JPS596751B2 - How to join dissimilar metals - Google Patents

How to join dissimilar metals

Info

Publication number
JPS596751B2
JPS596751B2 JP50066456A JP6645675A JPS596751B2 JP S596751 B2 JPS596751 B2 JP S596751B2 JP 50066456 A JP50066456 A JP 50066456A JP 6645675 A JP6645675 A JP 6645675A JP S596751 B2 JPS596751 B2 JP S596751B2
Authority
JP
Japan
Prior art keywords
tube
pressure
corrosion
pipe
pressure tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50066456A
Other languages
Japanese (ja)
Other versions
JPS51142459A (en
Inventor
英夫 牧
勝利 新保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP50066456A priority Critical patent/JPS596751B2/en
Publication of JPS51142459A publication Critical patent/JPS51142459A/en
Publication of JPS596751B2 publication Critical patent/JPS596751B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

【発明の詳細な説明】 本発明は、圧力管と金属管との接合方法に係り、特に圧
力管型原子炉において、ジルコニウム合金の圧力管とそ
の異種合金の延長管を接合した時、圧力管に水素化が生
じるのを防止できる接合方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for joining a pressure tube and a metal tube, and in particular, in a pressure tube type nuclear reactor, when a pressure tube made of a zirconium alloy and an extension tube made of a different alloy thereof are joined, the pressure tube The present invention relates to a bonding method that can prevent hydrogenation from occurring.

異種金属の接合を、圧力管型原子炉に使用される圧力管
と延長管との接合を一例として、以下に述べる。
The joining of dissimilar metals will be described below, taking as an example the joining of a pressure tube and an extension tube used in a pressure tube nuclear reactor.

圧力管型原子炉の代表的なものは、減速材の重水が充填
された力ランドリアタンクを貫通してカンドリア管を設
け、その中に内部に核燃料が装填された圧力管が設置さ
れている。圧力管内を冷却水である軽水が流れる。力ラ
ンドリア管と圧力管との間を断熱材である炭酸ガスが流
れている。この炭酸ガスは圧力管の破損検出にも使用さ
れる。圧力管の両端には上部延長管および下部延長管が
接合されている。圧力管の材質は一般にジルコニウム−
ニオブ合金が用いられ、上部および下部延長管にはSU
S403が用いられる。このような異種金属同志は溶接
が困難なので、圧着接合によつて接合される。圧力管と
延長管とはロールドジヨイントによつて接合される。こ
のロールドジヨイントによる接合を第1図に基づいて以
下に説明する。SUS403で作られた下部延長管2の
上部にジルコニウム−ニオブ合金で作られた圧力管1の
下部を挿入する。
A typical pressure tube reactor has a candorian tube that passes through a power randria tank filled with heavy water as a moderator, and a pressure tube loaded with nuclear fuel is installed inside the candorian tube. . Light water, which is cooling water, flows inside the pressure pipe. Carbon dioxide gas, which is a heat insulating material, flows between the power landlier pipe and the pressure pipe. This carbon dioxide gas is also used to detect damage to pressure pipes. An upper extension pipe and a lower extension pipe are connected to both ends of the pressure pipe. The material of pressure pipes is generally zirconium.
Niobium alloy is used and SU is used for the upper and lower extension tubes.
S403 is used. Since such dissimilar metals are difficult to weld together, they are joined by pressure bonding. The pressure pipe and the extension pipe are joined by a rolled joint. Joining by this rolled joint will be explained below based on FIG. 1. The lower part of the pressure tube 1 made of zirconium-niobium alloy is inserted into the upper part of the lower extension tube 2 made of SUS403.

