JPS596811B2 - How to oxidize sulfite ions - Google Patents

How to oxidize sulfite ions

Info

Publication number
JPS596811B2
JPS596811B2 JP7985776A JP7985776A JPS596811B2 JP S596811 B2 JPS596811 B2 JP S596811B2 JP 7985776 A JP7985776 A JP 7985776A JP 7985776 A JP7985776 A JP 7985776A JP S596811 B2 JPS596811 B2 JP S596811B2
Authority
JP
Japan
Prior art keywords
oxygen
sodium sulfite
sulfite ions
catalyst
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7985776A
Other languages
Japanese (ja)
Other versions
JPS536295A (en
Inventor
慎男 村上
源三 橋本
益宏 浜田
睦 田岡
誠司 須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Engineering Co Ltd
Original Assignee
Sumitomo Chemical Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Engineering Co Ltd filed Critical Sumitomo Chemical Engineering Co Ltd
Priority to JP7985776A priority Critical patent/JPS596811B2/en
Publication of JPS536295A publication Critical patent/JPS536295A/en
Publication of JPS596811B2 publication Critical patent/JPS596811B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は亜硫酸イオンを含む水溶液中の亜硫酸イオンを
酸素含有ガスと接触させてより迅速に酸化させる手段の
改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in means for oxidizing sulfite ions in an aqueous solution containing sulfite ions more rapidly by contacting them with an oxygen-containing gas.

湿式排煙脱硫の一例として、NaOH水溶液でS02を
吸収して亜硫酸ナトリウムにすることが知られている。
As an example of wet flue gas desulfurization, it is known to absorb S02 with an aqueous NaOH solution to convert it into sodium sulfite.

しかしながら、このままではCOD(化学的酸素要求量
)が犬なる為、そのまま廃液として排出することが出来
ず、従来酸素または空気により酸化し、硫酸ナトリウム
水溶液として排出している。
However, as the COD (chemical oxygen demand) remains low, it cannot be discharged as waste as it is; conventionally, it is oxidized with oxygen or air and discharged as an aqueous sodium sulfate solution.

このような酸素または空気による酸化は酸化速度が遅い
と装置が巨大になり、消費動力も大きくなる為、いろい
ろな工夫がなされてきた。
In this type of oxidation using oxygen or air, if the oxidation rate is slow, the equipment becomes large and consumes a lot of power, so various ideas have been devised.

最も簡単な方法として、重金属イオンを触媒として加え
ることが知られているが、反面廃液中に新たに有害な重
金属を加えることになり、公害防止に逆行することにな
る。
It is known that the simplest method is to add heavy metal ions as a catalyst, but on the other hand, harmful heavy metals are added to the waste liquid, which goes against the goal of preventing pollution.

本発明は、これらの有害な重金属イオンを使用すること
なく、多孔性物質を用いることにより、2〜3倍の酸化
速度を得ることができた。
The present invention was able to obtain an oxidation rate two to three times faster by using a porous material without using these harmful heavy metal ions.

シリカゲル、活性白土、活性アルミナ、ケイソウ士等、
多孔性物質は、触媒または補助触媒として用いられるこ
とは良く知られているが、亜硫酸ナトリウムの酸化に使
用した場合に、顕著な触媒効果を示すことは予想外のこ
とである。
Silica gel, activated clay, activated alumina, diatomite, etc.
Although it is well known that porous materials are used as catalysts or co-catalysts, it is unexpected that they exhibit significant catalytic effects when used in the oxidation of sodium sulfite.

亜硫酸イオンの酸化の場合、高濃度領域では0次反応即
ち反応速度は濃度に無関係であるが低濃度領域では1次
反応即ち反応速度が濃度に比例する事が一般的に知られ
ており、その移行する点は亜硫酸ソーダの場合2%(重
量)付近と言われている。
In the case of oxidation of sulfite ions, it is generally known that in high concentration regions, the zero-order reaction, or reaction rate, is independent of concentration, but in the low-concentration region, first-order reaction, or reaction rate, is proportional to concentration. The point at which the transition occurs is said to be around 2% (by weight) in the case of sodium sulfite.

