JPS5967476A - Apparatus for detecting position of moving object - Google Patents

Apparatus for detecting position of moving object

Info

Publication number
JPS5967476A
JPS5967476A JP9083682A JP9083682A JPS5967476A JP S5967476 A JPS5967476 A JP S5967476A JP 9083682 A JP9083682 A JP 9083682A JP 9083682 A JP9083682 A JP 9083682A JP S5967476 A JPS5967476 A JP S5967476A
Authority
JP
Japan
Prior art keywords
light
moving body
moving
light reflecting
reflecting means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9083682A
Other languages
Japanese (ja)
Other versions
JPH0248069B2 (en
Inventor
Toshihiro Tsumura
俊弘 津村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP9083682A priority Critical patent/JPS5967476A/en
Publication of JPS5967476A publication Critical patent/JPS5967476A/en
Publication of JPH0248069B2 publication Critical patent/JPH0248069B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/16Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves

Abstract

PURPOSE:To obtain a position detecting apparatus simple in constitution and receiving no regulation of the Wireless Telegraphy Act, by detecting the position of a moving object by receiving the reflected beams from three known places of laser beam generated from the laser beam means of the moving object. CONSTITUTION:The laser beam from the semiconductive laser 10 mounted to a moving body is emitted to the reflection means at three known points through the slit 6 of a rotor 3 and the reflected beams are scanned to the rotary direction by the rotor 3 to be received by the light receiving elements 6, 7 of the rotor 3. Whereby, registers are successively selected through a ring counter and reflected beam detecting angle directions are stored by a rotary encoder 9. CPU calculates the open angles between three known points on the basis of these stored valves and the position of the moving object is determined by these calculated values and the positional informations of three known points. By this beam utilizing system, the position detecting apparatus of the moving object receiving no regulaton of the Wireless Telegraphy Act is obtained in simple constitution.

Description

【発明の詳細な説明】 この発明は、移動体の位置検知装置に関し特にたとえば
自動車や工場内の無人移a搬送装置や飛行機等の移動体
の位置を検知する装置に関覆る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for detecting the position of a moving object, and particularly relates to a device for detecting the position of a moving object such as an automobile, an unmanned transportation device in a factory, or an airplane.

従来、自動車や飛行機等の移動体の現在位置を検知する
装置とし−C次のようなものがあったうりなわら、地−
トの複数箇所に電波の送信源を設置しCおく。そして、
移動体ではその電波を受信し、受信方位などから移動体
の現在の位置を81¥n4る。
Conventionally, there have been the following devices for detecting the current location of moving objects such as cars and airplanes;
Radio wave transmission sources are installed at multiple locations on the site. and,
The mobile body receives the radio waves and calculates the current position of the mobile body from the reception direction and the like.

このような位置検知装置では、複数の送信装置が必要で
あるため、高価になってしまう。また、送信装置を常時
正常に動作させるために、煩繁に点検亡保守を行なわな
(プればならないという欠点があった。特に、飛行場の
ように屋外で用いられる場合は、送信装置の設置環境が
厳しいものどなるため、常時点検や保守が必要となる。
Such a position sensing device requires a plurality of transmitting devices, which makes it expensive. Another disadvantage is that in order to keep the transmitter operating normally, it is necessary to perform frequent inspections, inspections, and maintenance.Especially when the transmitter is used outdoors, such as at an airport, it is difficult to install the transmitter. Due to the harsh environment, constant inspection and maintenance are required.

さらに、上述のような位置検知装置は電波を検知媒体と
しているため、電波法の規制を受けるという欠点があっ
た。
Furthermore, since the above-described position detection device uses radio waves as a detection medium, it has the disadvantage of being subject to regulations under the Radio Law.

それゆえに、この発明の主たる目的は、安価でかつ白検
や保守の必要がほとんどなく、電波法による2、り制を
全く受tJないような移動体の位置検知装置を提供づる
ことである。
Therefore, the main object of the present invention is to provide a position detecting device for a moving object that is inexpensive, requires almost no inspection or maintenance, and is completely free from restrictions under the Radio Law.

この発明は、要約づれば、移動体から発生した光ビーム
を回動方向に走査覆ることによって移動体の位置を検知
する装置であつ゛C1入躬光方向に光を反則−4る光反
射手段を移動体とは離れた少なくとも3箇所に固定し、
移動体には、光ビーム発(を手段とその光ビームを走査
づる光ビーム走査子[すと光反射手段からの反射光を受
光づる受光手段とを81)、さらに受光手段の受光用ノ
Jに基づいて移動体を中心とJる3つの光反銅手段間の
聞き角を検出し、での検出した開き角と予め設定された
光反射手段の位置情報とに基づいて移動体の位置を演梓
するようにしたものである。
To summarize, the present invention is a device that detects the position of a moving body by scanning and covering a light beam generated from the moving body in the rotating direction, and includes a light reflecting means that reflects light in the direction of incident light. Fixed at least three locations away from the moving object,
The movable body includes a light beam emitting means, a light beam scanner for scanning the light beam, and a light receiving means for receiving the reflected light from the light reflecting means, and a light receiving section of the light receiving means. The hearing angle between the three light reflection means centered around the moving object is detected based on the aperture angle detected at , and the position of the moving object is determined based on the detected opening angle and the preset position information of the light reflection means. It was designed to be amplified.

この発明の」上述の目的およびその池の目的と特徴は、
図面を参照し0行なう以トの詳細な説明から一層明らか
となろう。
The above-mentioned objects and features of this invention are as follows:
It will become clearer from the following detailed description with reference to the drawings.

第1図は後述するこの発明の実施例の原理を説明づるた
めの図である。図において、R1?的に求めるものは、
移動体Vの位置と移動方位である。
FIG. 1 is a diagram for explaining the principle of an embodiment of the invention, which will be described later. In the figure, R1? What you are looking for is
These are the position and moving direction of the moving body V.

そしC1移動体の位置はxy直角座標系の塵1J(xv
Then, the position of C1 moving body is dust 1J (xv
.