圧力管1の少なくとも内面には、オートクレーブ処理が
施こされ、緻密な酸化被膜が形成されている。下部延長
管2内の上部には段付部3が形成され、この段付部3に
環状の凹部4が形成される。下部延長管2内に挿入され
る圧力管1の下部は第1図に示すような変形をしていな
く、直管状になつている。圧力管1の内側には、内スリ
ーブ5が配置され、この内スリーブ5の外側に凹部4に
対応するように凸部6が形成される。内スリーブ5の凸
部6の直径は圧力管1の内径よりも少し小さくなつてい
る。内スリーブ5の下部には突起部□が設けられ、下部
延長管2の内側に設けられた溝8内に突起部1が挿入さ
れる。上記のように圧力管1、下部延長管2および内ス
リーブ5を組立てた後、内スリーブ5内に、ロールドジ
ヨイントを行なうためのローラ9、マンドレール10お
よびフレーム11等から成るロールドジヨイント用工具
23を挿入する。マンドレール10を押込ことによつて
内スリーブ5内面を押付けるローラ9の力を調節する。
ローラ9を内スリーブ5の内壁に押付けながら回転させ
ると、内スリーブ5は押広げられ、圧力管1の下部は第
1図に示すように変形する。このように圧力管1と下部
延長管2とが圧着接合によつて接合される。図示されて
いないが、上部延長管も同様にして圧力管1に接合され
る。圧力管1は、上記のように上部および下部延長管と
を接合した状態で、力ランドリア管内に設置される。
At least the inner surface of the pressure tube 1 is subjected to autoclave treatment to form a dense oxide film. A stepped portion 3 is formed at the upper part of the lower extension tube 2, and an annular recess 4 is formed in the stepped portion 3. The lower part of the pressure pipe 1 inserted into the lower extension pipe 2 is not deformed as shown in FIG. 1, but has a straight pipe shape. An inner sleeve 5 is disposed inside the pressure pipe 1, and a convex portion 6 is formed on the outside of the inner sleeve 5 so as to correspond to the recess 4. The diameter of the convex portion 6 of the inner sleeve 5 is slightly smaller than the inner diameter of the pressure tube 1. A protrusion □ is provided at the lower part of the inner sleeve 5, and the protrusion 1 is inserted into a groove 8 provided inside the lower extension tube 2. After assembling the pressure pipe 1, lower extension pipe 2 and inner sleeve 5 as described above, a roll joint consisting of a roller 9, a mandrail 10, a frame 11, etc. for performing a roll joint is placed inside the inner sleeve 5. Insert the insert tool 23. By pushing the mandrail 10, the force of the roller 9 that presses the inner surface of the inner sleeve 5 is adjusted.
When the roller 9 is rotated while being pressed against the inner wall of the inner sleeve 5, the inner sleeve 5 is pushed out and the lower part of the pressure tube 1 is deformed as shown in FIG. In this way, the pressure pipe 1 and the lower extension pipe 2 are joined by pressure bonding. Although not shown, the upper extension pipe is also joined to the pressure pipe 1 in the same manner. The pressure pipe 1 is installed in the force landlier pipe with the upper and lower extension pipes joined together as described above.

原子炉の運転を行なうと、第1図のA点の近傍で、すな
わち内スリーブ5の上部付近の圧力管1の部分に局部水
素化が生じ、圧力管1が破損する危険性がある。圧力管
1と上部延長管との接合部に訃いても同様な危険性があ
る。本発明は、上記した従来技術の欠点をな〈し、圧力
管の局部水素化による破損を防止できる圧力管と金・属
管との接合方法を提供することを目的とする。
When the nuclear reactor is operated, local hydrogenation occurs in the vicinity of point A in FIG. 1, that is, in the portion of the pressure tube 1 near the top of the inner sleeve 5, and there is a risk that the pressure tube 1 will be damaged. There is a similar risk of falling at the joint between the pressure pipe 1 and the upper extension pipe. SUMMARY OF THE INVENTION An object of the present invention is to overcome the drawbacks of the prior art described above and to provide a method for joining a pressure pipe and a metal pipe, which can prevent damage caused by local hydrogenation of the pressure pipe.

本発明の特徴は、少量のニオブを含みかつ残部が実質的
にジルコニウムであるジルコニウムーニオプ合金にて構
成されな圧力管とこれと主成分が異なる金属管とを圧着
接合して一体化し、その間、一体化された各金属管を4
00℃以上でしかも前記圧力管が時効硬化しない温度範
囲で燃鈍し、その後前記圧力管に耐食性酸化被膜処理を
施すことにある。
A feature of the present invention is that a pressure tube made of a zirconium niobium alloy containing a small amount of niobium and the remainder being substantially zirconium and a metal tube having a different main component are integrated by pressure bonding, Meanwhile, each integrated metal tube is
The purpose is to anneal the pressure pipe in a temperature range of 00°C or higher and at which the pressure pipe does not age harden, and then apply a corrosion-resistant oxide coating treatment to the pressure pipe.

本発明は、以下に述べる圧力管破損の原因究明に基づい
てなされたものである。
The present invention was made based on the investigation of the cause of pressure pipe breakage described below.

圧力管破損の原因は2つ存在する。すなわら、第1には
、第1図のA点付近の圧力管の部分に大きな引張残留応
力が生じていることである。第2には、圧着接合時(ロ
ールドジヨイント時)に圧力管表面に形成されている耐
食性酸化被膜が局部的に剥離することである。下部延長
管2内に圧力管1を挿人し、ロールドジヨイントにより
接合すると、内スリーブ5の上部、すなわち第1図のA
点付近の圧力管1の部分は、ひじように大きな圧縮加工
を受ける、このため、A点付近の圧力管1の部分に大き
な引張残留応力が生じる。
There are two causes for pressure pipe breakage. Firstly, a large tensile residual stress is generated in a portion of the pressure pipe near point A in FIG. The second problem is that the corrosion-resistant oxide film formed on the pressure pipe surface is locally peeled off during pressure bonding (rolled joint). When the pressure pipe 1 is inserted into the lower extension pipe 2 and joined by a rolled joint, the upper part of the inner sleeve 5, that is, A in FIG.
The portion of the pressure tube 1 near the point is subjected to an elbow-sized compression process, and therefore a large tensile residual stress is generated in the portion of the pressure tube 1 near the point A.

