The outer circumferential portion 3b of the second control member 3 and the guide 5 and the outer circumferential portion 3c of the second control member 3 and the cap 4 are respectively fitted to be rotatable, and in order to reduce rotational resistance, the second control member 3 A slight clearance is provided between the upper end of the cap 4 and the cap 4. A gear 24 is press-fitted into the second control member 3, and the lower end of the second control member 3 and the upper end of the first control member 2 have cam surfaces 3a and 2a of the same shape.

また、キャップ4には油圧ピストン15が油密的に摺動
自在に嵌合してあり、油圧ピストン15はスプリング1
6によって図の左方向に付勢される。また、油圧ピスト
ン15はラックギヤ15aを有し、油圧ピストン15が
左右に作動すれば、ギヤ24を介して第2制御部材3を
回動させる。
Further, a hydraulic piston 15 is slidably fitted into the cap 4 in an oil-tight manner, and the hydraulic piston 15 is fitted with a spring 1.
6 to the left in the figure. Further, the hydraulic piston 15 has a rack gear 15a, and when the hydraulic piston 15 moves left and right, the second control member 3 is rotated via the gear 24.

また18は油圧室14に制御圧力P1の流体の通過を許
す油圧孔である。
Reference numeral 18 denotes a hydraulic hole that allows passage of fluid at the control pressure P1 into the hydraulic chamber 14.

作動を説明するに先立ってノズルニードル1のリフト量
を制御する理由を述べる。一般のスロットルノズル、ビ
ントルノズル等は第7図に示すように、ニードルリフ)
tLを増大すればするほど流量計数μとノズル断面積F
との積で表わされる有効ノズル面積μFは増大し、ニー
ドルのストッパ位置Lmaxにて上限が決められる。
Before explaining the operation, the reason for controlling the lift amount of the nozzle needle 1 will be described. General throttle nozzles, bottle nozzles, etc. are needle riffs, as shown in Figure 7.
As tL increases, the flow rate coefficient μ and nozzle cross-sectional area F
The effective nozzle area μF, expressed as the product of , increases, and the upper limit is determined by the needle stopper position Lmax.

周知のごとくポンプが低速回転の時にはポンプからノズ
ルへの送油率が低い為に圧力上昇はおさえられノズルの
噴射圧Poは低くなる。ノズル噴射圧力が低いと、噴霧
粒径は大きくなり、貫徹力が弱くなる・為、燃焼には悪
影響を及ぼす。
As is well known, when the pump rotates at a low speed, the oil delivery rate from the pump to the nozzle is low, so the pressure rise is suppressed and the injection pressure Po of the nozzle becomes low. When the nozzle injection pressure is low, the spray droplet size becomes large and the penetration force becomes weak, which has a negative effect on combustion.

低速回転時にノズルニードルリフト量の最大値L m 
a xを小さくすることにより、第7図かられかる様に
有効ノズル面積の最大値μFmaxもまた小さくなる。
Maximum value of nozzle needle lift amount L m at low speed rotation
By reducing ax, the maximum value μFmax of the effective nozzle area also becomes smaller, as shown in FIG.

μFを小さくすることは流出口をしぼることに相当す゛
る。
Reducing μF is equivalent to narrowing the outlet.

ポンプ回転数が一定であればポンプの送油率は変化しな
い。配管内に流入する燃料が一定の場合には流出口をし
ぼることにより管内圧力は上昇するため、噴射圧力po
は上昇する。
If the pump rotation speed is constant, the pump oil delivery rate does not change. When the amount of fuel flowing into the pipe is constant, the pressure inside the pipe increases by squeezing the outlet, so the injection pressure
will rise.

POが大となると配管内の油の体積弾性率等の影響で、
配管内への燃料流入量の一部が配管の膨張および燃料の
密度上昇にとられ、その為燃料噴射量Qは多少減少する
が、Qの減少分を図示しないポンプのアクセルレバ−で
補充することにより、同−噴射量で噴射期間を延ばすこ
とができる。
When PO becomes large, due to the influence of the bulk modulus of oil in the pipe, etc.
A part of the amount of fuel flowing into the pipe is taken up by the expansion of the pipe and the increase in fuel density, so the fuel injection amount Q decreases somewhat, but the decreased amount of Q is replenished by the accelerator lever of the pump (not shown). By doing so, the injection period can be extended with the same injection amount.