実施例においても無触媒の場合は1〜2係(重量)付近
に、その反応次数の移行点が明らかに現われている。
In the examples as well, in the case of no catalyst, the transition point of the reaction order clearly appears near the 1st to 2nd coefficient (weight).

(図2、図3)しかし本発明の触媒を使用した場合は、
ほとんどその傾向は見られず、わずかな反応速度の低下
がみられただけである。
(Figures 2 and 3) However, when using the catalyst of the present invention,
Almost no such tendency was observed, and only a slight decrease in the reaction rate was observed.

このことは、連続装置において亜硫酸イオンをほぼ完全
に酸化させる場合さらに有効であることを示していると
いうのは、連続装置の場合、内部の液と抜き出し液の濃
度は等しいと考えられる為、抜き出し液の濃度の反応速
度で、反応は進行していることになり、その濃度での反
応の速さのみが要求され、亜硫酸イオンをほぼ完全に酸
化させて抜き出す場合には、触媒を加えることにより5
〜10倍の酸化速度を示している(図2、図3)からで
ある。
This shows that it is more effective when oxidizing sulfite ions almost completely in a continuous device.In the case of a continuous device, the concentration of the internal liquid and the extracted liquid are considered to be equal, so the The reaction is progressing at the reaction rate of the concentration of the liquid, and only the reaction rate at that concentration is required, and if the sulfite ions are almost completely oxidized and extracted, adding a catalyst 5
This is because the oxidation rate is ~10 times higher (FIGS. 2 and 3).

即ち触媒を利用することにより連続式装置では1/5〜
1/10に、回分式装置では%〜Kに縮小することがで
きる。
In other words, by using a catalyst, continuous equipment can reduce
It can be reduced by a factor of 10 to %K in a batch system.

このように本発明による多孔性物質添加による亜硫酸イ
オンの酸化法を使用すれば、亜硫酸イオンの酸化は迅速
で、技術的に容易であり、かつ添加物質が不溶性である
ため抜き出し後の分離も容易であり、排出されても毒性
がない為安全である。
As described above, by using the method of oxidizing sulfite ions by adding a porous substance according to the present invention, oxidation of sulfite ions is rapid and technically easy, and since the added substance is insoluble, separation after extraction is also easy. It is safe because it is not toxic even if it is discharged.

実施例 1 第1図に示す如く、酸化装置本体としては円径約40m
mφ高さ約800mmのガラス製多孔板8付容器を用い
た。
Example 1 As shown in Figure 1, the oxidizer main body has a circular diameter of approximately 40 m.
A container with a glass perforated plate 8 having a diameter of about 800 mm and a height of about 800 mm was used.

まずバルブ11を開け、酸素ボンベ10より、ローター
メータ一式流量計3、増湿器4、ミスト分離器5を通し
て酸化装置本体7に供給され、さらにガラス製多孔板8
を通して液中に酸素を送って気液接触を行わせた。
First, the valve 11 is opened, and the oxygen is supplied from the oxygen cylinder 10 to the oxidizer main body 7 through the rotameter set flow meter 3, humidifier 4, and mist separator 5, and then to the oxidizer main body 7.
Oxygen was sent into the liquid through the tube to cause gas-liquid contact.

液温度は約60℃とし、放熱を避ける為容器7をヒータ
ー9で保温しまた恒温槽6の温度は60℃に保った。
The liquid temperature was about 60°C, and the container 7 was kept warm with a heater 9 to avoid heat radiation, and the temperature of the constant temperature bath 6 was kept at 60°C.

液量80011ll1酸素供給速度1.511/分とし
、1定時間毎にサンプリングを行い、ヨード適定法によ
り亜硫酸ソーダの濃度を分析し、酸化反応を追跡した。
The liquid volume was 80011 liters and the oxygen supply rate was 1.511/min. Sampling was performed at regular time intervals, and the concentration of sodium sulfite was analyzed by the iodine titration method to track the oxidation reaction.

