JPS5968176A - Nonaqueous electrolyte battery - Google Patents
Nonaqueous electrolyte batteryInfo
- Publication number
- JPS5968176A JPS5968176A JP16454882A JP16454882A JPS5968176A JP S5968176 A JPS5968176 A JP S5968176A JP 16454882 A JP16454882 A JP 16454882A JP 16454882 A JP16454882 A JP 16454882A JP S5968176 A JPS5968176 A JP S5968176A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- positive
- pellet
- negative
- electrolyte battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/14—Cells with non-aqueous electrolyte
- H01M6/16—Cells with non-aqueous electrolyte with organic electrolyte
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Primary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、L4.Nαe MI!等の軽金属全負極活物
質とし、金属酸化物、金属硫化物、金属ハロゲン化物等
を正極活物質とし1用いる非水電解液電池に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION The present invention provides L4. Nαe MI! The present invention relates to a non-aqueous electrolyte battery that uses all light metals such as metals as negative electrode active materials and metal oxides, metal sulfides, metal halides, etc. as positive electrode active materials.
本発明の目的は、電池製造時の正極の反りに起因する不
良の発生を防止すると同時に、放電特性の良い非水電解
液電池を提供することである。An object of the present invention is to provide a non-aqueous electrolyte battery with good discharge characteristics while preventing the occurrence of defects due to warping of the positive electrode during battery manufacture.
コイン型、ボタン型等の小型電池においては、正極は通
常、金属酸化物、金属ハロゲン化物、金属硫化物等の活
物質にグラファイト、アセチレンブラック等の導電剤、
フッ素樹脂や0M0XTVA等の水溶性高分子から成る
有機バインダー等々を加えた正極合剤を加圧成形したベ
レットが用いらnる。また、この正極合剤と正極缶また
は正極娼子との電気的接続を良く′fるための集電体と
して、もしくは、成形ペレットの割れや欠けに対する補
強材として、しばしば、エキスパンデッドメタルや金属
ネット等の金属網状体(以下正極集電体とも呼称する)
が正極合剤と一体に加圧成形さnる。In small batteries such as coin-type and button-type batteries, the positive electrode usually contains an active material such as a metal oxide, metal halide, or metal sulfide, and a conductive agent such as graphite or acetylene black.
A pellet is used that is made by pressure-molding a positive electrode mixture to which an organic binder made of a water-soluble polymer such as fluororesin or 0M0XTVA is added. In addition, expanded metal or Metal mesh bodies such as metal nets (hereinafter also referred to as positive electrode current collectors)
is pressure-molded together with the positive electrode mixture.
従来、この様な、金属網状体と正極合剤との一体成形は
、通常所足の金型内に正極合剤粉末を充饗し、その」二
に金属網状体を載置して力U圧成形するか、あるいは、
正極合剤粉末を予備成形した後、その上に全屈網状体f
f、載置して、予備成形時の加圧力より大きい加圧力で
加圧成形することによってなされτいた。Conventionally, such integral molding of a metal mesh body and a positive electrode mixture has been carried out by filling a metal mold with positive electrode mixture powder, placing the metal mesh body on the second mold, and applying a force U. pressure molding or
After preforming the positive electrode mixture powder, a fully curved network f is placed on top of it.
f, and then pressure molded with a pressure greater than the pressure applied during preforming.
この場合、金型内から成形ペレットを取り出した時に、
ペレットのスプリングバンク現象による径方向への伸び
が、金属網状体の側では食い止めら牡るために、第1図
の様な反F)ヲ生ずる。In this case, when the molded pellet is taken out from the mold,
Since the elongation of the pellet in the radial direction due to the spring bank phenomenon is not stopped on the metal net-like body side, a curve F) as shown in FIG. 1 occurs.
この様な反りが大きい正極を用い又電池全製造すると、
電池封日時の圧力で、正極にひびや欠は割れ等が生じた
り、あるいはこの欠けた部分や正極の闇縁部が所定位置
からずれて正極缶とガスケットの間にはさみ込まれた状
態で封口される等々の不良が多発し、その結果、電池総
厚が規格以上になったり、耐漏液性、経時劣化、放電特
性等の電池性能が引き下げらnるという問題点があった
この様な問題点を改善するために、予め正極合剤だけを
加圧成形(−吹成形)した後、その成形体と金属網状体
とを、−吹成形型の径より大きい径を有する型を用いて
一体成形する方法が、木発明者らによって先に提案さし
ている。If a positive electrode with such large warpage is used and the entire battery is manufactured,
Due to the pressure of the battery sealing date, the positive electrode may crack or chip, or the chipped part or the dark edge of the positive electrode may shift from its designated position and become stuck between the positive electrode can and the gasket. Problems like this occur frequently, and as a result, the total thickness of the battery exceeds the standard, and battery performance such as leakage resistance, deterioration over time, and discharge characteristics deteriorates. In order to improve this point, only the positive electrode mixture was pressure-molded (-blow-molded) in advance, and then the molded body and the metal net-like body were integrated using a mold having a diameter larger than that of the blow-molding mold. A method of shaping was previously proposed by wood inventors.