第1図に示すようなロールドジヨイントを行なつた場合
には、ジルコニウム−ニオブ合金の圧力管内に約0.3
〜42Kν4Jの残留応力が生じる。ジルコニウムおよ
びその合金では、大きな圧縮加工を加えた部分卦よび引
張残留応力が内部に存在する部分に水素が集中する。ジ
ルコニウム合金の一種であるジルカロイ一2を管状に圧
延加工した試験片を用いて実験した結果を第2図に示す
When a rolled joint as shown in Figure 1 is performed, approximately 0.3
A residual stress of ~42Kv4J results. In zirconium and its alloys, hydrogen is concentrated in parts that have been subjected to large compression processes and in parts where tensile residual stress exists inside. FIG. 2 shows the results of an experiment using a test piece of Zircaloy-2, which is a type of zirconium alloy, rolled into a tubular shape.

この第2図と後述の第5図に訃いて、規格化水素量とは
、実験により水素化した試験片の厚さ方向の各部位の水
素濃度(単位Ppn)を測定し、その測定結果(単位P
pm)から試験片にもともと存在する水素濃度(単位P
pm)を差し引いた値を第2図と第5図ごとに任意に決
めた基準水素濃度(単位Ppm)で割つて示した相対的
な値である。この為、規格化水素量には単位は無い。実
線12は、圧延加工された上記の管状試験片の管壁の半
径方向断面に訃ける残留応力分布を示す。また鍍線13
は、上記管状試験片を水酸化リチウムを含む飽和水中で
加熱する、ことにより水素化させた時の管状試験片の管
壁の半径方向h面に訃ける水素濃度分布を示す。実線1
2において、正の残留応力は引張残留応力を、負の残留
応力は圧縮残留応力を示す。実線12と破線13との比
較から、引張残留応力の大きい管壁の部分に水素が多く
、圧縮残留応力の大きい管壁の部分には水素が少ないこ
とがわかる。水素の多い部分では水素化が進んでいる。
第3図は、管状試験片の外面に深さ約0.2rrrmの
引かき傷をつけた後、弗酸水溶液中で加熱して水素化さ
せた結果である。管壁の断面で亀裂状に見える黒い部分
が水素化される部分である。傷をつけた部分の水素化が
他の部分に比べて著しく進行していることがわかる。第
4図は、管状試験片の内面に鋼球を強く押込んで圧縮加
工を行なつた後、第3図に示す場合と同様に弗酸水溶液
を用いて水素化させた結果である。この場合でも圧縮加
工を受けた部分で水素化が著しい。第1図に示すA点付
近の圧力管1の部分では、内スリーブ5の上端部がロー
ルドジヨイント時に強く押付けられることによつて、前
述したことと同様な圧縮荷重を受けて引張残留芯力が発
生するので、局部的に著しい水素化が生じるのである。
ところで、圧延加工を行ない第2図に示す特性と同様な
特性を有する管状試験片を真空中で約450℃の温度条
件を約2時間保持しあ焼鈍し、管状試験片内の応力の除
去を行なつた。
Referring to Fig. 2 and Fig. 5 described below, the normalized hydrogen amount is determined by measuring the hydrogen concentration (unit: Ppn) at each part in the thickness direction of a test piece that has been hydrogenated in an experiment, and the measurement result ( Unit P
pm) to the hydrogen concentration originally present in the test piece (unit: P
pm) is divided by the reference hydrogen concentration (unit: Ppm) arbitrarily determined for each of FIGS. 2 and 5. For this reason, there is no unit for the normalized hydrogen amount. A solid line 12 shows the residual stress distribution in the radial cross section of the tube wall of the above-mentioned rolled test piece. Also, 13
shows the hydrogen concentration distribution in the radial direction h plane of the tube wall of the tubular test piece when the above tubular test piece is hydrogenated by heating in saturated water containing lithium hydroxide. solid line 1
In No. 2, positive residual stress indicates tensile residual stress, and negative residual stress indicates compressive residual stress. From a comparison between the solid line 12 and the broken line 13, it can be seen that there is a lot of hydrogen in the tube wall portion where the tensile residual stress is large, and there is less hydrogen in the tube wall portion where the compressive residual stress is large. Hydrogenation is progressing in areas with a lot of hydrogen.
FIG. 3 shows the results of scratching the outer surface of a tubular test piece to a depth of about 0.2 rrrm and then heating it in an aqueous hydrofluoric acid solution to hydrogenate it. The black parts that look like cracks in the cross section of the tube wall are the parts that are hydrogenated. It can be seen that hydrogenation in the scratched area is more advanced than in other areas. FIG. 4 shows the results of compressing the inner surface of a tubular test piece by forcefully pressing a steel ball therein, and then hydrogenating it using a hydrofluoric acid aqueous solution in the same manner as shown in FIG. Even in this case, hydrogenation is significant in the areas that have undergone compression processing. In the part of the pressure pipe 1 near point A shown in FIG. 1, the upper end of the inner sleeve 5 is strongly pressed during the rolled joint, and is subjected to a compressive load similar to that described above, resulting in a tensile residual core. Because of the force generated, localized significant hydrogenation occurs.
By the way, a tubular test piece that had been rolled and had properties similar to those shown in Figure 2 was annealed in a vacuum at a temperature of about 450°C for about 2 hours to remove stress within the tubular test piece. I did it.