液としては、PHを6〜10.5の範囲において亜硫酸
ソーダ1 o%(重量)溶液に触媒として活性白土を0
. 1 % (重量)加えた場合と、無触媒の場合につ
いて行った。
As a liquid, activated clay was added as a catalyst to a 10% (by weight) solution of sodium sulfite at a pH in the range of 6 to 10.5.
.. The test was carried out for the case where 1% (by weight) was added and the case where no catalyst was used.

結果は第2図に示す通りである。The results are shown in FIG.

実施例 2 第1図に示す通りであるが、バルブ12を開け、送風機
1によりオイルミスト分離器2を通して大気中の空気を
2.Ol/’分で酸化装置7に送り込んだ。
Embodiment 2 As shown in FIG. 1, the valve 12 is opened and atmospheric air is drawn through the oil mist separator 2 by the blower 1. It was fed into the oxidizer 7 at a rate of 1/min.

液量は実施例1と同じく800mlと−しζ−pnを6
〜105の範囲においてio%(重量)亜硫酸ソーダ水
溶液を用い、触媒としてはさらに範囲を広げ、多孔質シ
リカゲル、活性アルミナ、ケイソウ士及び活性白土を夫
々単独に01係(重量)添加し無触媒の場合と同一条件
にて実施した。
The liquid volume was 800ml as in Example 1, and ζ-pn was 6.
Using an aqueous solution of sodium sulfite in the range of ~105 io% (by weight), the range was further expanded as a catalyst, and porous silica gel, activated alumina, diatomaceous earth, and activated clay were each added individually in the amount of 01% (by weight). It was carried out under the same conditions as in the case.

液温度は60゜Cとし、恒温槽温度は60℃に保ったサ
ンプリング方法、分析方法については実施例1と同じで
ある。
The liquid temperature was 60° C., and the constant temperature bath temperature was kept at 60° C. The sampling method and analysis method were the same as in Example 1.

結果は第3図に示す通りである。The results are shown in FIG.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(実験装置フローシート)、1・・・・・・送風
機、2・・・・・・オイルミスト分離器、3・・・・・
・流量計(ローターメーター)、4・・・・・・増湿器
(洗浄ビン)、5・・・・・・水ミスト分離器、6・・
・・・・恒温槽、7・・・・・・装置本体、8・・・・
・・ガラス多孔板、9・・・・・・ヒーター、10・・
・・・・酸素ボンベ、11・・・・・・バルブ(酸素側
)、12・・・・・・バルブ(空気側)、 第2図(酸素による酸化時間に対する亜硫酸ソーダ減少
値) 縦軸:亜硫酸ソーダ濃度(重量係) 横軸:酸素による酸化時間(分) ○ 無触媒 ● 活性白土o.i係(重量)添加 第3図(空気による酸化時間に対する亜硫酸ソーダ減少
値) 縦軸:亜硫酸ソーダ濃度(重量%) 横軸:空気による酸化時間(時間) ○ 無触媒 △ ケイソウ土o. 1% (重量)添加● 活性白土
〃 日 活性アルミナ 〃 × シリカゲル。
Figure 1 (experimental equipment flow sheet), 1...Blower, 2...Oil mist separator, 3...
・Flowmeter (rotameter), 4... humidifier (washing bottle), 5... water mist separator, 6...
... Constant temperature chamber, 7 ... Equipment main body, 8 ...
...Glass perforated plate, 9...Heater, 10...
...Oxygen cylinder, 11... Valve (oxygen side), 12... Valve (air side), Figure 2 (Sodium sulfite reduction value versus oxidation time with oxygen) Vertical axis: Sodium sulfite concentration (weight) Horizontal axis: Oxygen oxidation time (minutes) ○ No catalyst ● Activated clay o. Part i (weight) addition Figure 3 (Reduction value of sodium sulfite versus oxidation time with air) Vertical axis: Sodium sulfite concentration (weight%) Horizontal axis: Oxidation time with air (hours) ○ No catalyst △ Diatomaceous earth o. 1% (weight) addition● Activated clay 〃 Activated alumina 〃 × Silica gel.

