JPS5967414A - Optical fiber gyroscope - Google Patents

Optical fiber gyroscope

Info

Publication number
JPS5967414A
JPS5967414A JP57178825A JP17882582A JPS5967414A JP S5967414 A JPS5967414 A JP S5967414A JP 57178825 A JP57178825 A JP 57178825A JP 17882582 A JP17882582 A JP 17882582A JP S5967414 A JPS5967414 A JP S5967414A
Authority
JP
Japan
Prior art keywords
waveguide
light
optical
optical fiber
loop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57178825A
Other languages
Japanese (ja)
Inventor
Yoshinori Oota
太田 義徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57178825A priority Critical patent/JPS5967414A/en
Publication of JPS5967414A publication Critical patent/JPS5967414A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
    • G01C19/72Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams with counter-rotating light beams in a passive ring, e.g. fibre laser gyrometers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Lasers (AREA)
  • Gyroscopes (AREA)

Abstract

PURPOSE:To make it possible to form a device of an integrated circuit composed of a simple optical system having few optical components, by constructing optical paths of lights falling on and coming out of an optical fiber loop so that they do not overlap one upon another. CONSTITUTION:A light being emitted from a semiconductor laser 102, passing through an optical wave-guide 105 and a Y-branch wave-guide 107 on a Z-cut niobic acid lithium single crystal plate 101, being transmitted through a directional coupling type wave- guide 109 on the same plate and falling on an optical fiber loop 103 in a TE mode turns round along the loop 103 clockwise, falls on a directional coupling type wave- guide 110 thereafter in a TM mode and proceeds to a Y branch 108. Meanwhile, a light proceeding from the Y branch 107, passing through the wave-guide 110 and falling on the loop 103 in the TE mode turns round along the loop counterclockwise and falls on a wave-guide 109 in the TM mode, and it proceeds to the Y branch 108. The light procedding from the Y branch 108 passes through a wave-guide 106 and is detected by an optical detector 104. The rotation of the loop 103 is detected from a change in the quantity of light reaching the optical detector 104. Thus, the device is formed of an integrated circuit composed of a simple optical system having few optical components.

Description

【発明の詳細な説明】 本発明はジャイロスコープとくに光ファイバと簡便な集
積光回路と罠よって構成する光フアイバジャイロスコー
プに関するもので冴、る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gyroscope, and more particularly to an optical fiber gyroscope constructed from an optical fiber, a simple integrated optical circuit, and a trap.

運動体の回転連動を検出するジャイロスコープ(ジャイ
ロ)は、各種の航空機船舶等に使われる航法装置のうち
で必要欠くべからざる重要な部品である。
A gyroscope (gyro), which detects the rotational movement of a moving object, is an essential and important component of navigation equipment used in various aircraft, ships, and the like.

現在、一般的に実用されているジャイロの方式はシャイ
on−夕を高速回転するとと洗より、この回転軸が慣性
空間で、一定方向を保つことを利用した機械式のもので
ある。しかしながらこの種のジャイロは、高速の機械回
転を利用するために寿命が極度に短く、高精度の機械加
工技術を要し価格が高いという測点がある。
The gyro system currently in general use is a mechanical type that utilizes the fact that when a shaft is rotated at high speed, the axis of rotation maintains a constant direction in inertial space. However, this type of gyro has an extremely short lifespan because it uses high-speed mechanical rotation, requires high-precision machining technology, and is expensive.