低速回転域で噴射期間を延ばすことは燃費の向上、騒音
低減の効果をもたらす。
Extending the injection period in the low speed range improves fuel efficiency and reduces noise.

従って、ノズルニードルリフト量を制御することにより
噴霧粒径、貫徹力、噴射期間の影響による燃焼改善、ま
た騒音低減等が機関性能の向上を達成できることとなる
Therefore, by controlling the nozzle needle lift amount, engine performance can be improved by improving combustion through the influence of spray particle size, penetration force, and injection period, as well as reducing noise.

次に、作動を第1図ないし第6図により説明する。Next, the operation will be explained with reference to FIGS. 1 to 6.

図示しない燃料噴射ポンプより圧送された高圧燃料は、
図示しない噴射ポンプを通過し、燃料孔12aを通過し
た後ノズルニードル1を図の上方すなわち開弁方向に付
勢する。
High-pressure fuel is pumped by a fuel injection pump (not shown).
After passing through an injection pump (not shown) and a fuel hole 12a, the nozzle needle 1 is urged upward in the figure, that is, in the valve opening direction.

燃料圧POが下方に付勢しているスプリング10のセン
ト荷重に対応するセント圧に達すると、ニードル1、連
結棒9、第1制御部材2は上方へ持ち上げられ1.ノズ
ル本体8の先端に設けられた燃料噴射孔8aより燃料は
燃焼室に噴射される。
When the fuel pressure PO reaches a cent pressure corresponding to the cent load of the spring 10 urging downward, the needle 1, the connecting rod 9, and the first control member 2 are lifted upward. Fuel is injected into the combustion chamber from a fuel injection hole 8a provided at the tip of the nozzle body 8.

・燃料圧が開弁圧に比べさほど大きくない時には、ノズ
ル1のリフトiは燃料圧による上方への付勢力とスプリ
ングlOによる下方への付勢力が釣り合った位置で停止
するが、さらに燃料圧が上昇し、ニードル1が持ち上げ
られた場合、第1制御部材2はさらに上昇し、カム面2
aがついには第2制御部材3のカム面3aに接触する。
・When the fuel pressure is not much larger than the valve opening pressure, the lift i of the nozzle 1 stops at a position where the upward biasing force due to the fuel pressure and the downward biasing force due to the spring IO are balanced, but when the fuel pressure further increases When the needle 1 is raised, the first control member 2 is further raised and the cam surface 2
a finally comes into contact with the cam surface 3a of the second control member 3.

第1制御部材2の上方移動はこの対向するカム面2aと
カム面3aとが互いに接触する中心軸方向の位置で規制
され、ここまでのニードル1のリフト量が最大リフト量
となる。
The upward movement of the first control member 2 is restricted at the position in the central axis direction where the opposing cam surfaces 2a and 3a come into contact with each other, and the amount of lift of the needle 1 up to this point becomes the maximum amount of lift.

次に燃料圧poが降下し、燃料圧によるニードル1の上
方への付勢力が低下すると、連結棒9、ニードル1と共
に第1制御部材2は降下しはしめ、さらに燃料圧poが
低下してゆくとついにはノズルニードル1が最下点まで
降下し、ノズル本体8の先端の燃料噴射孔8aを塞ぐこ
とにより噴射が終了する。
Next, when the fuel pressure po decreases and the upward biasing force of the needle 1 due to the fuel pressure decreases, the first control member 2 begins to descend together with the connecting rod 9 and the needle 1, and the fuel pressure po further decreases. Finally, the nozzle needle 1 descends to the lowest point and closes the fuel injection hole 8a at the tip of the nozzle body 8, thereby completing the injection.