VV)としく求められる。また、移19休Vの移動方位
は、y軸(好ましくは東西南北のいずれかの方角どされ
る)からの角度情報φとして求められる。
VV). Further, the moving direction of the movement V is determined as angle information φ from the y-axis (preferably in any one of the north, south, east, and west directions).

この移動体Vには、たとえはレーザなどの鋭い指向11
@右りる光ビームを発生する光ビーム発生手段と、での
光ビームを外部に走査プる光ビーム走査1段ど、後述す
る光反射手段△、BおよびCからの反射光を受光づる受
光手段とを含む。
This moving object V has a sharp pointing 11 such as a laser, for example.
A light beam generating means that generates a light beam, a light beam scanning stage that scans the light beam to the outside, and a light receiving means that receives reflected light from the light reflecting means △, B, and C, which will be described later. means.

一方、移動体Vとは繭れて3つの光反射手段A。On the other hand, the moving object V is cocooned with three light reflecting means A.

BおよびCが設LJられる。これら光反射手段Δないし
くCは、たとえば飛行場などの屋外では地−Fに固定さ
れ、工場などの屋内では天井や壁などに固定される。ぞ
しL1光光反射段ΔないしCはほぼ同じ高さとなるよう
に位置決めされる。ここで、光反射手段△ないしCは入
射した光の方向にでの入側光を反則するという光学的性
質が必要とされる。たどえば、四面体のプリズムを複数
個組合わせることによってそのような光学的性質@得る
ことかできる。これは、いわゆる]−ナキューブと呼ば
れるもので、市販され1いる。
B and C are established LJ. These light reflecting means Δ or C are fixed to the ground -F when outdoors, such as at an airport, and to the ceiling or wall when indoors, such as a factory. The next L1 light reflection stages Δ to C are positioned so that they are approximately at the same height. Here, the light reflecting means Δ to C are required to have an optical property of reflecting the incident light in the direction of the incident light. In other words, such optical properties can be obtained by combining multiple tetrahedral prisms. This is so-called ]-nacube, and is commercially available1.

前述のように、移動体Vからは光ヒームが走査されるが
、この走査面は光反射手段△ないし、Cが形成づる甲面
と等しく選ばれる。したがって、移動体■から出た光は
光反射手段B、(:および△lS。
As described above, the optical beam is scanned from the moving body V, and this scanning surface is selected to be equal to the instep surface formed by the light reflecting means Δ or C. Therefore, the light emitted from the moving body ■ is reflected by the light reflecting means B, (: and ΔlS.

順次入側づる。光反劃f段△ないしCは移#1)休Vか
ら大剣した光をその大幅方向1なわち移動体Vの方向に
反則する。したがつく、移動体Vでは、光反射手段]3
.Cおよび八から順次反引される光ヒームを受光し、そ
のときの光ビームの19光方向を測定することによって
、移動体Vを中心とする光反口1手段BとCとの開き角
βおよび光反射手段Cどへとの開き角αを知ることがで
きる。モの目的で、移動体■には、さらに受光手段とこ
の受光手段の受光出力に基づいて光反射手段Aないし0
間の開き角を検出する開き角検出手段とが設りられる。
Sequential entry. The light reflection stages △ to C reflect the light emitted from the rest V in its wide direction 1, that is, in the direction of the moving body V. However, in the mobile body V, the light reflecting means] 3
.. By receiving the optical beams retracted sequentially from C and 8 and measuring the 19 light direction of the light beam at that time, the opening angle β between the light retracting means B and C with the moving body V at the center can be determined. And the opening angle α to the light reflecting means C can be known. For the purpose of (Mo), the moving body ((2) is further provided with a light receiving means and a light reflecting means (A to 0) based on the light receiving output of this light receiving means.
An opening angle detection means for detecting an opening angle between the opening angles is provided.

ここで、移動体V、光反射手段△、光反射手段Cに注目
でると、その3点を通る1つの円1を描くことができる
。この円1の軌跡を示1方程式は、光反射手段△および
Cの位置情報と王の聞き角αどによって容易に求めるこ
とができる。な「ならば、成る点から見た光反射手段△
およびCの聞き角がαである場合、その成る点は必ず円
′1上に位置するからである。すなわち、同じ円、Fの
異なる3点のつち2点の位置と他の1点から見た2点の
開き角がわかればその3点を通る円の方程式を求めるこ
とができる。同様に、移動体■および光反射手段Cおよ
び光反射手段Bを通る円2の方程式も、光反射手段(ン
おJ:びBの位置情報と移動体Vから見た光反射手段C
および8間の開き角βとによって容易に求めることがで
きる。
If we pay attention to the moving body V, the light reflecting means Δ, and the light reflecting means C, we can draw a circle 1 passing through these three points. An equation 1 representing the locus of this circle 1 can be easily obtained from the position information of the light reflecting means Δ and C, the king's listening angle α, etc. ``Then, the light reflecting means seen from the point consisting of △
This is because when the hearing angle of C and C is α, the point where it is formed is always located on the circle '1. That is, if we know the positions of two of the three different points on the same circle F and the opening angles of the two points as seen from the other point, we can find the equation of the circle passing through those three points. Similarly, the equation of the circle 2 that passes through the moving body (1), the light reflecting means C, and the light reflecting means B is calculated based on the position information of the light reflecting means (N and B) and the light reflecting means C seen from the moving body V.
and the opening angle β between 8 and 8.

」二連のようにしく求めた円1の方程式と円2の方程式
とを連立方程式として、移動体の位置座標を特徴とする
請求めれば、円1と円2との交点の位置、づなわち移動
体■と光反射手段Cとの位置を求めることができる。光
反射手段Cの位置は予めわかっているため、求めた恨か
ら光反射手段Cの位置を除けば、移動体Vの位置を冑る
ことができる。
” The equation of circle 1 and the equation of circle 2, which are obtained in a double series, are set as simultaneous equations, and if the position coordinates of the moving body are characterized, then the position of the intersection of circle 1 and circle 2, the In other words, the positions of the moving object (2) and the light reflecting means C can be determined. Since the position of the light reflecting means C is known in advance, the position of the moving object V can be determined by excluding the position of the light reflecting means C from the determined value.