機械的な構成によらず、光学的な構成になるもののひと
つとして、近年、光ファイバの低損失化が、すすんで含
だことによって、とれを長尺にしても充分に嶋い透過率
が得られることから、円形に巻いた光ファイバの入出射
端両側より光を入射させ、出射光の位4目差を干渉によ
って測定し、光7アイパの受けている回転角速度を検出
する、謂ニル光ファイバジャイロの開発が、すすめられ
ている。光ファ・rバレーザジャイロの基本光学系は第
1図に示すようなもので、1はレーザ、2は長尺の単一
モード光ファイバ、3は光検出器、4はビームスプリッ
タである。レーザ1の発振光はビームスプリッタ4によ
って2分され、2分された光はそれぞれ単一モード光フ
ァイバ20両端から入射される。章−モード光ファイバ
2のループを右回りに伝搬した光は、再びビームスプリ
ッタ4によって干渉され、光検出器3によって干渉光強
度が測定される。この光?系が単一モード光ファイバル
ープの面内でΩの角速度で回転していると左右両回りの
光波の間には、 Δ0−4πL几/(cλ) Ω      (1)の位
相差が生ずる。ここで、Ll 几は単一モード光ファイ
バ長さおよびループの半径であJ)、CIλは真空中の
光波の速度及び波長である。長尺な光ファイバを用いる
ことによって感度を増大させることができる。干渉光強
度Pは、 p cc l −) cc)sli         
    (2)で与えられる。この干渉光強度を検出す
ることによって位相差Δグ、これから得られる回転角速
度Ωを測定することができる。
In recent years, as optical fibers have become less optically structured than mechanically, it has become possible to obtain sufficiently high transmittance even when the fibers are made long. Therefore, light is input from both sides of the input and output ends of a circularly wound optical fiber, and the difference in position of the output light is measured by interference, and the rotational angular velocity being received by the optical 7 eyeper is detected. Development of fiber gyro is being promoted. The basic optical system of the optical fiber laser gyro is as shown in FIG. 1, where 1 is a laser, 2 is a long single mode optical fiber, 3 is a photodetector, and 4 is a beam splitter. The oscillation light of the laser 1 is split into two by a beam splitter 4, and each of the two split lights is inputted from both ends of a single mode optical fiber 20. The light propagating clockwise through the loop of the chapter-mode optical fiber 2 is again interfered by the beam splitter 4, and the intensity of the interference light is measured by the photodetector 3. This light? When the system rotates at an angular velocity of Ω in the plane of a single mode optical fiber loop, a phase difference of Δ0−4πL⇠/(cλ) Ω (1) occurs between the light waves in both left and right directions. where Ll is the length of the single mode optical fiber and the radius of the loop J), and CIλ is the speed and wavelength of the light wave in vacuum. Sensitivity can be increased by using long optical fibers. The interference light intensity P is p ccl −) cc) sli
It is given by (2). By detecting this interference light intensity, the phase difference Δg and the rotational angular velocity Ω obtained from this can be measured.

光フアイバループの受ける回転角速度が微小な場合、す
なわち左右両回りの光波間に生ずる位相差が極めて小さ
い場合、(2)弐カ・ら判るように干渉光強度Pは△グ
の余弦関数であるため、その変化は小さく感度が非常に
低いものになってしまう。
When the rotational angular velocity experienced by the optical fiber loop is extremely small, that is, when the phase difference between the left and right optical waves is extremely small, (2) As can be seen from Nika et al., the interference light intensity P is a cosine function of △g. Therefore, the change is small and the sensitivity is extremely low.

これを解決するために通常考えられている方法のひとつ
は、(1)式で示される左右両回りの光波の間の位相差
に90 の位相差バイアスを与える、(2)式の干渉光
強度の感度を最大となるようにすることである。これを
光学系で実現するには、第1図でよって位相変化量の異
なる非相反移相器を挿入するか、相反移相器を用いる場
合には多数のビームスプリッタや反射鏡を用いて光路を
分離し、複雑に構成して等測的に一方向に進行する光の
みに移相を与える方法などが考えられている。いずれも
光ビーム分割による検出光量の減少や周囲温度の変化や
振動等の擾乱を受けやすく高感度の回転速度の検出が困
難である。また相反移相器の代りに音響光学素子を挿入
してヘテロゲイン検出する方法もあるが、この場合も多
数の光ビーム分割や反感度な検出能力を有するものであ
るが、従来の実現方法では光学系が非常に複雑とカレ、
周囲の各種の擾乱にも耐えるような実用性のある構成方
法ではない。また、光学系の構成が複雑であるがだめ、
周囲の擾乱を受けにくい導波形光集積回路で実現するこ
とも困難である。
One of the methods usually considered to solve this problem is to apply a phase difference bias of 90° to the phase difference between the left and right light waves shown in equation (1), and to apply the interference light intensity in equation (2). The goal is to maximize the sensitivity of To achieve this with an optical system, you can either insert a non-reciprocal phase shifter with different amounts of phase change, as shown in Figure 1, or, if a reciprocal phase shifter is used, use multiple beam splitters or reflectors in the optical path. A method is being considered in which the phase shift is applied only to light traveling isometrically in one direction using a complex configuration. Both methods are susceptible to disturbances such as a decrease in the amount of detected light due to light beam splitting, changes in ambient temperature, and vibrations, making it difficult to detect rotational speed with high sensitivity. There is also a method of heterogain detection by inserting an acousto-optic element instead of a reciprocal phase shifter, but this also has the ability to split multiple light beams and detect insensitivity. My boyfriend thinks that the system is very complicated.
It is not a practical construction method that can withstand various disturbances in the surroundings. Also, the configuration of the optical system is complicated, but
It is also difficult to realize this with a waveguide optical integrated circuit that is less susceptible to surrounding disturbances.

