JPS596633Y2 - Heating element device using positive temperature coefficient thermistor - Google Patents

Heating element device using positive temperature coefficient thermistor

Info

Publication number
JPS596633Y2
JPS596633Y2 JP1975104908U JP10490875U JPS596633Y2 JP S596633 Y2 JPS596633 Y2 JP S596633Y2 JP 1975104908 U JP1975104908 U JP 1975104908U JP 10490875 U JP10490875 U JP 10490875U JP S596633 Y2 JPS596633 Y2 JP S596633Y2
Authority
JP
Japan
Prior art keywords
insulating spacer
coefficient thermistor
positive temperature
temperature coefficient
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1975104908U
Other languages
Japanese (ja)
Other versions
JPS5218443U (en
Inventor
利和 中村
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP1975104908U priority Critical patent/JPS596633Y2/en
Publication of JPS5218443U publication Critical patent/JPS5218443U/ja
Application granted granted Critical
Publication of JPS596633Y2 publication Critical patent/JPS596633Y2/en
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 一般に正特性サーミスタを用いた発熱体においては、そ
の発生熱を外部に良好に放散させることが望ましい。
[Detailed Description of the Invention] Generally, in a heating element using a positive temperature coefficient thermistor, it is desirable to effectively dissipate the generated heat to the outside.

つまりこのことは正特性サーミスタと外部との間に熱的
抵抗をできるだけ抑えることにより改善できる。
In other words, this problem can be improved by suppressing the thermal resistance between the PTC thermistor and the outside as much as possible.

この熱抵抗θは熱放散係数の逆数で、次式により表わさ
れる。
This thermal resistance θ is the reciprocal of the heat dissipation coefficient and is expressed by the following equation.

?こにαは定数、kは熱伝導率、Aは放熱有効面積、t
は発生熱の等価的中心点から放熱面までの厚みまたは距
離である。
? Here, α is a constant, k is thermal conductivity, A is effective heat radiation area, and t
is the thickness or distance from the equivalent center of generated heat to the heat radiation surface.

そして■式は物質の熱伝導率およびサイズからθを算出
する場合、■式は実際に電力を加えたときの安定状態よ
りθを算出する場合に適用される。
Equation (2) is applied when θ is calculated from the thermal conductivity and size of a substance, and Equation (2) is applied when θ is calculated from the stable state when electric power is actually applied.

いま第゜1図に示すような、両平面に全面電極2,3が
付与された正特性サーミスタ1の一方の面に、熱伝導良
好なる伝熱板4を介して放熱板5を取り付けて放熱させ
る装置において、正特性サーミスタ1の発生熱の等価的
中心点0と、この発生熱を放熱板5に伝える点Xとの間
の熱抵抗θは、■式よりkを正特性サーミスタ1および
伝熱板4の熱伝導率、Aを放熱板5に接触する面積、t
を0点からX点までの距離つまりt+t2として求めれ
ばよい。
Now, as shown in Fig. 1, a heat dissipation plate 5 is attached to one surface of a positive temperature coefficient thermistor 1, which has electrodes 2 and 3 on both planes, with a heat transfer plate 4 having good heat conduction interposed therebetween, to dissipate heat. In a device that uses PTC thermistor 1, the thermal resistance θ between the equivalent center point 0 of the heat generated by PTC thermistor 1 and the point The thermal conductivity of the heat plate 4, A, is the area in contact with the heat sink 5, t
can be calculated as the distance from point 0 to point X, that is, t+t2.

また第1図の装置に実際に電圧を印加して安定したとき
の0点温度をT1、X点温度をT2、このときの消費電
力をPとすると、■式よりPおよび△T=T1−T2と
して、0−X間の熱抵抗θを求めることもできる。
Furthermore, if the zero point temperature when a voltage is actually applied to the device shown in Figure 1 and stabilized is T1, the X point temperature is T2, and the power consumption at this time is P, then from the formula ■, P and △T = T1 - As T2, the thermal resistance θ between 0 and X can also be determined.