このような処理を行なつた管状試験片の管壁の半径方向
断面における残留応力分布および水素濃度分布を第第5
図に示す。実線14は残留力分布を示し、破線15は、
第2図に示す破線13と同様に水酸化リチウムを含む飽
和水を用いて水素化させた後の水素濃度分布を示す。実
線14から明らかなように、前述したような焼鈍を行な
うと管状試験片の管壁の残留応力が減少し、その分布も
平坦化される。また、水素濃度分布も第5図の如く、第
2図にくらべて最大と最小との差が少なくなつて平坦化
される傾向を示す上に、第2図中の左側部分、即ら従来
水素が多く存在した部分の水素量は第21・図中の左側
部に相当する第5図中の左側部分の如く減少している。
又、第5図に訃ける基準水素濃度は第2図に卦ける基準
水素濃度よりも低い値に決めてあるので第2図、第5図
を比較すると、第5図の方が左右全体領域をひかくして
も第5図の1方が少ない割合を示すことがわかつている
。ジルコニウム−ニオブ合金に}いても同様な結果が得
られる。このような実験結果から、^点付近の局部水素
化を防止するには、圧力管と下部延長管とをロールドジ
ヨイントした後、焼鈍することが望れる。ジルコニウム
合金は他の金属より耐食性が勝れているため、原子炉材
料として広く使用されている。
The residual stress distribution and hydrogen concentration distribution in the radial cross section of the tube wall of the tubular specimen subjected to such treatment are
As shown in the figure. The solid line 14 shows the residual force distribution, and the broken line 15 shows
Similarly to the broken line 13 shown in FIG. 2, it shows the hydrogen concentration distribution after hydrogenation using saturated water containing lithium hydroxide. As is clear from the solid line 14, when the above-described annealing is performed, the residual stress in the tube wall of the tubular test piece is reduced and its distribution is also flattened. Furthermore, as shown in Fig. 5, the hydrogen concentration distribution also shows a tendency to become flat with a smaller difference between the maximum and minimum compared to Fig. 2. The amount of hydrogen in the portion where a large amount of hydrogen was present is reduced as shown in the left side portion of FIG. 5, which corresponds to the left side portion of FIG. 21.
Also, the reference hydrogen concentration shown in Fig. 5 is set to a lower value than the reference hydrogen concentration shown in Fig. 2, so when comparing Figs. It is known that even when subtracting , the ratio shown in Figure 5 is smaller. Similar results can be obtained with zirconium-niobium alloys. From these experimental results, in order to prevent local hydrogenation near the ^ point, it is desirable to anneal the pressure tube and the lower extension tube after rolling them. Zirconium alloys are widely used as nuclear reactor materials because they have better corrosion resistance than other metals.

しかし、更に水素等に対する耐食性を高めるために、ジ
ルカロイ一2合金で作られる被覆管}よびジルコニウム
−ニオブ合金で作られる圧力管の表面に緻密な耐食性酸
化被膜が形成されている。この耐食性酸化被膜は、ジル
コニウム合金を約400℃の過熱蒸気中で加熱して得ら
れ、通常は厚さ数ミクロンの緻密な層を形成している。
この処理を一般にオートクレーブ処理と称する。オート
クレーブ処理を施して均一な耐食性酸化被膜を表面に有
するジルコニウム合金の耐食性はひじように勝れている
が、耐食性酸化被膜が局部的に剥離した場合には耐食性
が不均一になり、ジルコニウム合金に局部水素化が生じ
る可能性がある。これを第6図を用いて説明する。第6
図において、縦軸は水素濃度を示し、上横軸は幅度(単
位℃)で示し、下横軸は絶対温度T(単位0K.)の逆
数を示すものであつて縦軸の水素濃度と温度との関係を
示す際に一般的に使用されているものである。尚、第6
図の上横軸と下横軸とは対応させて表示してある。第6
図は、前述したジルカロイ一2の管状試験片の温度と試
験片内の水素濃度との関係を示し、水素化速度をたもつ
のである。第6図中、実線16はオートクレーブ処理を
施し管状試験片の表面に耐食性酸化被膜を形成した場合
の水素化速度を、―点鎖線17は表面に耐食性酸化被膜
を形成していない管状試験片の水素化速度を示している
。この結果は、軸方向に温度分布が形成されて内部が約
1気圧の水素ガス雰囲気になつている筒状の電気炉内に
、表面に耐食性酸化被膜を形成した管状試験片と耐食性
酸化被膜が形成されていない管状試験片を挿人し、約2
0時間加熱し、これらの管状試験片内の水素濃度を測定
することによつて得られた。な訃、第6図中、破線18
は管状試験片にもともと含まれている初期水素濃度を示
す。300℃以上の幅度領域では、耐食性酸化被膜の先
!管状試験片の水素速度はひじように大きく、耐食性酸
化被膜を形成した管状試験片のそれと比べて、約70倍
となる。
However, in order to further improve the corrosion resistance against hydrogen and the like, a dense corrosion-resistant oxide film is formed on the surface of the cladding tube made of Zircaloy-12 alloy and the pressure tube made of zirconium-niobium alloy. This corrosion-resistant oxide film is obtained by heating a zirconium alloy in superheated steam at about 400° C., and usually forms a dense layer several microns thick.
This treatment is generally referred to as autoclave treatment. Zirconium alloys that have been autoclaved and have a uniform corrosion-resistant oxide film on the surface have excellent corrosion resistance, but if the corrosion-resistant oxide film peels off locally, the corrosion resistance becomes uneven and the zirconium alloy Local hydrogenation may occur. This will be explained using FIG. 6th
In the figure, the vertical axis shows the hydrogen concentration, the upper horizontal axis shows the degree of width (unit: °C), and the lower horizontal axis shows the reciprocal of the absolute temperature T (unit: 0 K.).The vertical axis shows the hydrogen concentration and temperature. It is commonly used to show the relationship between Furthermore, the 6th
The upper horizontal axis and lower horizontal axis of the figure are shown in correspondence. 6th
The figure shows the relationship between the temperature of the above-mentioned Zircaloy-12 tubular test piece and the hydrogen concentration within the test piece, which has a hydrogenation rate. In Fig. 6, the solid line 16 represents the hydrogenation rate when a corrosion-resistant oxide film was formed on the surface of the tubular specimen through autoclave treatment, and the dashed line 17 represents the hydrogenation rate when a corrosion-resistant oxide film was not formed on the surface of the tubular specimen. Hydrogenation rate is shown. This result shows that a tubular test piece with a corrosion-resistant oxide film formed on its surface and a corrosion-resistant oxide film were placed in a cylindrical electric furnace with a temperature distribution in the axial direction and a hydrogen gas atmosphere of about 1 atm inside. Insert an unformed tubular specimen and hold approximately 2
The results were obtained by heating for 0 hours and measuring the hydrogen concentration within these tubular specimens. Death, dashed line 18 in Figure 6
indicates the initial hydrogen concentration originally contained in the tubular specimen. In the width range of 300℃ or higher, the tip of the corrosion-resistant oxide film! The hydrogen velocity of the tubular test piece is extremely high, approximately 70 times that of the tubular test piece with a corrosion-resistant oxide film formed thereon.