本発明の目的は、構成光学部品の少い単純な光学系で光
集積回路で構成することが容易な光フアイバジャイロを
提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an optical fiber gyro that has a simple optical system with fewer optical components and can be easily constructed using an optical integrated circuit.

本発明によれば、レーザと該レーザの出射光を2つの導
波光に分割する第1の分岐導波路と該第1の分岐導波路
によって分割された第1の導波光を透過する第1の方向
性結合形光導波路と第2の導波光を透過する第2の方向
性結合形光導波路と前記第1の方向性結合形光導波路を
透過した第1の導波光を第1の端面から入射させ、前記
第2の方向性結合形光導波路を透過した第2の導波光を
第2の端面から入射させ、しかも入射光の偏光と出射光
の偏光とが直交するように配置せられた光フアイバルー
プと、該光フアイバループの第1の端面から出射し前記
第1の方向性結合形光導波路の前記第1の導波光の入射
する導波路とは異なる導波路から出射する導波光と前記
光フアイバループの第2の端面力・ら出射し、前記第2
の方向性結金形光導波路の前記第2の導波光の入射する
導波路とは異なる導波路から出射する導波光とを干渉さ
せる第2の分岐導波路と該第2の分岐導波路の出射光を
検出する光検出器と前記光フアイバループに入射まだは
出射する2つの導波光間に位相差まだは周波数差を与え
る手段とによって感度及び精度の高い光フアイバジャイ
ロが得られる。
According to the present invention, there is provided a laser, a first branching waveguide that splits the output light of the laser into two guided waves, and a first branching waveguide that transmits the first guided light split by the first branching waveguide. A directionally coupled optical waveguide, a second directionally coupled optical waveguide that transmits the second guided light, and a first guided light that has passed through the first directionally coupled optical waveguide are incident from the first end surface. and the second guided light transmitted through the second directionally coupled optical waveguide is made incident from the second end surface, and the light is arranged such that the polarization of the incident light and the polarization of the output light are orthogonal to each other. a fiber loop, a guided light that is emitted from a first end face of the optical fiber loop and that is emitted from a waveguide different from a waveguide into which the first guided light of the first directionally coupled optical waveguide is incident; The second end face force of the optical fiber loop is emitted from the second end face of the optical fiber loop, and the second
a second branching waveguide that interferes with guided light emitted from a waveguide different from the waveguide into which the second waveguide light enters the directional metal-type optical waveguide; and an output of the second branched waveguide. An optical fiber gyro with high sensitivity and precision can be obtained by a photodetector for detecting incident light and a means for providing a phase difference or a frequency difference between two guided light beams entering or exiting the optical fiber loop.

本発明の詳細を更に実施例に基づいて図面を用いて説明
する。第2図は本発明の一実施例の溝成原理図で、10
1はZカッ)7オブ(1+)チウム単結晶板、102は
半導体レーザ、103は光フアイバループ、104は光
検出器、1o5から110まではニオブ酸リチウム結晶
表面に形成したチャンネル形光導波路で、105.10
6は単一チャンネル導波路、107、108はY分岐導
波路、109.110は方向性結合形光導波路、112
は導波光に位相シフトを与える金属膜である。半導体レ
ーザ102の発振光は導波路105中のTl13モード
として導波され、Y分岐107において、はぼ等強度に
2つの分岐導波路に分割される。2つの分岐導波路の一
方は方向性結合形感波路109へ、他方は別なる方向性
結合形光導波路110へ接続されている。方向性結合導
波路109、110でTI3モードは入射した導波路と
同一の導波路を辷り、1Mモードは接近して設けられた
隣接の導波路に光路を移るように設定せられてぃ/ρ2 る。Y分岐導波路老臣で分岐され方向性結合形溝の一端
カ・ら入射し、該ループを時計方向に周回する。一方、
Y分岐導波路107から叱方の方向性結合形感波路11
0に導び力1れたTEモードは該方向性結合形感波路1
10を透過して光フアイバループ103の他端から入射
し、該ループを反時計方向にひ゛ 周回する。光フアイバルー1103は第1及ば第2の実
施例の説明で述べたと同様に設置されている。
The details of the present invention will be further explained based on embodiments and with reference to the drawings. FIG. 2 is a diagram showing the principle of groove formation in one embodiment of the present invention.
1 is a 7-of-(1+) lithium single crystal plate, 102 is a semiconductor laser, 103 is an optical fiber loop, 104 is a photodetector, and 1o5 to 110 are channel-type optical waveguides formed on the surface of a lithium niobate crystal. , 105.10
6 is a single channel waveguide, 107 and 108 are Y branch waveguides, 109 and 110 are directionally coupled optical waveguides, 112
is a metal film that gives a phase shift to the guided light. The oscillation light of the semiconductor laser 102 is guided as a Tl13 mode in the waveguide 105, and is split into two branch waveguides with approximately equal intensity at the Y branch 107. One of the two branch waveguides is connected to a directionally coupled waveguide 109, and the other is connected to another directionally coupled optical waveguide 110. In the directional coupling waveguides 109 and 110, the TI3 mode is set to traverse the same waveguide as the incident waveguide, and the 1M mode is set to move the optical path to an adjacent waveguide provided close to each other./ρ2 Ru. The light is branched at the Y-branch waveguide, enters one end of the directional coupling groove, and circulates around the loop clockwise. on the other hand,
From the Y-branch waveguide 107 to the directionally coupled waveguide 11
The TE mode which is guided to 0 and has a force of 1 is the directionally coupled waveguide 1.
10, enters the other end of the optical fiber loop 103, and goes around the loop counterclockwise. The optical fiber loop 1103 is installed in the same manner as described in the description of the first and second embodiments.