即ちこの方法によれば、−次成形後、成形体がより径の
大きい一体成形用の型へ移さnるため、この過程で前記
のスプリングバンク現象による成形体の径方向への伸び
が起こり、その後の金属網状体との一体成形後のスプリ
ングバックが小さくなり、従って、正極の反りが低減さ
れる。That is, according to this method, after the next molding, the molded body is transferred to a mold for integral molding with a larger diameter, so that in this process, the molded body stretches in the radial direction due to the spring bank phenomenon described above. Springback after subsequent integral molding with the metal mesh body is reduced, and therefore, warpage of the positive electrode is reduced.
この場合、反りの大きさは合剤組成、−次成形圧及び一
体成形圧等に依つ”l:fわるが、特に、一体成形の加
圧力が小さい程、反りは小さくなる。In this case, the magnitude of the warp depends on the mixture composition, the subsequent molding pressure, the integral molding pressure, etc., but in particular, the smaller the integral molding pressure, the smaller the warp.
この様にして、反シを小さくすることはできるが、その
後、反りの大きさと電池性能の間には、最適条件があり
、反シ率(ペレット直径の単位長さ轟りの反り、即ち、
(反F))/Cベレット直径〕〕、が1.2xlO−”
〜3.6X10−”の範囲のペレットを用いrば良好な
電池性能が得られることが分った。即ち、この範囲より
反りが小さい時には、正極合剤と金属網状体との密層力
が弱いためと推定さ扛るが、電池の放電性能、特に放電
末期での重負荷特性が悪く、逆に、反りがこの範囲よシ
大きいと、前記の組立不良の発生率が著しく高くなる。In this way, it is possible to reduce the warpage, but after that, there is an optimal condition between the size of the warpage and the battery performance, and the warpage ratio (the warpage per unit length of pellet diameter,
(Anti-F))/C pellet diameter]] is 1.2xlO-”
It has been found that good battery performance can be obtained by using pellets in the range of ~3.6 x 10-''. That is, when the warpage is smaller than this range, the close layer force between the positive electrode mixture and the metal network increases. Although it is presumed that this is due to the weakness, the discharge performance of the battery, especially the heavy load characteristics at the end of discharge, is poor, and conversely, if the warpage is greater than this range, the incidence of the above-mentioned assembly failure will be extremely high.
反り率をこの範囲に規制することは、−次成形圧と一体
成形圧を調整し工行うことができる。こ牡らは、正極合
剤組成によって異なるが、−次成形圧としては1〜8t
/cm”、一体成形圧は1〜4 t /、;、・1?で
あり、共形的には、−吹成形2゜5t/ Crn ”一
体成形圧1゜5 t / cm ”程度である。The warpage rate can be controlled within this range by adjusting the subsequent molding pressure and the integral molding pressure. Although the molding pressure differs depending on the positive electrode mixture composition, the subsequent molding pressure is 1 to 8 tons.
/cm", the integral molding pressure is 1 to 4 t/, ;, 1?, and the conformal molding pressure is about -2゜5t/cm", the integral molding pressure is 1゜5t/cm. .
尚、反りとは、第1図に示す様に、正極ペレットの中央
部と周縁部の段差すと、ペレット厚さαとの差である。Note that, as shown in FIG. 1, the warpage is the difference between the step between the central part and the peripheral part of the positive electrode pellet and the pellet thickness α.
以下、実施例に基づいて、本発明を更に詳細に説明する
。Hereinafter, the present invention will be explained in more detail based on Examples.