Claims (1)

【特許請求の範囲】[Claims] 1 亜硫酸ナトリウムを含有する水溶液をPH6〜10
.5の範囲において、多孔性シリカゲル活性白土、活性
アルミナ、ケイソウ士あるいはこれらの混合物の共存下
で、酸素含有ガスと接触させ、上記水溶液中の亜硫酸ナ
トリウムを酸化させる方法。
1. Aqueous solution containing sodium sulfite at pH 6-10
.. 5. A method in which sodium sulfite in the aqueous solution is oxidized by contacting with an oxygen-containing gas in the coexistence of porous silica gel activated clay, activated alumina, diatomite, or a mixture thereof.
JP7985776A 1976-07-07 1976-07-07 How to oxidize sulfite ions Expired JPS596811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7985776A JPS596811B2 (en) 1976-07-07 1976-07-07 How to oxidize sulfite ions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7985776A JPS596811B2 (en) 1976-07-07 1976-07-07 How to oxidize sulfite ions

Publications (2)

Publication Number Publication Date
JPS536295A JPS536295A (en) 1978-01-20
JPS596811B2 true JPS596811B2 (en) 1984-02-14

Family

ID=13701857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7985776A Expired JPS596811B2 (en) 1976-07-07 1976-07-07 How to oxidize sulfite ions

Country Status (1)

Country Link
JP (1) JPS596811B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58102704U (en) * 1981-12-29 1983-07-13 カルソニックカンセイ株式会社 Silencer
JPS6039722U (en) * 1983-08-29 1985-03-19 ダイハツ工業株式会社 engine muffler

Also Published As

Publication number Publication date
JPS536295A (en) 1978-01-20

Similar Documents

Publication Publication Date Title
AU748651B2 (en) Removal of NOx and SOx emissions from pickling lines for metal treatment
Sun et al. Simultaneous absorption of NOx and SO2 from flue gas with pyrolusite slurry combined with gas-phase oxidation of NO using ozone
EP0426215B1 (en) Method for purifying flue gases
US3957949A (en) Process for removing nitrogen oxides from gas
KR102048951B1 (en) How to remove nitrogen oxides from gases
Hartman et al. Oxidation of SO2 in a trickle-bed reactor packed with carbon
Liu et al. Gaseous elemental mercury removal using combined metal ions and heat activated peroxymonosulfate/H2O2 solutions
IE820877L (en) Separating mercury from gases.
JPS6351732B2 (en)
ES411040A1 (en) Method for purification of industrial flue gases
Zheng et al. Simultaneous absorption of NOx and SO2 in oxidant‐enhanced limestone slurry
CN101693193A (en) Rare earth-Cu-Fe active carbon adsorbent, preparation method and application thereof
JPS596811B2 (en) How to oxidize sulfite ions
US4055624A (en) Process for removing nitrogen oxides from gaseous mixtures
Gao et al. Absorption of NO 2 into Na 2 S solution in a stirred tank reactor
JP2003010688A (en) Removing agent for removing harmful sulfur oxide or sulfur oxide/hydrogen sulfide mixed gas in air and removing method using the same
EP1314698B1 (en) Process and apparatus for treating ammonia-containing waste water
JP4199394B2 (en) Control method of absorbent concentration in thiosulfate denitration method
JPH08117555A (en) Method and apparatus for treating mercury vapor
JPH1066985A (en) Treatment of nitrogen compound-containing waste water
JPH0871368A (en) Removal of iodine in exhaust gas
JP3630352B2 (en) Method for treating urea-containing water
JPS63162025A (en) Removing method for arsine and phosphine
JPS6388024A (en) Removal of mercury in exhaust gas
KR810001293B1 (en) Method for preparation of catalyst for decomposing ammonia by oxidation