すなわち、光フアイバループ103は、たとえば偏光保
存ファイバのように入射の偏光と出射の偏光との関係が
固定した関係を有する光ファイバで構成されており、し
かも入射光の偏光と出射光の偏光とが直交するように配
置せられている。
That is, the optical fiber loop 103 is composed of an optical fiber such as a polarization-maintaining fiber in which the relationship between the polarization of the input light and the polarization of the output light is fixed, and the polarization of the input light and the polarization of the output light are fixed. are arranged so that they are orthogonal.

Y分岐107から方向性結合形感波路109を透過して
光フアイバループ103にTEモードで入射した光はル
ープを時計方向に周回した後、他端側に接続する別なる
方向性結合形感波路110へ1Mモードとして入射する
。該方向性結合導波路110に入射した1Mモードは隣
接した導波路にエネルギを移行させ、Y分岐導波路10
8へ向う。
The light that passes through the directionally coupled waveguide 109 from the Y branch 107 and enters the optical fiber loop 103 in TE mode goes around the loop clockwise, and then passes through another directionally coupled waveguide connected to the other end. 110 as a 1M mode. The 1M mode incident on the directional coupling waveguide 110 transfers energy to the adjacent waveguide, and the Y-branch waveguide 10
Head to 8.

また一方、Y分岐107九ら方向性結合形感波路110
を透過して光フアイバループ103にTEモードで入射
した光はループを反時計方向に周回した後、他端側に接
続する方向性結合形感波路109へ′rMモードとして
入射する。該方向性結合導波路109に入射した1Mモ
ードは、入射したチャンネルに隣接したチャンネルに移
行し、Y分岐導波路108へ向う。方向性結合形感波路
109とY分岐導波路108を継ぐ直線導波路と、方向
性結合形感波路110とY分岐導波路107を継ぐ直線
導波路とは111で交差しているが、交差角を4°程度
以上に設定すれば、それぞれの直線導波路進行してきた
光量 は洸差する他方の導波路へ、はとんど漏れ込むこ2つの
分岐導波路から進行して@だ光が同位相であれば合流し
て単一の導波路106へ進行し、逆位相であれば、結晶
基板内へ放射光となって放射され、導波路106を進行
する光は消失する干渉の機能を有し、2つの分岐導波路
を進行し、てきた光の位相関係によって導波路106に
進み、光検出器104で検出される光量は変化する。位
相シフタ112は導波路」二に設置された金属膜である
On the other hand, Y branch 107 nine directionally coupled waveguides 110
The light that passes through the optical fiber loop 103 and enters the optical fiber loop 103 in TE mode goes around the loop counterclockwise, and then enters the directionally coupled waveguide 109 connected to the other end as an 'rM mode. The 1M mode incident on the directional coupling waveguide 109 transfers to a channel adjacent to the channel into which it entered, and heads toward the Y-branch waveguide 108. The straight waveguide that connects the directionally coupled waveguide 109 and the Y-branch waveguide 108 and the straight waveguide that connects the directionally coupled waveguide 110 and the Y-branch waveguide 107 intersect at 111, but the intersection angle is If the angle is set to about 4° or more, the amount of light traveling through each straight waveguide will leak into the other waveguide, and the light traveling from the two branch waveguides will be the same. If the phases are in phase, they merge and proceed to a single waveguide 106, and if they are in opposite phases, they are emitted as synchrotron radiation into the crystal substrate, and the light traveling through the waveguide 106 has an interference function in which it disappears. However, the light propagates through two branch waveguides and reaches the waveguide 106 depending on the phase relationship of the light, and the amount of light detected by the photodetector 104 changes. The phase shifter 112 is a metal film placed on the waveguide.