以上の噴射行程が繰り返されるなかで、図示しない圧力
制御装置にて圧力制御されたキャップ4の左端へ供給さ
れる流体の制御油圧P1を上昇させた場合、圧力室14
内の流体圧P1による油圧ピストン15への右方向への
付勢力が増大し、油圧ピストン15は圧力室14内の流
体圧による図中右方向への付勢力と、スプリング16に
よる図中左方向への付勢力の釣り合う位置まで右方にス
ライドする。この時、ラックギヤ15aは、ギヤ24を
介して第2制御部材3を第1図の上から見て時計回転方
向に回動させる。
While the above injection stroke is repeated, when the control oil pressure P1 of the fluid supplied to the left end of the cap 4 whose pressure is controlled by a pressure control device (not shown) is increased, the pressure chamber 14
The force applied to the hydraulic piston 15 in the right direction due to the fluid pressure P1 within the pressure chamber 14 increases, and the hydraulic piston 15 is biased in the right direction in the figure due to the fluid pressure in the pressure chamber 14 and to the left in the figure due to the spring 16. Slide to the right until the biasing force is balanced. At this time, the rack gear 15a rotates the second control member 3 via the gear 24 in the clockwise direction when viewed from above in FIG.

第2制御部材3が回動すれば、カム面3aが回動し、カ
ム面3aとカム面2aの垂直方向のニードル1が最下点
位置にある時の垂直方向に移動可能な最短距離がカム面
のカム形状により変化する。
When the second control member 3 rotates, the cam surface 3a rotates, and the shortest distance that the needle 1 can move in the vertical direction between the cam surfaces 3a and 2a when it is at the lowest point position is It changes depending on the cam shape of the cam surface.

なお、この最短距離はニードル最大リフトLmaXに相
当するものであり、このカム面3aとカム面2aの垂直
方向のニードル1の最下点時の最短距離が小さくなれば
、第1制御部材の許容移動量は小さくなり、ニードルI
の最大リフトiLmaXは小さくなる。この第2制御部
材3の回転角θとニードルの最大リフト量Lmaxとの
関係を図示すると第5図のようになる。
Note that this shortest distance corresponds to the needle maximum lift LmaX, and if the shortest distance at the lowest point of the needle 1 in the vertical direction between the cam surface 3a and the cam surface 2a becomes smaller, the tolerance of the first control member The amount of movement becomes smaller, and the needle I
The maximum lift iLmaX becomes smaller. The relationship between the rotation angle θ of the second control member 3 and the maximum lift amount Lmax of the needle is illustrated in FIG. 5.

第7図よりLmaxが小さくなると最大有効ノズル面積
μF m a xも小さくなり、その絞り効果で燃料入
口の燃料圧po、つまり燃料噴射圧力は増大する。逆に
制御圧力P1を小さくすると、Lmaxは大きくなり、
μFmaxも大きくなるので燃料噴射圧力は減少する。
As shown in FIG. 7, when Lmax becomes smaller, the maximum effective nozzle area μF max also becomes smaller, and due to the throttling effect, the fuel pressure po at the fuel inlet, that is, the fuel injection pressure increases. Conversely, when the control pressure P1 is decreased, Lmax increases,
Since μFmax also increases, the fuel injection pressure decreases.

この関係を時間経過につれての燃料噴射圧力のイ 変化について示すと第6図のようになり、第2制御部材
3の回転角θを調整することにより燃料噴射圧力を変化
させることができることがよくゎがる。
This relationship is shown in Fig. 6 with respect to the change in fuel injection pressure over time, and it is often possible to change the fuel injection pressure by adjusting the rotation angle θ of the second control member 3. Garu.

なお、第1制御部材2と第2制御部材3の各々のカム面
2a、3aが接触した場合には第2制御部材3の回転抵
抗は大となるが、接触時間は非常に短く、また実際の作
動は通常非接触時に行なわれるので何ら問題はない。
Note that when the cam surfaces 2a and 3a of the first control member 2 and the second control member 3 come into contact, the rotational resistance of the second control member 3 becomes large, but the contact time is very short, and Since the operation is normally performed without contact, there is no problem.

本発明の第2の実施例を第8図に示す。A second embodiment of the invention is shown in FIG.

第1実施例との相違点を中心に説明すると、第2実施例
では第1実施例の第1制御部材2の連結棒9の受けの部
分とカム面2aを有する部分とを分割し、流体による液
圧にて油密に連結している。
Focusing on the differences from the first embodiment, in the second embodiment, the receiving part of the connecting rod 9 of the first control member 2 of the first embodiment and the part having the cam surface 2a are divided, and the They are connected oil-tight using hydraulic pressure.