一ヒ述のような演粋をづる目的で、移動体Vには、法界
手段が設けられる。了しで、この演粋手段には、光反射
手段△ないしCのイc1置情報が予め設定され又いる。
For the purpose of producing the above-mentioned reasoning, the mobile body V is provided with legal world means. In this way, the position information of the light reflecting means Δ to C is set in advance in this display means.

また、開き色検出手段によって検出された聞き角がりえ
られる。
Also, the listening angle detected by the aperture color detection means is displayed.

(iお、移pム体Vの移動刃((7ψ旧青述するようL
o、移!り休Vの(O置がわかれ1.f容易に求めると
とが(−きる。
(I oh, the moving blade of the transmissive body V ((7ψ old blue)
o, move! If the (O position of the rest V is different, 1.f can be easily determined).

次に、!5 @IJ (本Vの位置および移動力lit
の法枠1こついてさらに詳細にyt t(11?する。
next,! 5 @IJ (Book V position and movement power lit
yt t(11?) in more detail.

まず、移動体Vの法枠手段には以下の情報が設定される
First, the following information is set in the legal frame means of the moving body V.

(Xa、 ya)・・・光反射手段△の位置情報(xb
、yb)・・・光反射手段Bの位置情報(XC,yc)
・・・光反射手段Cの位置情報εΔ・・・光反剣手段へ
をCとを結ぶ線分がx軸となづ角度 εB・・・光反射手段CとBとを結ぶ線分が×軸となす
角度 rLA・・・光反射手段AとCとの間の距離Q、B・・
・光反射手段CとBとの間の距離ただし、εA、εB、
εCは、それぞれ、光反射手段△、B、Cの座標から計
算で求めることもできる。
(Xa, ya)...Position information of light reflecting means △ (xb
, yb)...Position information of light reflecting means B (XC, yc)
...Position information of the light reflecting means C εΔ...The line segment connecting the light reflecting means C and the x-axis is at an angle εB...The line segment connecting the light reflecting means C and B is x Angle rLA with the axis... Distance Q between light reflecting means A and C, B...
・Distance between light reflecting means C and B However, εA, εB,
εC can also be calculated from the coordinates of the light reflecting means Δ, B, and C, respectively.

まず、移動体Vからの光ビームの走査によって移動体V
の移動方向に対する光反射手段A、B。
First, the moving body V is scanned by a light beam from the moving body V.
light reflecting means A, B for the direction of movement of.

Cのそれぞれの開き角θ△、θB、θCが測定される。The respective opening angles θΔ, θB, and θC of C are measured.

次に、移動体Vから見た光反射手段△とCどの開き角α
および移動体Vから見た光反射手段CとBとの開き角β
が次式〈1〉および(2)によって求められる。
Next, the opening angle α between the light reflecting means △ and C as seen from the moving body V
and the opening angle β between the light reflecting means C and B as seen from the moving body V.
is determined by the following equations <1> and (2).

α=1θ△−θC+  ・・・(1) β=1θB−〇C1・・・(2) また、)T(Tおよび2の半径γ△およびγBは次式(
3)および(4)によって求められる。
α=1θ△-θC+ ...(1) β=1θB-〇C1...(2) Also, the radii γ△ and γB of )T(T and 2 are calculated by the following formula (
3) and (4).

γΔtanα=琵△/2より γA= (u△/2)cot a・(3)78 tan
β=QB/2より γB=(11B/2)cotβ・(4)ここで、計算を
簡単化するため、光反射手段Cを原点とするXY座欅系
で考える。XY座標系ての円1の中心0Af7)座1!
J(XA、Y△)は、次式(5)および(6)によって
求められる。
From γΔtanα=琵△/2, γA= (u△/2)cot a・(3)78 tan
From β=QB/2, γB=(11B/2)cotβ·(4) Here, in order to simplify the calculation, consider an XY positioning system with the light reflecting means C as the origin. Center of circle 1 in XY coordinate system 0Af7) Locus 1!
J(XA, YΔ) is determined by the following equations (5) and (6).

XΔ=−γAcos  (yt、/2−a−εA’)=
γ△sin  (ε△−1−α) ・・・(5)Y△−
γ△sin  (π/2〜α−ε△)=γAcos  
(ε△・(−α) ・・・(6)XY座標系での円2の
中心OBの座標(XB、YB)も同様にして次式(7)
および(8)にょっ′C求められる。
XΔ=-γAcos (yt,/2-a-εA')=
γ△sin (ε△−1−α) ... (5) Y△−
γ△sin (π/2~α−ε△)=γAcos
(ε△・(-α) ... (6) Similarly, the coordinates (XB, YB) of the center OB of circle 2 in the XY coordinate system are calculated using the following formula (7)
and (8) Nyo'C is found.

XB=7BOO3(π/2−/3+εB>−7BSIn
  (εB−β)  ・ (7)YB=7Bsln  
rπ/2−β−tεB〉= 73 cos  (e B
−β)  ・ (8)ここで、円1および2の方程式は
、それぞれ、次式(9)および〈1o〉となる。
XB=7BOO3(π/2-/3+εB>-7BSIn
(εB−β) ・(7)YB=7Bsln
rπ/2−β−tεB〉=73 cos (e B
-β) (8) Here, the equations of circles 1 and 2 are the following equations (9) and <1o>, respectively.

(Xv−XA)’ + (Yv−YΔ)2=(γAM 
            ・・・(9)(Xv−XB)
’ + (Yv −YB) 2=(γB)2     
      ・・・(1o)XVおよびYvを未知数と
して上述の(9)および(10)式の連立方程式を解く
とXY座標系での移動体Vの位置(XV、YV)が得ら
れる。
(Xv-XA)' + (Yv-YΔ)2=(γAM
...(9) (Xv-XB)
' + (Yv - YB) 2 = (γB) 2
(1o) By solving the above simultaneous equations (9) and (10) with XV and Yv as unknowns, the position (XV, YV) of the moving body V in the XY coordinate system is obtained.