導波路上に誘電体まだは金属膜等光学的な特性が空気と
は異なる物質が設けられて艷ると導波路中を伝わる導波
光の位相速度は導波路表面が空気である場合とは変化す
る。金属膜の光透過方向の長さを調節することによって
Y分岐導波路107の2方の分岐導波路を伝わってゆく
光波の間に適切な位相差を与えることができる。
When a material with optical properties different from air, such as a dielectric or a metal film, is placed on the waveguide, the phase velocity of the guided light propagating through the waveguide will change from that when the waveguide surface is air. do. By adjusting the length of the metal film in the light transmission direction, an appropriate phase difference can be provided between the light waves propagating through the two branch waveguides of the Y branch waveguide 107.

回転が光フアイバループ103に加えられると、時計及
び反時計方向に進行する光波の間に位相差が生じ、その
位相差に応じてY分岐導波路を出射し光検出器に到達す
る光蓋が変化し、回転角速度の変化が検出される。
When rotation is applied to the optical fiber loop 103, a phase difference occurs between the light waves traveling in the clockwise and counterclockwise directions, and depending on the phase difference, the optical cover that exits the Y-branch waveguide and reaches the photodetector is The change in rotational angular velocity is detected.

以上の説明のように光フアイバループから出射し、また
、これに入射する光は光路を空間的に別にするため、一
方向に進行する光波のみに位相バイアスを与えることが
でき、極めて簡便に光学系を構成することができる。
As explained above, the optical paths of the light emitted from and incident on the optical fiber loop are separated spatially, so it is possible to apply a phase bias to only the light waves traveling in one direction, making it extremely easy to use optical fibers. system can be constructed.

また、レーザ1に戻る光波もほとんど無いためレーザの
発振も不安定さを生ずることなく、雑音の極めて低い回
転角速度の検出ができる。
Furthermore, since there are almost no light waves returning to the laser 1, the oscillation of the laser does not become unstable, and the rotational angular velocity can be detected with extremely low noise.

方向性結合形光導波路のモードによる透過特性の違いは
、次のように生じ嘔せることかでさる。
Differences in transmission characteristics depending on the mode of a directionally coupled optical waveguide occur as follows.