連結棒9の上端にはホルダボデー12のスプリング室壁
12dと油密的に摺動自在に嵌合されたピストン20が
あり、ニードル付勢スプリング1゜により下方に付勢さ
れている。また第1制御部材2はシリンダガイド6゛と
油密的に摺動自在に嵌合されたピストンとされている。
At the upper end of the connecting rod 9 is a piston 20 which is slidably fitted in an oil-tight manner to the spring chamber wall 12d of the holder body 12, and is biased downward by a needle biasing spring 1°. Further, the first control member 2 is a piston that is slidably fitted in a cylinder guide 6' in an oil-tight manner.

ガイド5′は第1制御部材2の一部に設けられた対向す
る平行な2面の平面$2bと摺動自在に嵌合してあり、
第1制御部材2の回動を規制している。また、スプリン
グ室21には流体が充満している。
The guide 5' is slidably fitted into two opposing parallel planes $2b provided on a part of the first control member 2,
Rotation of the first control member 2 is restricted. Further, the spring chamber 21 is filled with fluid.

ニードル1が上昇すると、連結棒9を介してピストン2
0が押し上げられて上昇し、スプリング室21内の流体
によって油密的に連結している第1制御部材2が油圧に
より上昇し、カム面2aとカム面3aの接触する位置に
て第1制御部材2が停止すると、スプリング室2I内の
流体はもはや移動することができな(なりスプリング室
21内が油圧ロック状態となるためピストン2oも停止
する。
When the needle 1 rises, the piston 2
0 is pushed up and raised, and the first control member 2, which is oil-tightly connected by the fluid in the spring chamber 21, is raised by hydraulic pressure, and the first control is performed at the position where the cam surface 2a and the cam surface 3a contact. When the member 2 stops, the fluid in the spring chamber 2I can no longer move (and the piston 2o also stops because the inside of the spring chamber 21 is in a hydraulically locked state).

この油圧連結機構の利点は以下に説明する1)及び2)
の点である。
The advantages of this hydraulic coupling mechanism are explained below in 1) and 2).
This is the point.

1)一般にニードルリフト量は微少であり、その微少量
を精度よく細かく制御することは困難であるが、ピスト
ン20の断面積よりも第1制御部材2の断面積を小さく
することにより第1制御部材2のリフト量を増幅するこ
とができる。つまり、スプリング室21内の流体の体積
弾性率による体積変化は微少であるため、(ピストン2
0の断面積)×(ピストン20の移動量)−(第1制御
部材2の断面a)×(第1制御部材2の移動量)とみな
せる。従ってピストン20の移動量を第1制御部材2の
移動量に拡大増幅し、第1制御部材2を細かく制御する
ことによりピストン20を細か(精度良く制御すること
ができる。
1) Generally, the amount of needle lift is minute, and it is difficult to precisely control that minute amount, but by making the cross-sectional area of the first control member 2 smaller than the cross-sectional area of the piston 20, the first control can be performed. The amount of lift of the member 2 can be amplified. In other words, since the volume change due to the bulk elastic modulus of the fluid in the spring chamber 21 is minute, (the piston 2
0 cross-sectional area) x (amount of movement of the piston 20) - (cross-section a of the first control member 2) x (amount of movement of the first control member 2). Therefore, by amplifying the amount of movement of the piston 20 to the amount of movement of the first control member 2 and finely controlling the first control member 2, the piston 20 can be finely (accurately) controlled.

2)第1実施例ではに一ドル1の上方付勢力)−に一ド
ル付勢スプリング10の下方付勢力)だけの付勢力がカ
ム面’la、3aにかかるため、カム面2a、3aの受
圧面積を小さくするとカム面にかかる応力が極めて大と
なりカム面破損や摩耗の原因となり易いが、第2実施例
の構造では、カム面にかかる荷重を(第1制御部材2の
断面積)÷(ピストン20の断面積)の倍率に弱めるこ
とができるため、カム面に加えられる力を小さくでき、
カム面を破損や摩耗から保護できる。またカム面を小型
化でき、それに伴ってキャンプ4付近の構造も小型にで
きるので軽量化が可能となるという利点がある。
2) In the first embodiment, the cam surfaces 'la and 3a are subjected to an urging force equal to the upward urging force of 1 dollar 1) - the downward urging force of the 1 dollar urging spring 10), so that the cam surfaces 2a and 3a are If the pressure-receiving area is made small, the stress applied to the cam surface becomes extremely large, which tends to cause damage or wear to the cam surface. However, in the structure of the second embodiment, the load applied to the cam surface is divided by (the cross-sectional area of the first control member 2). (cross-sectional area of the piston 20), the force applied to the cam surface can be reduced.
It can protect the cam surface from damage and wear. In addition, the cam surface can be made smaller, and the structure around the camp 4 can also be made smaller, so there is an advantage that the weight can be reduced.