ここで、XV= XC+X V 、 yv= VC+ 
Y Vであるから、xy座標系での移動体Vの位WR(
xv、 yv)は、次式%式%) ) )] (11) ) )] (12) ただし、 X八−(jl、A/ 2 ) cot αsln  (
a△+α)Y八−(JIA/2)cot  acos 
 (εA+a>XB= (JIB/2)cot  βs
in  (εB −13)YB −(Q、8/2 ) 
cot acos(εF3−β)εA−tan ’  
[(ya−yc) / (xa−xc)  ]εB=j
an ’  [(yb−yc) / (xb−XC) 
 ]次に、移動体Vの移動方位φが求められる。まず、
移動体Vと光反射手段Δとを結ぶ線分とx軸とがなす角
度ξが次式(13)によって求められる。
Here, XV=XC+XV, yv=VC+
Since Y V, the position WR of the moving body V in the xy coordinate system is WR (
xv, yv) is the following formula % formula %) )] (11) ))] (12) However, X8-(jl, A/2) cot αsln (
a△+α)Y8-(JIA/2)cot acos
(εA+a>XB= (JIB/2) cot βs
in (εB −13)YB −(Q, 8/2)
cot acos(εF3-β)εA-tan'
[(ya-yc) / (xa-xc) ]εB=j
an' [(yb-yc) / (xb-XC)
] Next, the moving direction φ of the moving body V is determined. first,
The angle ξ formed by the x-axis and the line segment connecting the moving body V and the light reflecting means Δ is determined by the following equation (13).

ξ−jan ’  I  NIV−Va) / (xv
−xa)  ]・・・(13) ここで、φ+θA十ξ=3/2πであるから、移動体V
の移動方位φは次式(14)によって求められる。
ξ-jan 'I NIV-Va) / (xv
-xa)]...(13) Here, since φ+θA0ξ=3/2π, the moving body V
The moving direction φ is determined by the following equation (14).

φ=3/2π−θΔ−ξ ・・・(14)第2図は移動
体Vに設けられる光ビーム発生手段、光ビーム走査手段
、受光手段および開き角検出手段の一例を示す外観図で
ある。図においで、円n3の上板4の中心部には、回転
軸5が固着される。したがって、円筒3は回転軸5の回
転に応じて回転される。また、円筒3の側面には、孔6
が形成される。円[3内部には、後述するように半導体
し〜ザがjQ 4)られCおり、そのレーザ光は孔6を
通して外部に投射される。また、この孔6の両側部には
、光反射手段ΔないしCからの反射光を受光するための
受光部(たとえばフォトダイオードや)第1・トランジ
スタ)7および8が設番プられる。円筒3の下板(図示
t!f)の中央部には、図示しないが軸が固着される。
φ=3/2π−θΔ−ξ (14) FIG. 2 is an external view showing an example of a light beam generating means, a light beam scanning means, a light receiving means, and an opening angle detecting means provided on the moving body V. . In the figure, a rotating shaft 5 is fixed to the center of the upper plate 4 of a circle n3. Therefore, the cylinder 3 is rotated according to the rotation of the rotating shaft 5. In addition, a hole 6 is provided on the side surface of the cylinder 3.
is formed. Inside the circle [3, there is a semiconductor laser (JQ4) as described later, and the laser beam is projected to the outside through the hole 6. Further, on both sides of the hole 6, light receiving parts (for example, photodiodes or first transistors) 7 and 8 are provided for receiving the reflected light from the light reflecting means Δ to C. Although not shown, a shaft is fixed to the center of the lower plate (t!f in the drawing) of the cylinder 3.

この軸は円筒3の回転に応じて回転する。そして、この
軸はロータリエンコーダ9に連結され、円筒3の回転が
ロータリエンコーダ9に伝達される。このロータリエン
コーダ9は円筒3から伝達された回転によって円筒3の
回転内、かつしたがってレーザ光の投射角を検出する。
This shaft rotates in accordance with the rotation of the cylinder 3. This shaft is connected to a rotary encoder 9, and the rotation of the cylinder 3 is transmitted to the rotary encoder 9. This rotary encoder 9 detects the rotation of the cylinder 3 and thus the projection angle of the laser beam by the rotation transmitted from the cylinder 3.

ロータリエンコーダ9は、好ましくは、アブソリュート
タイプのものが用いられ、基準の方向に対するレーザ光
の投射角を検出する。
The rotary encoder 9 is preferably of an absolute type and detects the projection angle of the laser beam with respect to the reference direction.

この基準の方向は、たとえば移動体Vの移動方向に設定
される。
This reference direction is set, for example, to the moving direction of the moving body V.

第3図は12図の実施例の光学系を示す図である。図に
おいて、円筒3の内周壁には、半導体レーザ10が設け
られる。この半導体レーザ10から出射したレーザ光は
レンズ′−11によって拡散され、さらにレンズ12に
よつ(平行光とされる。
FIG. 3 is a diagram showing the optical system of the embodiment shown in FIG. 12. In the figure, a semiconductor laser 10 is provided on the inner peripheral wall of a cylinder 3. The laser light emitted from this semiconductor laser 10 is diffused by a lens '-11, and further passed through a lens 12 (converted into parallel light).

この平行光は円筒3に形成された孔6を通って外部に投
射される。なお、受光部7および8は、光反射手段△な
いしCから反射された光を受光するためのものであるが
、これらの代えてビームスプリッタ22およびこのビー
ムスプリッタ22によつC反射される光反射手段△ない
しCからの光を受光する受光部23を設けてもよい。
This parallel light passes through a hole 6 formed in the cylinder 3 and is projected to the outside. Note that the light receiving sections 7 and 8 are for receiving the light reflected from the light reflecting means Δ to C, but instead of receiving the light reflected by the beam splitter 22 and the light C reflected by the beam splitter 22. A light receiving section 23 for receiving light from the reflecting means Δ to C may be provided.