導波チャンネル部及びそれを取囲訃媒体が光学的に等方
であっても、TEモードの等価屈折串(導f人 波虚搬波数を空気中の波数を除した値)のほうがT M
モードのそれよりも大きく、導波部内のモードの閉込め
が強い。このため方向性結合形溝波路を形成すると、完
全結合長すなわち一方の導波路から近接する他方の導波
路へエネルギがすべて移行するのに要する伝搬距離がチ
ャンネル部の屈折率を制御し、結合部の長さを設定する
と、TEモードを入射させるとそのエネルギの90%以
上が入射した導波路と同一のチャンネルを直進し、僅か
10%以下が隣接する導波路に結合し、TMモードを入
射させると、90%以上が隣りの導波路に10%以下が
直進するという状態を容易に作り出すことができる。1
0%以下の漏れ光でも測定の(5度を落すことになる場
合には、以下のようにこれを除去する。第2図において
、たとえばY分岐導波路107を経て、方向性結合形溝
波路109に醇んだTBモード光は、そのエネルギを僅
か隣接する導波路に移行させるが、該導波路の端部11
4において散乱させ結晶基板101外に放射させること
ができる。このことはY分岐導波路107を経て別なる
方向性結合形溝波路110に進んで来るTNモード光に
つφても端部115によって同様に行なエル。また、光
フアイバループ103から方向性結合形溝波路109に
入射するTM波は、大部分結合部において隣接導波路に
エネルギを移行させ、Y分岐導波路108に進むが、僅
かのエネルギは直進し、Y分岐導波路107を経て、半
導体レーザ102に再入射し、該レーザの発振特性を不
安定にし雑音発生の原因となる恐れがあるが、方向性結
合形溝波路1097’+1らY分岐導波路]07に向う
途中に設けられた金属膜112によって吸収される。ま
た光フアイバループ103から方向性結合形溝波路L1
3に入射する光についても、該方向性結合形溝波路10
3からY分岐導波路IQ7に向う導波路に金属膜を設け
ることによってBH6q又させることができろ。
Even if the waveguide channel part and the surrounding medium are optically isotropic, the equivalent refraction skewer of the TE mode (the value obtained by dividing the imaginary carrier number of the guided human wave by the wave number in air) is T M
It is larger than that of the mode, and the mode confinement within the waveguide is strong. Therefore, when a directionally coupled groove waveguide is formed, the complete coupling length, that is, the propagation distance required for all the energy to transfer from one waveguide to the other nearby waveguide, controls the refractive index of the channel part, and the coupling part By setting the length, when the TE mode is input, more than 90% of its energy will go straight through the same channel as the input waveguide, and only 10% or less will be coupled to the adjacent waveguide, allowing the TM mode to enter. Then, it is possible to easily create a state in which 90% or more of the waveguide goes straight to the adjacent waveguide and 10% or less of the waveguide goes straight. 1
If the leakage light of 0% or less results in a loss of 5 degrees in the measurement, this is removed as follows. In FIG. The TB mode light absorbed in the waveguide 109 slightly transfers its energy to the adjacent waveguide, but at the end 11 of the waveguide.
4, the light can be scattered and radiated outside the crystal substrate 101. This is similarly done by the end portion 115 for the TN mode light that travels through the Y-branch waveguide 107 to another directionally coupled groove waveguide 110. Furthermore, most of the TM wave that enters the directionally coupled groove waveguide 109 from the optical fiber loop 103 transfers its energy to the adjacent waveguide at the coupling portion and proceeds to the Y-branch waveguide 108, but a small amount of energy does not propagate straight. , through the Y-branch waveguide 107, and may re-inject into the semiconductor laser 102, making the oscillation characteristics of the laser unstable and causing noise. The wave path] is absorbed by the metal film 112 provided on the way to 07. In addition, from the optical fiber loop 103 to the directional coupling groove waveguide L1
3, the directionally coupled groove waveguide 10
By providing a metal film on the waveguide from 3 to the Y-branch waveguide IQ7, BH6q can be changed.

位相シフトの機能は、2つの金属膜112と113の光
進行方向の長さに違いを設けろことで支障なく行なえる
The phase shift function can be performed without any problem by providing the two metal films 112 and 113 with different lengths in the light traveling direction.

本実施例の説明では、位相シフタを半導体レーザ力)ら
光フアイバループに向うIll I)モードの伝搬路上
に設ける場合を述べたが、2つの方向性結合形溝波路1
09.110からY分岐導波路lo8に向うT Mモー
ドの伝搬路」二に誘′ぺ体膜等を装荷してもよい。また
、上記の訣5明では位相シフタは位相偏移鰍を固定的に
与えろ場合を述べたが、基板結晶は電気光学効果を有す
るので、結晶上に・成極を赦は電界印加することによっ
て可変の位相偏移を与えることができる。まだ、与える
電界波形を鋸歯状波形とすると波長シフタとなることが
知られている。これによってヘテロダイン検出を行うこ
とも可能である。
In the description of this embodiment, a case has been described in which the phase shifter is provided on the propagation path of the Ill I) mode from the semiconductor laser force) to the optical fiber loop.
A dielectric film or the like may be loaded on the TM mode propagation path from 09.110 to the Y branch waveguide lo8. In addition, in Tip 5 above, it was described that the phase shifter should provide a fixed phase shift, but since the substrate crystal has an electro-optical effect, polarization can be achieved by applying an electric field on the crystal. A variable phase shift can be provided. It is known that if the applied electric field waveform is a sawtooth waveform, a wavelength shifter can be obtained. This also allows heterodyne detection.