なお、第1実施例および第2実施例ではカム面2aは回
動せずにカム面3aを回動制御したが、第9図(alな
いしくC1にカム面3aは回動せずにカム面2aの側を
回動制御する本発明の第3実施例を示す。
In addition, in the first and second embodiments, the cam surface 3a was controlled to rotate without rotating the cam surface 2a, but in FIG. A third embodiment of the present invention is shown in which the rotation of the surface 2a is controlled.

第1、第2実施例との相違点を中心に説明すると、第1
制御部材2の2面の平面部2bは、制御部材30と摺動
自在に嵌合してあり、制御部材30を回動することによ
り第1制御部材2を回動制御できる構造となっている。
To explain the differences between the first and second embodiments, the first embodiment
The two planar parts 2b of the control member 2 are slidably fitted to the control member 30, and the first control member 2 can be rotationally controlled by rotating the control member 30. .

また、端面にカム面3aを有する第2制御部材3はキャ
ップ4に圧入、溶接等により固定支持これている。
Further, the second control member 3 having a cam surface 3a on its end face is fixedly supported by the cap 4 by press fitting, welding, or the like.

尚、これまでの実施例のカム面は第10図[a)の様に
円周方向に対し正弦曲線となるカム面の図を示したが、
燃料喰射圧力の変化状況はノズル形状により大きく異な
るので、それぞれのノズルに合せてカム形状を第10図
(blの様に円周方向に対し直線的に変化するカム面や
、第10図(C)の様に圧力バランスをとるために軸対
象形状や第10図(c+の様にどちらか一方をビン状の
突起形〆3a’とするなど種々の形状を選択することが
できる。
Incidentally, the cam surface of the embodiments so far has been shown as a sine curve with respect to the circumferential direction as shown in FIG. 10 [a], but
The state of change in fuel injection pressure varies greatly depending on the nozzle shape, so the cam shape should be adjusted to suit each nozzle, such as a cam surface that changes linearly in the circumferential direction as shown in Figure 10 (bl), or a cam surface that changes linearly in the circumferential direction as shown in Figure 10 ( Various shapes can be selected, such as an axisymmetric shape as shown in C) or a bottle-shaped protrusion 3a' on either side as shown in FIG. 10 (c+).

カム面の受圧面積を大きくとりたい場合には、カム面の
面圧を低(でき圧力バランスもとれる第10図(C1の
様なカム形状が望ましい。
If you want to increase the pressure-receiving area of the cam surface, it is desirable to use a cam shape like the one shown in Figure 10 (C1), which can lower the surface pressure of the cam surface and maintain pressure balance.

また、第11図は第10図に示したカム面を円周方向に
展開した時の展開図である。
Moreover, FIG. 11 is a development view when the cam surface shown in FIG. 10 is developed in the circumferential direction.

回動制御方法はラックギヤを使用した油圧制御方法を用
いが、ステップモータ、DCモータ、リニヤソレノイド
、ロータリソレノイド等を用いて第2制御部材3を回動
してもよい。
The rotation control method uses a hydraulic control method using a rack gear, but the second control member 3 may also be rotated using a step motor, a DC motor, a linear solenoid, a rotary solenoid, or the like.