実施例1゜
第2図に、本実施例において作製した電池の断面図を示
した。1の負極缶、7の正極缶はともに外側をニッケル
メッキしたBUs材から成り、厚さは0.25m+nの
ものを用いる。3は負極でシート状の金属リチウムから
打ち抜い工、負極缶1にスポット溶接された5UEI製
ネツトから成る負極集電体2に圧猜さ扛ている。4はポ
リプロピレンを主とした不織布から成るセパレータ、8
はポリプロピンを主としたガスケットである。電解液は
、プロピレンカーボネイトと1,2ジメトキシエタンと
の2対l混合溶媒に過塩素酸リチウムLi0tO4((
1モル/を溶解したものを用いた。Example 1 FIG. 2 shows a cross-sectional view of the battery manufactured in this example. The negative electrode can No. 1 and the positive electrode can No. 7 are both made of BUs material with nickel plating on the outside, and have a thickness of 0.25 m+n. Reference numeral 3 denotes a negative electrode, which is punched out of a sheet of metal lithium and is placed on a negative electrode current collector 2 made of a 5UEI net that is spot-welded to the negative electrode can 1. 4 is a separator made of a nonwoven fabric mainly made of polypropylene; 8
is a gasket mainly made of polypropyne. The electrolyte was prepared by mixing lithium perchlorate Li0tO4 ((
A solution of 1 mol/ml was used.
5は、正極合剤で、5US11!のネットから成る正極
集電体6と一体に加圧成形され、正極ペレットを構成し
工いる。正極の製法は、電解二酸化マンガンを400℃
で2時間熱処理してできたβM?LO,,85重量%と
グラフ了イト10重量%及び四フッ化エチレン樹脂を主
とした有機バインダー5重量%からなる正極合剤を、内
径16.2m++の金型1を用いて1〜8t/cm”の
加圧力で一次成形した後、この成形体を円径1(5,4
m+nの金型■に移し、その上に線径80μm、jf4
目50メツシュのSUS製ネットを載置し、1〜4 t
/ rm ”の加圧力で一体成形した。最後に、正極
ペレットは、大気中または、減圧下または不活性ガス雰
囲気中で100〜300℃で乾燥さnる。この様にし工
できる正極ペレットの反りは、−吹成形及び一体成形の
加圧力によって制御できる。5 is the positive electrode mixture, 5US11! It is press-molded integrally with a positive electrode current collector 6 consisting of a net of 1, to form a positive electrode pellet. The manufacturing method for the positive electrode is to heat electrolytic manganese dioxide to 400°C.
βM made by heat treatment for 2 hours? A positive electrode mixture consisting of 85% by weight of LO, 10% by weight of graphite, and 5% by weight of an organic binder mainly composed of tetrafluoroethylene resin was mixed in a mold 1 with an inner diameter of 16.2m++ at a rate of 1 to 8t/. After primary forming with a pressure of
Transfer to m+n mold ■, and place wire diameter 80μm, jf4 on it.
Place a SUS net with a mesh size of 50 to 1 to 4 tons.
The positive electrode pellets were integrally molded under a pressure of 1/rm''.Finally, the positive electrode pellets were dried at 100 to 300°C in the air, under reduced pressure, or in an inert gas atmosphere. can be controlled by the pressure applied during blow molding and integral molding.
上記の様にし工、−次成形圧と一体成形圧を制御するこ
とによって作製した、反りが0〜0゜9咽(反り率O〜
5゜5X10”−”)の範囲の正極ベレットを用いて、
直径20欄φ、総厚1゜6謳の電池を作成し、電池組立
前の正極の反り率と、電池特性′f、調べた結果を第3
図と第4図に示した。尚、正極と負極は、そ肚ぞn理論
容量が92mAHと84mAHとなる様に、活物質量を
調整した。The warpage was 0~0°9mm (warpage rate 0~
Using a positive electrode pellet in the range of 5°5X10”-”),
A battery with a diameter of 20 columns φ and a total thickness of 1°6 was made, and the results of the examination of the warpage rate of the positive electrode before battery assembly and the battery characteristics'f were determined in the third section.
It is shown in Fig. and Fig. 4. The amounts of active materials in the positive and negative electrodes were adjusted so that their theoretical capacities were 92 mAH and 84 mAH, respectively.
第3図は、15にΩの外部負荷で264時間放電した後
の、−10℃における500Ω負荷に対する閉路電圧E
C(5秒後の電圧〕が2゜4■以下となる不良の発生率
と正極の反り率との関係を示しており、第4図は、正極
の欠け、割扛、所定位置からのズレに起因して起こる電
池総厚の規格ノ・ズレによる不良率を示している。Figure 3 shows the closed circuit voltage E for a 500Ω load at -10°C after 264 hours of discharge with an external load of 15Ω.
Figure 4 shows the relationship between the incidence of defects where C (voltage after 5 seconds) is 2°4■ or less and the warpage rate of the positive electrode. It shows the defective rate due to deviations in the specifications of the total battery thickness caused by this.