また半導体レーザ光を分割する機能や光フアイバ透過光
を干渉させる機能にY分岐4波路を用いる場合を述べだ
が、勿9Y分岐導波路の替りに方向性結合形溝波路を用
いてもよい。そして光検出器2つを方向性結合形溝波路
の2つの出力側導波路のそれぞれ設け、差動的に干渉光
を検出してもよい。光フアイバループに使用する光フア
イバ素線は偏光保存ファイバの場合を述べだが、光フア
イバジャイロ装置内に装備される光ファイバは振動等で
動くことはなく固ホされており、まだ長さも数百mから
’lft7jl k m以下と比較的短尺であることか
ら偏光保存ファイバでなく、通常の単一モードファイバ
を用いることができる。なぜならば、短尺で空間的な位
置移動がなければ、単一モードファイバを透過する光の
入射偏光と出射時の偏光の関係は固定しており、またそ
の出射時の偏光は制御することができるbらである。す
なわち、−搬に直線偏光を入射させると無偏光状態で出
射することなく、一般に楕円偏光となっている。
Furthermore, although a case has been described in which a four-Y branch waveguide is used for the function of splitting the semiconductor laser light and the function of interfering with the light transmitted through the optical fiber, it is of course possible to use a directional coupling groove waveguide instead of the Y-branch waveguide. Two photodetectors may be provided in each of the two output side waveguides of the directionally coupled groove waveguide to differentially detect the interference light. The optical fiber used in the optical fiber loop is a polarization-maintaining fiber, but the optical fiber installed in the optical fiber gyro device is fixed and does not move due to vibration etc., and the length is still several hundred. Since it is relatively short, from m to 'lft7jl km or less, a normal single mode fiber can be used instead of a polarization maintaining fiber. This is because, as long as the fiber is short and there is no spatial positional movement, the relationship between the input polarization of light that passes through a single mode fiber and the polarization at the time of output is fixed, and the polarization at the time of output can be controlled. b et al. That is, when linearly polarized light is incident on the -carrier, it does not emerge in an unpolarized state, but generally becomes elliptically polarized light.

そしてよく知られているように単一モードファイバを数
10朋程度の直径に数回前いた小ループを1個または複
数個形成し、このループをループの直径を軸として回転
調整することによって任意の方向に振動する直線偏光を
生成することができろ。
As is well known, by forming one or more small loops in a single mode fiber with a diameter of several tens of mm, and rotating the loop around the loop diameter, the loop can be adjusted as desired. Can you generate linearly polarized light that oscillates in the direction of

また、本実施例の説明では基板に電気光学結晶を用いる
場合を述べたが、ガラスのような常誘電材料また光源や
光検出器、更には′岨気回路をも同一基板上集積形成で
きる半尋体材料などを用いることも可能である。
In addition, although the case where an electro-optic crystal is used for the substrate has been described in the explanation of this embodiment, paraelectric materials such as glass, light sources, photodetectors, and even optical circuits can be integrated on the same substrate. It is also possible to use a body material or the like.

以上述べたように、本発明の光フアイバジャイロは、光
フアイバループに入出射する光路が、;ハずれも重なる
ことが無いため、位相偏移手段を光路中に挿入するとと
が容易であり、また光の損失が少く光検出器の受光レベ
ルが高い。このため感度及び精度の高い回転角速度の検
出が可能である。
As described above, in the optical fiber gyro of the present invention, the optical paths entering and exiting the optical fiber loop do not shift or overlap, so it is easy to insert the phase shift means into the optical path. In addition, there is little loss of light and the level of light received by the photodetector is high. Therefore, it is possible to detect the rotational angular velocity with high sensitivity and accuracy.

また、光学構成を単純であり、また集積化がされている
ため周囲温度の変化による光部品のずれを生ずることが
なく安定である。
Furthermore, since the optical configuration is simple and integrated, the optical components do not shift due to changes in ambient temperature and are stable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光フアイバジャイロの茎本原理を説明する図で
、1はレーザ、2は光フアイバループ、3は光検出器、
4はハーフミラ−である。 第2図は本発明の1つの実施例の構成原理図で101は
基板、102はレーザ、103は光フアイバループ、1
04は光検出器、107.108はY分岐光導波路、l
Q9.110は方向性結合形光導波路、112は位相シ
フタである。
Figure 1 is a diagram explaining the basic principle of an optical fiber gyro, in which 1 is a laser, 2 is an optical fiber loop, 3 is a photodetector,
4 is a half mirror. FIG. 2 is a diagram showing the basic structure of one embodiment of the present invention, in which 101 is a substrate, 102 is a laser, 103 is an optical fiber loop, 1
04 is a photodetector, 107.108 is a Y branch optical waveguide, l
Q9.110 is a directional coupling type optical waveguide, and 112 is a phase shifter.