以上のような構成においで、回転軸5が回転すると、円
筒3かりしたがってその内部の光学系も回転し、レーザ
光の走査が行なわれる。また、円筒3の回転に伴ってロ
ータリエンコーダ9がその回転角度を検出し、移動体V
の移動方向に対するレーザ光の投tJ4h度を検出丈る
In the above configuration, when the rotating shaft 5 rotates, the cylinder 3 and therefore the optical system therein also rotate, and scanning with laser light is performed. Further, as the cylinder 3 rotates, the rotary encoder 9 detects the rotation angle of the cylinder 3 and detects the rotation angle of the cylinder 3.
The laser beam projection angle tJ4h with respect to the moving direction is detected.

第4図はこの発明の一実施例の好ましいブロック図であ
る。図において、ORゲート13には、受光部7および
8から受光出力が与えられる。このORゲート13の出
力はリングカウンタ14に与えられるとともに、AND
ゲーI〜15の一方入力に与えられる。このΔN()ゲ
ート15の他方入力には、ロータリ1ンコーダ9の角度
検出出力が与えられる。すなわち、受光部7および8の
OR出力によってロータリエンコーダ9の出力が取込ま
れる。ANDゲート15の出力はレジスタ16゜17お
よび18に与えられる。これらレジスタ1Gないし18
には、リングカウンタ14の各ビット出力が個別に与え
られる。このビット出力(よレジスタ16ないし18の
書込制御信号として作用する。プなわら、リングカウン
タ14が歩進づるごとにレジスタ16ないし18がレジ
スタ16→レジスタ17=18の順で書込可能とされる
。これらレジスタ16ないし18の出ツノはCPtJ1
9に与えられる。このCPU19には、メモリ20が接
続される。このメモリ20には、光反射手段ΔないしC
の位置情報や移動体Vの位置と移動方位の演nのための
演粋プログラム等が格納される。
FIG. 4 is a preferred block diagram of one embodiment of the present invention. In the figure, OR gate 13 receives light receiving outputs from light receiving sections 7 and 8. The output of this OR gate 13 is given to a ring counter 14, and the AND
It is given to one input of games I to 15. The other input of this ΔN( ) gate 15 is given the angle detection output of the rotary 1 encoder 9 . That is, the output of the rotary encoder 9 is taken in by the OR output of the light receiving sections 7 and 8. The output of AND gate 15 is applied to registers 16, 17 and 18. These registers 1G to 18
Each bit output of the ring counter 14 is individually given to the . This bit output (acts as a write control signal for registers 16 to 18).In other words, each time the ring counter 14 increments, registers 16 to 18 can be written to in the order of register 16 → register 17 = 18. The outputs of these registers 16 to 18 are CPtJ1.
given to 9. A memory 20 is connected to this CPU 19. This memory 20 includes light reflecting means Δ to C.
The location information, the calculation program for the calculation of the position and movement direction of the moving body V, etc. are stored.

したがって、CPU19はレジスタ16ないし18から
与えられる情報に基づいて移動体Vの位置情報や移動方
位の演粋を行なう。さらに、このCP tJ 19には
、利用具間21が接続される。この利用装置21は、C
P U 19によって求められた4(? r情報あるい
は移動方位を利用するための装置で85す、を−どえば
自動操1j装置\\・表示装置等を含む。
Therefore, the CPU 19 calculates the position information and moving direction of the moving body V based on the information given from the registers 16 to 18. Furthermore, this CP tJ 19 is connected to the user equipment 21 . This usage device 21 is a C
Devices for utilizing information or movement direction determined by P U 19 include automatic operation 1j devices, display devices, etc.

動作において、第2図に示づ回転軸5が回転され、レー
ザ光の走査が行1.7ねれる。このとき、ロークリエン
コーダ9からは移動体■の移動方向に対づるシー1f光
の投射角度が順次出ノjされる。ここで、移動体Vから
出たレーザ光が光反射手段Bに大剣し・たとすると、光
反射手段Bはその入射光を移動体V方向に反射する。こ
の反射光は受光部7あるいは8によって検知され、OF
クグー1−13の出力がハイレベルとなる。したがって
、リングカウンタ14が歩進され、たとえばレジスタ1
6が書込可能とされる。才た、ORゲー、f−’I 5
が開成され、ロータリエンコーダ9からの角度情報がレ
ジスタ10に格納される。このとき、レジスタ16に取
込まれた角度情報は、移動体Vの移動方向に対するレー
ザ光の投射角度であるとともに、移動体■の移動方向に
対する光反射手段Bの開き角θBである。さら(、二、
レーリ′光の走査が行なわれ、レーリ°光が光反射手段
Cに大割すると、再びリングカウンタ14が歩進され、
レジスタ17が書込可能とされる。したかつ−(、レジ
スタ17に[−1−クリエンコーダ9からの角度tFJ
 90が格納される。このときの角度情報は移動体Vの
移動方向に苅づる光層fA4手段Cの開き角θCである
。さらに、レーTJ’光の走査が行なわれ、そのレーザ
光が光反射手段△に大剣すると、今度は移ljJ体Vの
移動方向に灼づる光反射手段△の開き角O△がしIジス
タ゛18に格納される。
In operation, the rotating shaft 5 shown in FIG. 2 is rotated, and the laser beam is scanned by 1.7 lines. At this time, the projection angle of the sea 1f light with respect to the moving direction of the moving object (2) is sequentially output from the low-resolution encoder 9. Here, if the laser beam emitted from the moving body V strikes the light reflecting means B, the light reflecting means B reflects the incident light in the direction of the moving body V. This reflected light is detected by the light receiving section 7 or 8, and the OF
The output of Kugu 1-13 becomes high level. Therefore, the ring counter 14 is incremented, for example register 1
6 is writable. Saitama, OR game, f-'I 5
is opened, and the angle information from the rotary encoder 9 is stored in the register 10. At this time, the angle information taken into the register 16 is the projection angle of the laser beam with respect to the moving direction of the moving body V, and the opening angle θB of the light reflecting means B with respect to the moving direction of the moving body (2). Sara(, 2,
When the Rayleigh' light is scanned and the Rayleigh' light is roughly divided into the light reflecting means C, the ring counter 14 is incremented again.
Register 17 is made writable. And - (, register 17 is [-1 - angle tFJ from clear encoder 9
90 is stored. The angle information at this time is the opening angle θC of the optical layer fA4 means C extending in the moving direction of the moving body V. Furthermore, when the laser TJ' light is scanned and the laser beam hits the light reflecting means △, the opening angle O△ of the light reflecting means △ burning in the direction of movement of the moving body V changes. 18.