したがつて、耐食性酸化被膜を形成したジルコニウム合
金を、腐食性の環境中、例えば原子炉内で使用する場合
、表面の耐食性酸化被膜が局部的に剥離すると、剥離部
に卦ける局部水素化が著しく進行する。上記の現象はジ
ルコニウム−ニオブ合金に訃いても見られる。従来の接
続方法では、耐食性酸化被膜を形した圧力管1と延長管
2とをロールドジヨイントするため、内スリーブ5が、
圧力管1内面に押付けられるので、耐食性酸化被膜が剥
離する危険性がある。上記のような原因でジルコニウム
合金が水素化した場合、常温下ではジルコニウムの水素
化物が析出してくる。
Therefore, when a zirconium alloy with a corrosion-resistant oxide film formed thereon is used in a corrosive environment, such as in a nuclear reactor, if the corrosion-resistant oxide film on the surface peels off locally, local hydrogenation occurs in the peeled area. progresses significantly. The above phenomenon is also observed in zirconium-niobium alloys. In the conventional connection method, the pressure pipe 1 having a corrosion-resistant oxide film and the extension pipe 2 are rolled jointed, so that the inner sleeve 5
Since it is pressed against the inner surface of the pressure pipe 1, there is a risk that the corrosion-resistant oxide film will peel off. When a zirconium alloy is hydrogenated due to the above reasons, zirconium hydride precipitates at room temperature.

このため、ジルコニウム合金は極端に脆化する。また、
水素化物自体が脆し、しかもジルコニウム合金とは結晶
形および密度が異なる。したがつて、原子炉の起動卦よ
び停止のような熱サイクルが加わるような使用条件下で
は、水素化に起因して材料に亀裂が生じる危険性が高い
。本発明は上記の検討結果に基づいてなされたものであ
り、本発明によれば、第1V属チタン族もしくはその合
金を腐食性の環境中で使用した場合でも、材料の水素化
を防止でき、破損の生じない第1V属チタン族もしくは
その合金とこれと材質の異なる異種金属との接合方法が
得られる。本発明の好適な一実施例を第7図に基づいて
以下に説明する。19はロールドジヨイント工程である
For this reason, the zirconium alloy becomes extremely brittle. Also,
The hydride itself is brittle and has a different crystal shape and density from zirconium alloys. Therefore, under usage conditions that involve thermal cycles such as starting and stopping a nuclear reactor, there is a high risk that the material will crack due to hydrogenation. The present invention has been made based on the above study results, and according to the present invention, even when Group I V titanium group or its alloy is used in a corrosive environment, hydrogenation of the material can be prevented, A method for joining a group IV titanium group or its alloy with a dissimilar metal made of a different material without causing damage can be obtained. A preferred embodiment of the present invention will be described below with reference to FIG. 19 is a rolled joint process.