Claims (1)

【特許請求の範囲】[Claims] レーザと該レーザの出射光を2つの4波光に分割する第
1の分岐導波路と該第1の分岐導波路によって分割され
た第1の導波光を透過する第1の方向性結合形光導波路
と、第2の導波光を透過する第2の方向性結合形光導波
路と、前記第1の方向性結合形光導波路を透過した第1
の榊1波光を第1の端面から入射させ、前記第2の方向
性結合形光導波路を透過した第2の導波光を第2の端面
から入射させ、しかも、入射光の偏光と出射光の偏光と
が直交するように配置せられた光ファイバルーブト該光
ファイバループの第1の端面力λら出射し、前記第1の
方向性結合形光導波路の前記第12の導波光の入射する
導波路とは異なる導波路から出射する導波光と前記光フ
アイバループの第2の端面かも出射し、前記第2の方向
性結合形光導波路の前記第2の導波光の入射する導波路
とは異なる導波路から出射する導波光とを干渉させる第
2の分岐導波路と該第2の分岐導波路の出射光を検出す
る光検出器と前記光7アイパル〜プに入射または出射す
る2つの導波光間に位相差まだは周波数を与える手段と
から成る仁とを特徴とする光フアイバジャイロ。
A laser, a first branching waveguide that splits the output light of the laser into two four-wave lights, and a first directionally coupled optical waveguide that transmits the first guided light split by the first branching waveguide. , a second directionally coupled optical waveguide that transmits the second waveguide light, and a first directionally coupled optical waveguide that transmits the first directionally coupled optical waveguide.
Sakaki 1-wave light is made to enter from the first end surface, and the second waveguide light that has passed through the second directionally coupled optical waveguide is made to be made to enter from the second end surface, and the polarization of the incident light and the output light are different. The optical fiber loop is arranged such that the polarized light is perpendicular to the first end face force λ of the optical fiber loop, and the twelfth guided light of the first directionally coupled optical waveguide enters the optical fiber loop. The guided light emitted from a waveguide different from the waveguide and the second end face of the optical fiber loop are also emitted, and the waveguide into which the second guided light of the second directionally coupled optical waveguide is incident. A second branching waveguide that interferes with guided light emitted from different waveguides, a photodetector that detects the light emitted from the second branching waveguide, and two guideways that enter or exit the light 7 eye pulses. An optical fiber gyro comprising means for imparting a phase difference and a frequency between waves and light.
JP57178825A 1982-10-12 1982-10-12 Optical fiber gyroscope Pending JPS5967414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57178825A JPS5967414A (en) 1982-10-12 1982-10-12 Optical fiber gyroscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57178825A JPS5967414A (en) 1982-10-12 1982-10-12 Optical fiber gyroscope

Publications (1)

Publication Number Publication Date
JPS5967414A true JPS5967414A (en) 1984-04-17

Family

ID=16055318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57178825A Pending JPS5967414A (en) 1982-10-12 1982-10-12 Optical fiber gyroscope

Country Status (1)

Country Link
JP (1) JPS5967414A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120268A (en) * 1994-04-22 1995-05-12 Japan Aviation Electron Ind Ltd Supporting structure of optical integrated circuit for optical-interference angular velocity meter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120268A (en) * 1994-04-22 1995-05-12 Japan Aviation Electron Ind Ltd Supporting structure of optical integrated circuit for optical-interference angular velocity meter

Similar Documents

Publication Publication Date Title
Bergh et al. An overview of fiber-optic gyroscopes
CA2034899C (en) Integrated optics decorrelator
US4420258A (en) Dual input gyroscope
EP0434767B1 (en) Passive ring resonator gyro with polarization rotating ring path
US9506759B2 (en) Energy-efficient optic gyroscope devices
EP2957863A1 (en) Small low cost resonator fiber optic gyroscope with reduced optical errors
JPH04231815A (en) Optical-fiber measuring apparatus
JPH0130317B2 (en)
EP3447446B1 (en) Systems and methods for reducing polarization-related bias errors in rfogs
US5020912A (en) Fiber optic rotation sensing system and method for basing a feedback signal outside of a legion of instability
US5037205A (en) Integrated optic interferometric fiber gyroscope module and method
EP0563279A1 (en) Fiber optic gyro.
US4944591A (en) Double phase-conjugate fiber optic gyroscope
JPH09318367A (en) Optical fiber gyro and optical integrated circuit
US4382681A (en) Measurement of rotation rate using Sagnac effect
US4420259A (en) Double coupled dual input rate sensor
JPS6385313A (en) Sagnack ring rotaion sensor and method of forming sagnack ring rotation sensor
US4283144A (en) Method of fiber interferometry zero fringe shift referencing using passive optical couplers
EP0078931A1 (en) Angular rate sensor
EP0373200B1 (en) Sagnac Ring Rotation Sensor and Method of Use thereof
RU2762530C1 (en) Interferometric fiber-optic gyroscope
JPS5967414A (en) Optical fiber gyroscope
US5120130A (en) Apparatus and method for reducing phase errors in an interferometer
JPH0354283B2 (en)
Bergh All-fiber gyroscope with optical-Kerr-effect compensation