図から明らかな様に、反υ率が1,2xlO−”以下及
び3・6xlO−を以上では、閉&8電圧の低下が著し
くその不良率が大きくなる。又、反り率3.6XiO”
−”〜3.8xlO−”以上では、電池総厚の不良率の
増加が著しいことが分る。逆に、反り率が1.2’X1
0”−”〜3.6X10−”の範囲になる様に制御した
正極ベレットを用いた場合、閉路電圧が高くその不良率
も小さくかつ電池総厚の不良も極めて少い優した電池が
得らnることが分る。As is clear from the figure, when the reversal ratio is less than 1.2xlO-" and more than 3.6xlO-", the decrease in the closing &8 voltage is significant and the defective rate increases.
-'' to 3.8xlO-'' or more, it can be seen that the defective rate of the total battery thickness increases significantly. On the other hand, the warpage rate is 1.2'X1
When using a positive electrode pellet controlled to be in the range of 0"-" to 3.6X10-", it is possible to obtain a good battery with a high closed circuit voltage, a low defect rate, and very few defects in the total battery thickness. It turns out that n.
実施例2゜
正)a合剤として、前記実施例1の正極合剤に更に、水
に溶解し′fc、CM Of 7JOえ、混練し、乾燥
後粉砕した後は、実施例1と同様な一次成形、一体成形
を行い、正極ペレツ)%作成した。こnらのペレットを
用いた他は、実施例1と同様な電池を作り又した場合も
、電池特性及び不良率と反り率の関係は、実施例1とほ
ぼ同様の結果が得らnた。Example 2゜Correct) As a mixture a, the same mixture as in Example 1 was added to the positive electrode mixture of Example 1, which was further dissolved in water, kneaded, dried and pulverized. Primary molding and integral molding were performed to create positive electrode pellets. Even when a battery similar to Example 1 was made except for using these pellets, almost the same results as in Example 1 were obtained regarding the battery characteristics and the relationship between defective rate and warpage rate. .
尚、C114Cの量は、乾燥して水分を除去した時に、
合剤中で2重量%になる様に調整した。In addition, the amount of C114C is as follows when drying and removing moisture:
It was adjusted to 2% by weight in the mixture.
以上、例をあげて詳述した様に、本発明は、正極として
反り率を1.2xlO−”〜3.6xlO”の範囲に規
制したもσ)を用いることによって、非水電解液電池の
放電性能及び組立時の不良発生率を著しく改善せしめた
ものである。As described above in detail with examples, the present invention provides a positive electrode for non-aqueous electrolyte batteries by using a cathode with a warpage rate of 1.2xlO-'' to 3.6xlO''. This significantly improves discharge performance and the rate of defects during assembly.
尚、実施例においては、正極合剤と金属網状体との一体
成形は、−吹成形したペレットを金型■に移し、その上
に金属網状体を載置して一体成形したが、金属網状体を
一次成形ペレットの下に載置して一体成形し王も良いこ
とは、言うまでもない。In the examples, the positive electrode mixture and the metal mesh were integrally molded by transferring the blown pellets to the mold ■, placing the metal mesh on top of it, but Needless to say, it is also good to place the body under the primary molded pellet and mold it in one piece.
第1図は、正極の反りの状態を示す断面図であり、第2
図は、本発明の実施例に用いた電池の断面図である。第
3図は、正極り反り率に対する電池の閉路電圧の不良率
の関係を示すグラフであフ、第4図は、反り率に対する
電池総厚不良率の関係を示すグラフである。
1、。負唖缶 2゜。負極集電体 3.。負極4、。セ
パレータ 5.。正極合剤
6、。正極集電体 70.正極缶
8、。ガスケット
以上
出願人 株式会社第二鞘工舎
代理人 −7′F理士最上 務
第1図
し
第2図
第3図
第4図
正fん反′岬 (メlo−2)FIG. 1 is a cross-sectional view showing the state of warpage of the positive electrode;
The figure is a cross-sectional view of a battery used in an example of the present invention. FIG. 3 is a graph showing the relationship between the positive electrode warpage rate and the failure rate of the closed circuit voltage of the battery, and FIG. 4 is a graph showing the relationship between the warpage rate and the battery total thickness failure rate. 1. Negative can 2゜. Negative electrode current collector 3. . Negative electrode 4. Separator 5. . Positive electrode mixture 6. Positive electrode current collector 70. Positive electrode can 8. Applicant for gaskets and above Daini Saya Kosha Co., Ltd. Agent -7'F Rishish Mogami Affairs Figure 1, Figure 2, Figure 3, Figure 4 Seifan'misaki (Melo-2)
Claims (3)
剤とを一体に加圧成形したベレーットヲ正極とする非水
電解液電池において、正極ベレットとして、電池組立前
の反り率(反り/ペレット直径)が1.2X10−!〜
3゜6X10−”の範囲のものを用いたことを特徴とす
る非水電解液電池。(1) In a non-aqueous electrolyte battery in which a light metal is used as the negative electrode active material and a beret formed by integrally pressure-forming a metal network and a positive electrode mixture is used as the positive electrode, the positive electrode pellet is used as the positive electrode pellet. Pellet diameter) is 1.2X10-! ~
A non-aqueous electrolyte battery characterized by using a non-aqueous electrolyte battery having a size in the range of 3°6 x 10-''.