CI) U 19は、レジスタ16ないし′18から角
度情報θB、OC,θΔを読出し、前述の(1)および
(2)式の法枠を11ない聞き角αおよびβを求める。
CI) U 19 reads the angle information θB, OC, θΔ from the registers 16 to '18, and calculates the listening angles α and β that are outside the normal frame of equations (1) and (2) described above.

以下、(3)ないしく12)式の法枠を(jない、移動
体Vの位置とその移動方位との法枠を行なう。
Hereinafter, the legal framework of equations (3) to 12) (j) is calculated between the position of the moving body V and its moving direction.

以上のごとく、上述の実施例では、地上に従来のような
送信装置を設昏)る必要はなく、簡甲かつ支価な位rf
R検知装冒が得られる。また、光反射手段は送信装置の
ような面倒な点検を保守を何ら必要どしない。さらに、
検知媒体としで用いられる光は相互に1−渉しないため
、無数の移動体■が同時に光層IJ手段△ないしCを利
用しC位置検知をづることができる。
As described above, in the above-mentioned embodiment, there is no need to install a conventional transmitter on the ground, and it is simple and inexpensive to install an RF transmitter.
R-sensing equipment is obtained. Furthermore, the light reflecting means does not require any troublesome inspection or maintenance like the transmitting device. moreover,
Since the light used as the detection medium does not interfere with each other, countless moving objects can simultaneously detect the position of C using the optical layer IJ means Δ to C.

IeK63、上述の実施例r tit、 、移動体に対
す光反射手段ΔないしCの開き角を1愈出するために1
ブソリュ−トタイプのロークリエンコーダを用いたが、
これに代えでインクリメンタルタイプのロータリ1ンコ
ータを用いてもよい。この場合、インクリメンタルタイ
プのロータリエン」−夕′から出力されるパルス数をカ
ラン1〜1ノ、そのカウント値に基づいて角度を求めれ
ばよい。さらに、このJ:うなカウント手段をg(14
)るならば、回転1115をパルスモータなどで駆動し
、そのパルスモータに与えるパルス数をカウンタ手段て
カウンタ手段ることによって角度情報を求めてもよい。
IeK63, the above-mentioned embodiment r tit, 1 in order to increase the opening angle of the light reflecting means Δ to C with respect to the moving body by 1.
I used an absolute type low reencoder, but
Instead of this, an incremental type rotary 1-link coater may be used. In this case, it is sufficient to calculate the number of pulses outputted from the incremental type rotary cylinder 1 to 1 and calculate the angle based on the count value. Furthermore, this J: eel count means is g(14
), the rotation 1115 may be driven by a pulse motor or the like, and the angle information may be obtained by counting the number of pulses applied to the pulse motor.

この場合、ロータリ1ンフーダは不要となる。In this case, the rotary 1 supporter becomes unnecessary.

また、円筒3は全周回転させでもよいし、全周の一部だ
番ノ回lllさせるようにしてもよい、、すなわら、レ
ーザ光の走査範囲に光反射手段△ないしCが入れt、【
よい。
Further, the cylinder 3 may be rotated around the entire circumference, or may be rotated several times over a part of the entire circumference. , [
good.

以上説明しl、:移動体の位同検知装茜は、II々の分
野で用いることができる。たとえば、飛行場にお番ノる
飛行Iの位置検知つ、港湾内での船舶などの位置検知に
用いることができる。さらには、工場などの屋内での無
人移動搬送機械等の位置検知にも用いることができる。
As explained above, the device for detecting the position of a moving body can be used in various fields. For example, it can be used to detect the position of Flight I on duty at an airport, or to detect the position of a ship in a port. Furthermore, it can also be used to detect the position of an unmanned moving conveyance machine indoors such as a factory.

この場合、イひIfI!検知装同に具間て得られた位置
1n報と移動方位情報とによって無人移動搬送機械の移
動を遠隔走査または自動制御することもできる。このよ
うな場合、(CI) U 19おJ、びメ[す20はセ
ンタに設(Jられてもよい。この場合、レジスタ16な
いし18の出力情報をセンタに無線あるいは光を用いて
送信すればよい。
In this case, IhiIfI! The movement of the unmanned mobile transport machine can also be remotely scanned or automatically controlled based on the position information and movement direction information obtained from the detection device. In such a case, the (CI) 19 and 20 may be installed at the center. In this case, the output information of the registers 16 to 18 may be transmitted to the center by wireless or optical. Bye.

第5図はこの発明の他の実施例を示1図である。FIG. 5 is a diagram showing another embodiment of the present invention.

この実施例では、移動体v2にΔl 、 BT 、 C
Jが設番〕られる。一方、移動体v1には、第2図およ
び第3図に示すような光ビーム発生、走査、受光のため
の手段LSが設置ノられる。したがって、この実m閤v
 +、i、移動体V2に対する移動体V1の1目対位置
が演梓されるヮでのために、メモリ20(第4図9照)
には、移動体v2の成る位置(好まり、りI渫、光反射
手段△’ 、 F3’ 、 (:’ のいfれかの位P
¥)を基準とJる光層用f段A′、13′、C′の位置
のデータが記1へされる。また、この位置データは移動
体\12の機種別に記憶される。
In this example, mobile body v2 has Δl, BT, C
J is set number. On the other hand, means LS for generating, scanning, and receiving light beams as shown in FIGS. 2 and 3 is installed in the moving body v1. Therefore, this fruit m 閤v
+, i, the memory 20 (see Fig. 4, 9) for calculating the first position of the moving object V1 with respect to the moving object V2;
, the position of the moving body v2 (preferably, the position of the light reflecting means △', F3', (:')
Data on the positions of the optical layer f-stages A', 13', and C' with J as a reference is entered in record 1. Further, this position data is stored for each model of the moving object\12.