以上詳細に説明したように、本発明はニードル1を燃料
噴射孔8aが閉じる方向に付勢するニードル付勢スプリ
ング10と、端面にカム面2aを有する第1制御部材2
と、第1制御部材2のカム面2aに対向するカム面3a
を有する第2制御部材3とを備え、第1制御部材2と第
2制御部材3とを相対的に回動させて第1制御部材2の
カム面2aと第2制御部材3のカム面3aとの間の距離
を調整することによりニードル1の最大リフト量を制御
するようにしているので内燃機関の運転条件に応じてニ
ードルの最大リフトiを任意に制御することができ、そ
の結果燃費向上、排気ガス浄化、騒音低減等の効果を奏
する。
As described above in detail, the present invention includes a needle biasing spring 10 that biases the needle 1 in a direction in which the fuel injection hole 8a closes, and a first control member 2 that has a cam surface 2a on the end surface.
and a cam surface 3a opposite to the cam surface 2a of the first control member 2.
The first control member 2 and the second control member 3 are relatively rotated to control the cam surface 2a of the first control member 2 and the cam surface 3a of the second control member 3. Since the maximum lift amount of needle 1 is controlled by adjusting the distance between , has effects such as exhaust gas purification and noise reduction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第6図は本判明の第1実施例に関するもの
であり、第1図1ま第1実施例の縦断面図(第2図のB
−B断面図)、第2図は第1図のA−A断面図、第3図
および第4図は構成部品の斜視図、第5図および第6図
は性能を表わす特性図である。 第7図は一般のスロ・ノトルノズル、ビントルノズル等
の特性図である。 第8図および第9図のta+ないしtc)は第2および
第3実施例に関するものであり、fa1図は縦断面図(
(b)のB−B断面図)、fb1図は(81図のA−A
断面図、CC1図は構成部品の斜視図である。 第10図および第11図はカム面の形状に関するもので
あり、第10図(a+ないしくC)′は正面図、第11
図はカム面を円周方向に展開した時の展開図である。 ■・・・ニードル、2・・・第1制御部材、3・・・第
2制グ。 代理人弁理士 岡 部   隆 第1図 第 2 図 第6図 (a) 第8図 第9図 (21) 第9図 (b) 第10図 (a)       (b)       (C)(C
)′ 箇月図 ?a 1事件の表示 昭和57年特許願第178082号 2発明の名称 燃料噴射ノズル 3補正をする者 事件との関係  特許出願人 愛知県刈谷市昭和町1丁目1番地 (426)日本電装株式会社 代表者 戸田憲吾 4代 理 人 〒448  愛知県刈谷市昭和町1丁目1番地5 補正
命令の日付 発送日 昭和58年 2月22日 補正の対象 明細書の発明の詳細な説明の欄、図面の簡単な説明の欄
、および図面。 7 補正の内容 (1)明細書の第13頁第4行の[第10図(C1’ 
Jを「第10図(d)」に訂正します。 (2)同書の第15頁第3行の「第10図falないし
くC)゛は正面図、」を「第10図(al、第10図(
b)、第10図(clおよび第10図(diは種々のカ
ム面形状に対する各々の正面図であり、」と訂正します
。 (3)図面の第10図を別紙のとおり訂正します。 (図番の訂正) 第 10  [D (a)       (b) (C”1 388−
1 to 6 relate to the first embodiment of the invention, and FIGS.
2 is a sectional view taken along the line A-A in FIG. 1, FIGS. 3 and 4 are perspective views of component parts, and FIGS. 5 and 6 are characteristic diagrams showing performance. FIG. 7 is a characteristic diagram of a general slot/nottle nozzle, bottle nozzle, etc. ta+ to tc) in FIGS. 8 and 9 relate to the second and third embodiments, and fa1 is a longitudinal cross-sectional view (
(B-B sectional view in (b)), fb1 is (A-A in Figure 81)
The cross-sectional view and Figure CC1 are perspective views of the constituent parts. Figures 10 and 11 are related to the shape of the cam surface, and Figure 10 (a+ or C)' is a front view, and Figure 11 is a front view.
The figure is a developed view when the cam surface is developed in the circumferential direction. ■... Needle, 2... First control member, 3... Second control member. Representative Patent Attorney Takashi Okabe Figure 1 Figure 2 Figure 6 (a) Figure 8 Figure 9 (21) Figure 9 (b) Figure 10 (a) (b) (C) (C
)′ Kagetsu diagram? a1 Indication of the case Patent Application No. 178082 filed in 19822 Name of the invention Fuel injection nozzle 3 Person making the amendment Relationship to the case Patent applicant Representative of Nippondenso Co., Ltd., 1-1 Showa-cho (426), Kariya City, Aichi Prefecture Person: Kengo Toda 4th, Masaru Address: 1-1-5 Showa-cho, Kariya-shi, Aichi Prefecture 448 Date of amendment order Date of dispatch: February 22, 1981 Column for detailed explanation of the invention in the specification to be amended, brief description of drawings Explanation column and drawings. 7 Contents of amendment (1) [Figure 10 (C1'
Correct J to "Figure 10 (d)". (2) In the third line of page 15 of the same book, ``Figure 10 fal or C)'' is a front view'' is replaced with ``Figure 10 (al, Figure 10 (
b), Figure 10 (cl) and Figure 10 (di are the respective front views for various cam surface shapes) are corrected. (3) Figure 10 of the drawing is corrected as shown in the attached sheet. (Correction of figure number) No. 10 [D (a) (b) (C”1 388-