とする特許請求の範囲第(1)項記載の非水電解液電池
。(2) The non-aqueous electrolyte battery according to claim (1), wherein the metal network is a 5vsH net.
マンガンであることを特徴とする特許請求の範囲第(1
)項記載の非水電解液電池。(3) The negative electrode active material is lithium, and the positive electrode active material is manganese dioxide.
) The non-aqueous electrolyte battery described in item 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16454882A JPS5968176A (en) | 1982-09-21 | 1982-09-21 | Nonaqueous electrolyte battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16454882A JPS5968176A (en) | 1982-09-21 | 1982-09-21 | Nonaqueous electrolyte battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5968176A true JPS5968176A (en) | 1984-04-18 |
Family
ID=15795244
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16454882A Pending JPS5968176A (en) | 1982-09-21 | 1982-09-21 | Nonaqueous electrolyte battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5968176A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008159354A (en) * | 2006-12-22 | 2008-07-10 | Matsushita Electric Ind Co Ltd | Coin type lithium primary battery and manufacturing method of positive electrode for coin type lithium primary battery |
-
1982
- 1982-09-21 JP JP16454882A patent/JPS5968176A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008159354A (en) * | 2006-12-22 | 2008-07-10 | Matsushita Electric Ind Co Ltd | Coin type lithium primary battery and manufacturing method of positive electrode for coin type lithium primary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1179869B1 (en) | Non-aqueous electrolyte secondary battery and positive electrode for the same | |
EP2901515B1 (en) | Method of making active material compositions comprising high surface area carbonaceous materials | |
KR970707596A (en) | Enhanced nickel hydroxide cathode materials for rechargeable electrochemical alkaline batteries (ENHANCED NICKEL HYDROXIDE POSITIVE ELECTRODE MATERIALS FOR ALKALINE RECHARGEABLE ELECTROCHEMICAL CELLS) | |
US20220158155A1 (en) | Electrode Drying Method | |
EP2492995A1 (en) | Negative electrode active material for lithium ion secondary battery | |
JP4200326B2 (en) | Non-aqueous electrolyte primary battery | |
JPS5968176A (en) | Nonaqueous electrolyte battery | |
JP5879482B2 (en) | Non-aqueous electrolyte coin battery | |
CN116344816A (en) | Composite positive electrode material and preparation method and application thereof | |
CN105428607A (en) | Nickel-hydrogen secondary battery and manufacturing method thereof | |
CN108417783B (en) | Niobium-manganese modified tin oxide coated nickel cobalt lithium manganate cathode material and preparation method thereof | |
CN204102994U (en) | Nickel-hydrogen secondary cell | |
KR20200047960A (en) | Cathode active material with coating layer formed and manufacturing method thereof | |
US20230317918A1 (en) | Electrically Conductive Substrate for an Electrochemical Device | |
CN114824248B (en) | Negative electrode material for secondary battery, negative electrode, and secondary battery | |
WO2024181333A1 (en) | Secondary battery | |
EP3723168A1 (en) | Secondary battery structure having windable flexible polymer matrix solid electrolyte and manufacturing method thereof | |
JP5091723B2 (en) | Method for producing non-aqueous electrolyte battery | |
JPS58102465A (en) | Battery | |
KR20220112882A (en) | Positive electrode active material, all-solid-state battery including the same, and method for manufacturing the same | |
JPH0235173Y2 (en) | ||
JPH03297054A (en) | Battery | |
CN116848682A (en) | Method for manufacturing curved secondary battery | |
JPH01307169A (en) | Manufacture of organic solvent battery | |
JPH0275157A (en) | Positive electrode of organic electrolyte secondary battery |