ロールドジヨイント工程19に送られる圧力管型原子炉
に用いられる圧力管1は、圧延加工されたジルコニウム
一2.5%ニオブ合金で作られ、約870℃で約15分
間溶体処理を行なつた後で焼人れを行ない、その後約5
00℃で約24時間の熱処理が加えられて原子炉の圧力
管として好適な特性が与えられて作られている。この圧
力管1は、内径約1187m、肉厚約4.3wrm}よ
び長さ約4mのものである。ロールドジヨイント工程で
圧力管1の両端部に下部延長管2と上部延長管とが、そ
れぞれ接合される。
The pressure tube 1 used in the pressure tube nuclear reactor sent to the rolled joint step 19 is made of rolled zirconium-2.5% niobium alloy, and is subjected to solution treatment at about 870° C. for about 15 minutes. After that, perform the Yakijinre, and then about 5
It is heat-treated at 00°C for about 24 hours to give it properties suitable for use as a pressure tube in a nuclear reactor. This pressure pipe 1 has an inner diameter of about 1187 m, a wall thickness of about 4.3 wrm, and a length of about 4 m. A lower extension tube 2 and an upper extension tube are respectively joined to both ends of the pressure tube 1 in a rolled joint process.

,ロールドジヨイントは一種の圧着接合である。ロール
ドジヨイントのやり方は、前述した従来の方法と同じで
ある。両端部に各々の延長管が接合された圧力管1は、
焼鈍工程20に送られる。この焼鈍は真空雰囲気中で行
なわれ、焼鈍に要する時間は約2時間が適当である。焼
鈍温度が約400℃以上になると残留応力は・かなり除
去され、約450℃で完全に除去される。しかし、ジル
コニウム−ニオブ合金の場合、焼鈍温度が約500℃以
上にすると、時効硬化か生じてあらかじめ原子炉用とし
て良好な特性が与えられている圧力管の特性を変化させ
悪化させる状態を生じ、圧力管に適用するには好ましく
ない。温度を400℃以上でしかも時効硬化が生じない
温度範囲にすることが好ましい。すなわち、ニオブが2
.5%で残部 二が実質的にジルコニウムであるジルコ
ニウム−ニオブ合金からなる圧力管では、焼鈍温度が5
00℃以上になると時効硬化により溶体化処理を行なつ
た後のジルコニウム−ニオブ合金に微小の析出物が現わ
れる。このため、溶体化した合金と析出 3物との間に
電位差が生じ、上記圧力管が腐食し易くなる。圧力管の
腐食によつて発生する水素が、圧力管の水素化をさらに
助長させることになる。したがつて、圧力管の焼鈍温度
は、時効硬化の生じない温度範囲にすべきである。焼鈍
工程20が 3終了すると、圧力管はオートクレーブ処
理工程21に送られる。オートクレーブ処理は前述した
ように圧力管を約450℃の過熱蒸気にて加熱すること
により行なわれる。これによつて圧力管の表面にのみ耐
食性酸化被膜が形成される。延長管4・はステンレス鋼
のため表面に耐食性酸化被膜が形成されない。本実施例
では、ジルコニウム−ニオブ合金の圧力管とSUS4O
3の延長管とをロールドジヨイントした後、焼鈍工程2
0訃よびオートクレーブ処理工程21を通るため、各々
の材質の違いによつて熱膨張が異なり、ロードジョイン
ト部にゆるみが生じ、気密性が損なわれる卦それがある
。このため、第1図に示される圧力管1と延長管2との
接合部付近の延長管2の外側に、ジルコニウム−ニオブ
合金から成る締付け用スリーブを取付けた後、焼鈍なら
ひにオートクレーブ処理を行なうとよい。オートクレー
ブ処理のように加熱しないでも、圧力管の表面に耐食性
酸化被膜を形成することができる。その一例として陽極
酸化法がある。これは常温雰囲気中で圧力管に耐食性酸
化被膜を形成することができる。その他化学的に耐食性
酸化被膜を形成することもできる。最後に圧力管と延長
管との接合部からの漏洩の有無をチエツクする検査工程
22に圧力管が送られ、この倹査工程22を通過したも
のが、圧力管型原子炉内に設置される。上記のように圧
力管と延長管とを接合することにより、前述した圧力管
に生じる局部水素化の2つの原因を取除くことができる
。すなわら、ロールドジヨイントによつて生じた圧力管
内の引張残留応力は、焼鈍によつて除去でき、また、ロ
ールドジヨイント後圧力管表面に耐食性酸化被膜を形成
するので、耐食性酸化被膜の剥離する危険性が解消され
る。したがつて、本実施例のような工程で作られた圧力
管を原子炉内に設置し、原子炉を運転しても圧力管に局
部水素化が生じなく、圧゛力管が破損する危険性がなく
なる。圧力管と延長管とをロールドジヨイントした後、
焼鈍を空気中にて行なつてもよい。
, Rolled joint is a kind of crimp joint. The roll joint method is the same as the conventional method described above. The pressure tube 1 has extension tubes connected to both ends,
It is sent to an annealing process 20. This annealing is performed in a vacuum atmosphere, and the time required for annealing is approximately 2 hours. The residual stress is considerably removed when the annealing temperature is about 400°C or higher, and is completely removed at about 450°C. However, in the case of zirconium-niobium alloys, when the annealing temperature is about 500°C or higher, age hardening occurs, which changes and deteriorates the characteristics of the pressure tube, which has already been given good characteristics for use in nuclear reactors. Not suitable for pressure pipe applications. It is preferable to set the temperature to 400° C. or higher and within a temperature range in which age hardening does not occur. In other words, niobium is 2
.. In a pressure tube made of a zirconium-niobium alloy in which the balance is substantially zirconium, the annealing temperature is 5%.
When the temperature exceeds 00°C, minute precipitates appear in the zirconium-niobium alloy after solution treatment due to age hardening. Therefore, a potential difference occurs between the solution-treated alloy and the three precipitates, making the pressure tube susceptible to corrosion. Hydrogen generated by corrosion of the pressure pipe further promotes hydrogenation of the pressure pipe. Therefore, the annealing temperature of the pressure tube should be within a temperature range that does not cause age hardening. When the annealing step 20 is completed, the pressure tube is sent to an autoclave treatment step 21. The autoclave treatment is carried out by heating the pressure tube with superheated steam at about 450° C., as described above. As a result, a corrosion-resistant oxide film is formed only on the surface of the pressure pipe. Since the extension tube 4 is made of stainless steel, no corrosion-resistant oxide film is formed on its surface. In this example, a zirconium-niobium alloy pressure tube and a SUS4O
After rolling joint with the extension tube of 3, annealing process 2
Since the material passes through the autoclave treatment step 21, the thermal expansion differs depending on the material, which may cause loosening of the load joint and loss of airtightness. For this reason, after attaching a tightening sleeve made of zirconium-niobium alloy to the outside of the extension tube 2 near the joint between the pressure tube 1 and the extension tube 2 shown in FIG. 1, annealing and autoclaving are performed. It's good to do it. A corrosion-resistant oxide film can be formed on the surface of the pressure pipe without heating as in autoclaving. An example of this is anodic oxidation. This can form a corrosion-resistant oxide film on pressure pipes in a normal temperature atmosphere. In addition, a corrosion-resistant oxide film can also be formed chemically. Finally, the pressure tube is sent to an inspection process 22 to check for leakage from the joint between the pressure tube and the extension tube, and those that have passed this inspection process 22 are installed in a pressure tube reactor. . By joining the pressure pipe and the extension pipe as described above, the two causes of local hydrogenation occurring in the pressure pipe can be eliminated. In other words, the tensile residual stress inside the pressure pipe caused by the rolled joint can be removed by annealing, and a corrosion-resistant oxide film is formed on the pressure pipe surface after the rolled joint. The risk of peeling off is eliminated. Therefore, even if the pressure pipe made by the process of this example is installed in a nuclear reactor and the reactor is operated, local hydrogenation will not occur in the pressure pipe, and there is no risk of damage to the pressure pipe. Gender disappears. After rolling joint the pressure pipe and extension pipe,
Annealing may also be carried out in air.