L述のような実施例では、移動体V2から定距離、定角
度を保って移動体V1を移動さけることが容易1;でき
る。
In the embodiment described in L, it is easy to avoid moving the moving body V1 while maintaining a constant distance and a constant angle from the moving body V2.

以上にように、この発明によれば、光ビームを媒体とし
て位階検知を行イ1−)ため、構成が簡単がつプz1西
となり、従来のように面倒な点検や区室がほとんど不要
どなる、また、従来のように電波法などの規制を受ける
ことがない2.さらに無数の移動体が同時(、二位置検
知を行なうことがてぎる。
As described above, according to the present invention, since rank detection is performed using a light beam as a medium, the configuration is simple and there is almost no need for troublesome inspections or compartments as in the past. 2. Also, it is not subject to regulations such as the Radio Law as in the past. Furthermore, it is possible for countless moving objects to perform simultaneous (two-position detection).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の卯Ifを説明するための
図である。第21!lは移動体\/に設けられる光ビー
ム発生手段、光走査手段、受光手段および間き色情11
1手段の一例をポリ−外観図である。第3図14第?図
の光栄系を示す図である1、第4図はこの発明の一実施
例の好ましいブ1jツク図である。 第5図番4との発IIりの他の実施例を示g図τ′ある
。 図にJ3いて、■は移動体、Δ’JいしCは光反射手段
、3は円筒、5は回転軸、7および8は受光部、9は口
〜タリエン」−夕、1oは半導体1ノー・曇ア、19は
CI” tJ、20はメモリを承り。 q+i          、2 (0,0) 葆2目 煽3悶 郵A図 碩S閉 す
FIG. 1 is a diagram for explaining the rabbit If of one embodiment of the present invention. 21st! 1 is a light beam generating means, a light scanning means, a light receiving means, and an interstitial lust 11 provided in the moving body\/
An example of one means is a polygon external view. Figure 3 14th? 1 and 4, which are diagrams showing the optical system in the figure, are preferred block diagrams of one embodiment of the present invention. Fig. τ' is a diagram showing another embodiment of the present invention, which is similar to Fig. 5 and No. 4. In the figure J3, ■ is a moving body, Δ'J to C is a light reflecting means, 3 is a cylinder, 5 is a rotating shaft, 7 and 8 are light receiving parts, 9 is a mouth ~ Tarien'' - evening, 1o is a semiconductor 1 node・Cloud A, 19 is CI" tJ, 20 is memory. q+i, 2 (0,0) Close 2 eyes fan 3 agony post A picture S

Claims (4)

【特許請求の範囲】[Claims] (1) 移動体から発生した光ビームを回動方向に走査
することによって移動体の位置を検知する位置検知装置
であって。 前記移動体とは離れた少なくとも3箇所に設置され、入
射光方向に光を反射する3つの光反射手段、 前記移動体に設けられ、前記光ビームを発生づる光ビー
ム発生手段、 前記移動体に設【ノられ、前記光ビームを回動方向に走
査する光ビーム走査手段、 前記移動体に設けられ、前記光反射手段からの反射光を
受光づる受光手段、 前記受光手段の受光出力に基づいて、前記移動体から見
た前記3つの光反射手段間の開き角を検出プる間き角検
出手段、および 予め前記3つの光反射手段の位置情報が設定され、その
位置情報と前記開き角検出手段によって検出されたa■
き角とに基づいて、前記移動体の位置を演算Jる位置演
算手段を備える、移動体の位置検知装置。
(1) A position detection device that detects the position of a moving body by scanning a light beam generated from the moving body in the rotational direction. three light reflecting means installed at at least three locations apart from the moving body and reflecting light in the direction of incident light; a light beam generating means provided on the moving body and generating the light beam; a light beam scanning means provided on the movable body for scanning the light beam in the rotational direction; a light receiving means provided on the movable body for receiving reflected light from the light reflecting means; , gap angle detection means for detecting the aperture angle between the three light reflection means as seen from the moving body, and position information of the three light reflection means is set in advance, and the position information and the aperture angle detection means are set in advance. a■ detected by means
A position detection device for a movable body, comprising a position calculation means for calculating the position of the movable body based on a tilt angle.
(2) さらに、前記3つの光反射手段の位置情報と前
記開き角検出手段によって検出された開き角とに基づい
て、前記移動体の移動方向を演算する手段を含む、特許
請求の範囲第1項記載の移動体の位置検知装置。
(2) Claim 1 further includes means for calculating the moving direction of the moving body based on the position information of the three light reflecting means and the opening angle detected by the opening angle detecting means. The position detection device for a moving object as described in .
(3) 前記3つの光反射手段は固定物体に設置され、 前記位置演算手段は予め決められた固定位置からの絶対
位置を演算する、特許請求の範囲第1項または第2項記
載の移動体の位置検知Pi置。
(3) The moving body according to claim 1 or 2, wherein the three light reflecting means are installed on a fixed object, and the position calculating means calculates an absolute position from a predetermined fixed position. Position detection Pi location.
(4) 前記3つの光反射手段は前記移動体とは異なる
他の移動体に設置され、 前記位置演算手段は前記他の移動体との相対位置を特徴
する特許請求の範囲第1項または第2項記載の移動体の
位置検知装置。
(4) The three light reflecting means are installed in a moving body different from the moving body, and the position calculating means is characterized by a relative position with respect to the other moving body. 2. The moving body position detection device according to item 2.
JP9083682A 1982-05-27 1982-05-27 Apparatus for detecting position of moving object Granted JPS5967476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9083682A JPS5967476A (en) 1982-05-27 1982-05-27 Apparatus for detecting position of moving object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9083682A JPS5967476A (en) 1982-05-27 1982-05-27 Apparatus for detecting position of moving object