Claims (1)

【特許請求の範囲】[Claims] 燃料噴射孔を有するノズル本体の中心軸方向にニードル
を往復摺動させて前記燃料噴射孔を開閉して燃料噴射を
行なう燃料噴射ノズルにおいて、前記ニードルを燃料噴
射孔が閉じる方向に付勢するニードル付勢スプリングと
、端面にカム面を有する第1制御部材と、該第1制御部
材のカム面に対向するカム面を有する第2制御部材とを
備え、前記第1制御部材と第2制御部材とを相対的に回
動させて第1制御部材のカム面と第2制御部材のカム面
との間の距離を調整することにより前記ニードルの最大
リフト量を制御することを特徴とする燃料噴射ノズル。
In a fuel injection nozzle that injects fuel by opening and closing the fuel injection hole by reciprocating the needle in the direction of the central axis of a nozzle body having a fuel injection hole, the needle urges the needle in a direction in which the fuel injection hole closes. a biasing spring, a first control member having a cam surface on an end surface, and a second control member having a cam surface opposite to the cam surface of the first control member, the first control member and the second control member; A fuel injection system characterized in that the maximum lift amount of the needle is controlled by adjusting the distance between the cam surface of the first control member and the cam surface of the second control member by relatively rotating the cam surfaces of the first control member and the second control member. nozzle.
JP17808282A 1982-10-08 1982-10-08 Fuel injection nozzle Pending JPS5968560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17808282A JPS5968560A (en) 1982-10-08 1982-10-08 Fuel injection nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17808282A JPS5968560A (en) 1982-10-08 1982-10-08 Fuel injection nozzle

Publications (1)

Publication Number Publication Date
JPS5968560A true JPS5968560A (en) 1984-04-18

Family

ID=16042305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17808282A Pending JPS5968560A (en) 1982-10-08 1982-10-08 Fuel injection nozzle

Country Status (1)

Country Link
JP (1) JPS5968560A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61123759A (en) * 1984-11-20 1986-06-11 Nippon Soken Inc Variable opening pressure/variable needle lift type fuel injection valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61123759A (en) * 1984-11-20 1986-06-11 Nippon Soken Inc Variable opening pressure/variable needle lift type fuel injection valve
JPH0512549B2 (en) * 1984-11-20 1993-02-18 Nippon Jidosha Buhin Sogo Kenkyusho Kk

Similar Documents

Publication Publication Date Title
US7857605B2 (en) Inlet throttle controlled liquid pump with cavitation damage avoidance feature
US7610902B2 (en) Low noise fuel injection pump
US7677872B2 (en) Low back-flow pulsation fuel injection pump
JP3583784B2 (en) Hydraulic drive electronic fuel injection system
JPS63147966A (en) Fuel injector
US20050263135A1 (en) Fuel injection system
WO2002081920A1 (en) Single-plunger injection pump for a common rail fuel injection system
JPS60156968A (en) Fuel jet pump for internal combustion engine
JP4380739B2 (en) High pressure fuel pump
US4944275A (en) Fuel injector train with variable injection rate
JPS5968560A (en) Fuel injection nozzle
JPH05149210A (en) Fuel injection valve of internal combustion engine
US20050067024A1 (en) Reverse-flow throttle valve
JPS5963364A (en) Fuel injection nozzle
JPH10281038A (en) Fuel injection valve
JPH0477149B2 (en)
DE19611429B4 (en) Distributor fuel injection pump
JPS5960065A (en) Fuel injection nozzle
JPS599091Y2 (en) Fuel injection valve for internal combustion engine
JP3740095B2 (en) Fuel injection device and diesel engine equipped with the same
JPH0643488Y2 (en) Fuel injection nozzle
JPS622294Y2 (en)
JPS622295Y2 (en)
JPS6133253Y2 (en)
JPS593164A (en) Fuel injection device