この場合には焼鈍によつて圧力管表面に酸化被膜が形成
される。この酸化被膜は緻密ではなく耐食性に対しては
あまり効果がない。したがつて、圧力管表面より酸化被
膜を除去した後、オートクレーブ処理卦よび陽極酸化法
によつて緻密な耐食性酸化被膜を圧力管表面に形成する
必要がある。本発明によれば、少量のニオブを含みかつ
残部が実質的にジルコニウムであるジルコニウム−ニオ
ブ合金にて構成された圧力管が、局音酌に水素を吸収し
て水素化物を形成し、脆くなる現象を花市することがで
きる。
In this case, an oxide film is formed on the pressure tube surface by annealing. This oxide film is not dense and has little effect on corrosion resistance. Therefore, after removing the oxide film from the pressure pipe surface, it is necessary to form a dense corrosion-resistant oxide film on the pressure pipe surface by autoclave treatment and anodic oxidation. According to the present invention, a pressure tube made of a zirconium-niobium alloy containing a small amount of niobium and the remainder being substantially zirconium absorbs hydrogen to form a hydride and becomes brittle. The phenomenon can be made into a flower market.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、圧力管と下部延長管とのロールドジヨイント
を説明する半縦断面図、第2図は、圧延加工のみが施こ
された管状試験片の管壁の半径方向断面における残留応
力分布と水素濃度分布を示す特性図、第3図は、管状試
験片の外面に傷をつけた時の水素化の状況を示す管状試
験片の局部断面図、第4図は、管状試験片の内面に鋼球
を押付けた部分の水素化の状況を示す管状試験片の局部
F!fl面図、第5図は、圧延加工後に焼鈍を行なつた
管伏試験片の管壁の半径方向断面に卦ける残留応力分布
と水素濃度分布を示す特性図、第6図は、管状試験片に
耐食性酸化被膜がある場合とない楊合とにおける水素化
速度の違いを示す特性図、第7図は、本発明の好適な一
実施例である異種金属の接合方法を示す工程図。 符号の説明、1・・・・・・圧力管、2・・・・・・下
部延長管、5・・・・・・内スリーブ、19・・・・・
・ロールドジヨイント工程、20・・・・・・焼鈍工程
、21・・・・・・オートクレーブ処理工程。
Fig. 1 is a half-longitudinal cross-sectional view illustrating the rolled joint between the pressure pipe and the lower extension pipe, and Fig. 2 shows the residual residue in the radial cross section of the pipe wall of a tubular specimen that has only been subjected to rolling processing. Characteristic diagram showing the stress distribution and hydrogen concentration distribution. Figure 3 is a local cross-sectional view of the tubular specimen showing the hydrogenation situation when the outer surface of the tubular specimen is scratched. Figure 4 is the characteristic diagram of the tubular specimen. Local F of a tubular specimen showing the hydrogenation status of the part where a steel ball was pressed against the inner surface of the F! FIG. 5 is a characteristic diagram showing the residual stress distribution and hydrogen concentration distribution in the radial cross section of the tube wall of a tube test piece that was annealed after rolling, and FIG. A characteristic diagram showing the difference in hydrogenation rate between when the piece has a corrosion-resistant oxide film and when it does not. FIG. 7 is a process diagram showing a method for joining dissimilar metals according to a preferred embodiment of the present invention. Explanation of symbols: 1...Pressure pipe, 2...Lower extension tube, 5...Inner sleeve, 19...
- Rolled joint process, 20... annealing process, 21... autoclave treatment process.