Publications (2)

Publication Number Publication Date
JPS5967476A true JPS5967476A (en) 1984-04-17
JPH0248069B2 JPH0248069B2 (en) 1990-10-23

Family

ID=14009667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9083682A Granted JPS5967476A (en) 1982-05-27 1982-05-27 Apparatus for detecting position of moving object

Country Status (1)

Country Link
JP (1) JPS5967476A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62249010A (en) * 1986-04-21 1987-10-30 Toshihiro Tsumura Position detecting system for moving body
JPS62269610A (en) * 1986-05-16 1987-11-24 株式会社クボタ Running controller of moving body
JPH01146116U (en) * 1988-03-31 1989-10-09
JPH01316808A (en) * 1988-06-17 1989-12-21 Honda Motor Co Ltd Steering controller for self-traveling vehicle
JPH02109105A (en) * 1988-10-18 1990-04-20 Honda Motor Co Ltd Steering position detector for self-traveling vehicle
JPH02157912A (en) * 1988-12-09 1990-06-18 Honda Motor Co Ltd Steering controller for self-traveling vehicle
JPH0358105A (en) * 1989-07-26 1991-03-13 Honda Motor Co Ltd Stering controller of self-running car
JPH0385609A (en) * 1989-08-29 1991-04-10 Honda Motor Co Ltd Steering controller for self-traveling vehicle
ES2184626A1 (en) * 2001-07-16 2003-04-01 Ct De Automatizacion Robotica Moving object localisation system.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4887287A (en) * 1972-02-28 1973-11-16
JPS5237788A (en) * 1975-09-20 1977-03-23 Agency Of Ind Science & Technol Process for production of photovoltaic elements
JPS5273063A (en) * 1975-12-15 1977-06-18 Fujitsu Ltd Method of safety navigation by use of infrared rays
JPS5299849A (en) * 1976-02-16 1977-08-22 Komatsu Mfg Co Ltd Apparatus for measuring actual position of ship on sea
US4099591A (en) * 1976-09-02 1978-07-11 Westinghouse Electric Corp. Vehicle control scanning system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4887287A (en) * 1972-02-28 1973-11-16
JPS5237788A (en) * 1975-09-20 1977-03-23 Agency Of Ind Science & Technol Process for production of photovoltaic elements
JPS5273063A (en) * 1975-12-15 1977-06-18 Fujitsu Ltd Method of safety navigation by use of infrared rays
JPS5299849A (en) * 1976-02-16 1977-08-22 Komatsu Mfg Co Ltd Apparatus for measuring actual position of ship on sea
US4099591A (en) * 1976-09-02 1978-07-11 Westinghouse Electric Corp. Vehicle control scanning system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62249010A (en) * 1986-04-21 1987-10-30 Toshihiro Tsumura Position detecting system for moving body
JPS62269610A (en) * 1986-05-16 1987-11-24 株式会社クボタ Running controller of moving body
JPH0528116B2 (en) * 1986-05-16 1993-04-23 Kubota Kk
JPH01146116U (en) * 1988-03-31 1989-10-09
JPH01316808A (en) * 1988-06-17 1989-12-21 Honda Motor Co Ltd Steering controller for self-traveling vehicle
JPH02109105A (en) * 1988-10-18 1990-04-20 Honda Motor Co Ltd Steering position detector for self-traveling vehicle
JPH02157912A (en) * 1988-12-09 1990-06-18 Honda Motor Co Ltd Steering controller for self-traveling vehicle
JPH0358105A (en) * 1989-07-26 1991-03-13 Honda Motor Co Ltd Stering controller of self-running car
JPH0385609A (en) * 1989-08-29 1991-04-10 Honda Motor Co Ltd Steering controller for self-traveling vehicle
ES2184626A1 (en) * 2001-07-16 2003-04-01 Ct De Automatizacion Robotica Moving object localisation system.

Also Published As

Publication number Publication date
JPH0248069B2 (en) 1990-10-23

Similar Documents

Publication Publication Date Title
US10574963B2 (en) Triangulation scanner and camera for augmented reality
US11879997B2 (en) System for surface analysis and method thereof
US6618133B2 (en) Low cost transmitter with calibration means for use in position measurement systems
US9746311B2 (en) Registering of a scene disintegrating into clusters with position tracking
CN106855411A (en) A kind of robot and its method that map is built with depth camera and obstacle avoidance system
CN103376097B (en) Autoplacement and point converting system
JPS5967476A (en) Apparatus for detecting position of moving object
GB2195852A (en) Position finding
CN109458956A (en) A kind of torsion angle measuring device and method using polarization theory
CN206248049U (en) Laser geometry detector
TWI687709B (en) Sensing device for making two-dimensional optical radar with cone mirror
US20230047975A1 (en) Construction site digital field book for three-dimensional scanners
CN207586429U (en) A kind of high integration double-wedge type 3-D imaging system
EP3723047A1 (en) Localization and projection in buildings based on a reference system
JP2001033244A (en) Position specifying method for moving body and its device
EP4024339A1 (en) Automatic registration of multiple measurement devices
EP4345412A1 (en) On-site compensation of measurement devices
US4413906A (en) Passive optical rangefinder/sextant having search capability
JPS6015508A (en) Position measurement of moving body
EP4180837A1 (en) Removing reflection from scanned data
US20220351417A1 (en) Occlusion detection for laser scan-point coloring
US11614319B2 (en) User interface for three-dimensional measurement device
US20220182853A1 (en) Automatic handling of network communication failure in two-dimensional and three-dimensional coordinate measurement devices
US3443873A (en) Celestial direction finder
US20210373166A1 (en) Three-dimensional (3d) scanner with 3d aperture and tilted optical bandpass filter