Claims (1)

【特許請求の範囲】[Claims] 1 圧力管型原子炉に設置されるジルコニウム−ニオブ
合金製の圧力管と、前記圧力管と成分が異なる金属管と
の各端部どうしを圧着接合して一体化し、その後、前記
一体化された各管を400℃以上でしかも前記圧力管が
時効硬化しない温度範囲で焼鈍し、さらにその後、前記
圧力管に耐食性酸化被膜処理を施すことを特徴とする圧
力管と金属管との接合方法。
1 The ends of a pressure tube made of a zirconium-niobium alloy installed in a pressure tube nuclear reactor and a metal tube whose composition is different from that of the pressure tube are crimped and joined together, and then the integrated A method for joining a pressure tube and a metal tube, characterized in that each tube is annealed at 400° C. or higher in a temperature range at which the pressure tube does not age harden, and then a corrosion-resistant oxide coating treatment is applied to the pressure tube.
JP50066456A 1975-06-04 1975-06-04 How to join dissimilar metals Expired JPS596751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50066456A JPS596751B2 (en) 1975-06-04 1975-06-04 How to join dissimilar metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50066456A JPS596751B2 (en) 1975-06-04 1975-06-04 How to join dissimilar metals

Publications (2)

Publication Number Publication Date
JPS51142459A JPS51142459A (en) 1976-12-08
JPS596751B2 true JPS596751B2 (en) 1984-02-14

Family

ID=13316279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50066456A Expired JPS596751B2 (en) 1975-06-04 1975-06-04 How to join dissimilar metals

Country Status (1)

Country Link
JP (1) JPS596751B2 (en)

Also Published As

Publication number Publication date
JPS51142459A (en) 1976-12-08

Similar Documents

Publication Publication Date Title
US3180022A (en) Method of bonding aluminum members
CN106128532B (en) A kind of Reactor fuel element cladding zircaloy titanium alloy composite tube and preparation method thereof
CN107747095A (en) A kind of ni-fe-based alloy weld joint samples metallographic etching agent and application method
CN110026712B (en) Preheating device and preheating method for high-strength titanium alloy surface before repair welding
Busby et al. Halogen stress corrosion cracking of zircaloy-4 tubing
TW198733B (en)
JPS596751B2 (en) How to join dissimilar metals
JPH06194303A (en) Crevice corrosion evaluation device
US4512819A (en) Method for manufacturing a cladding tube of a zirconium alloy for nuclear reactor fuel of a nuclear reactor fuel assembly
JP3481643B2 (en) Vacuum container using beryllium foil for windows
Brutto et al. Diffusion bonding of zircaloy-2 to steel by swaging
JPH0125832B2 (en)
JPS58167089A (en) Manufacture of clad pipe
CN214668923U (en) Nickel pipe for detecting hydrogen concentration of sodium-cooled fast reactor
JPH05172989A (en) Connection method for stainless steel pipe and zirconium alloy pipe
Paprocki et al. The Bonding of Molybdenum-and Niobium-clad Fuel Elements
EP0532920B1 (en) Zirconium and zirconium alloy passivation process
JPS6364275B2 (en)
Rosen et al. Stress corrosion cracking of uranium-silver interfaces in silver-aided diffusion welds: Revision 1
JPS63274084A (en) Heater made of tantalum tube and its manufacture
Kovac et al. Residual-stress measurement in SS304 seamless tube
JP2849217B2 (en) Method for producing zirconium tube and zirconium alloy tube
US3352004A (en) Process for cladding uranium rods
CN115615818A (en) Directional flattening inspection method for shallow cracks on surface of thick-wall boiler tube
Kumar et al. Effect of surface treatments on the thermal emissivity of AISI 304L stainless steel