(この場合放熱板5は十分大きくて、正特性サーミスタ
1の地面からの発熱はないと仮定する)そして熱抵抗θ
の総和は電気抵抗と同様に計算でき、θ1の熱抵抗を有
する正特性サーミスタと、θ2の熱抵抗を有する伝熱板
とを、同じ放熱板にn個取り付けたときは並列接続され
たことになって、熱抵抗θの総和は小さくなるまた同様
の01と02をn個重ねたときは直列接続されたことに
なって、熱抵抗θの総和は大きくなる(θ=n(θ1+
02))。
(In this case, it is assumed that the heat sink 5 is sufficiently large and there is no heat generation from the ground of the PTC thermistor 1.) And the thermal resistance θ
The sum of can be calculated in the same way as electrical resistance, and when n positive temperature coefficient thermistors with a thermal resistance of θ1 and heat exchanger plates with a thermal resistance of θ2 are attached to the same heat sink, it can be said that they are connected in parallel. Therefore, the total sum of thermal resistance θ becomes small.Also, when n pieces of similar 01 and 02 are stacked, they are connected in series, and the sum of thermal resistance θ becomes large (θ=n(θ1+
02)).

従って熱抵抗θを小さくするには種々の熱抵抗要素を、
実質的に並列接続させればよいことが明らかである。
Therefore, in order to reduce the thermal resistance θ, various thermal resistance elements are
It is clear that it is sufficient to substantially connect them in parallel.

つまりこれは正特性サーミスタの両平面に発生する際を
、同一放熱板に集束させることによってなし得るもので
ある。
In other words, this can be achieved by converging the heat generated on both planes of the PTC thermistor onto the same heat sink.

またこの熱の集束は、前掲の式における放熱有効面積A
を大きくしたことと同様となり、この点からも熱抵抗θ
を小さくできることがわかる。
In addition, this heat convergence is determined by the heat radiation effective area A in the above equation.
It is the same as increasing the thermal resistance θ
It turns out that you can make it smaller.

従来このような観点から、複数個の正特性サーミスタを
1枚を放熱板に取り付けたものがあったが、多数個使い
のため、価格が高価になったり、作業性が悪いなどの欠
点を有し、実用性の点で好ましいものといえなかった。
From this point of view, conventional thermistors with multiple positive temperature coefficients were attached to a heat sink, but because a large number of them were used, they had drawbacks such as high price and poor workability. However, it could not be said to be desirable in terms of practicality.

また従来より正特性サーミスタとして高電力用を得る場
合には、素子を大きくすることが一般に行われているが
、製作コスト等が高価になるという欠点を有していた。
Furthermore, conventionally, when obtaining a positive temperature coefficient thermistor for high power use, it has been common practice to increase the size of the element, but this has had the disadvantage of increasing manufacturing costs.

つまり従来からは熱抵抗θを小さくするという配慮は実
質的になされていないのが実情であった。
In other words, the reality is that conventionally no consideration has been given to reducing the thermal resistance θ.

従って熱抵抗θが大きいことにより、周囲温度に対する
速応性や速熱性、その他あらゆる点で好ましいものでな
かった。
Therefore, due to the large thermal resistance θ, it was not preferable in terms of rapid response to ambient temperature, rapid heating performance, and other aspects.

本考案はこのような点に鑑みてなされたものであって、
正特性サーミスタと外部との間の熱抵抗を小さくした構
造の発熱体装置を提供せんとするものである。
The present invention was made in consideration of these points, and
It is an object of the present invention to provide a heating element device having a structure in which the thermal resistance between a positive temperature coefficient thermistor and the outside is reduced.

以下図面とともに本考案の実施例を説明する。Embodiments of the present invention will be described below with reference to the drawings.

第2〜4図において11は中心部に通孔12が設けられ
てなる環状の熱伝導良好な磁器等よりなる絶縁スペーサ
であって、その周平面に複数個の小孔13が設けられる
とともに、同じく周平面の一方の一部および他方の一部
に外側面に至る切り溝14.14’が設けられている。
In FIGS. 2 to 4, reference numeral 11 denotes an annular insulating spacer made of porcelain or the like with good heat conduction, which has a through hole 12 in its center, and has a plurality of small holes 13 in its circumferential plane. Similarly, grooves 14,14' are provided in one part of the circumferential plane and in part of the other side thereof, which extend to the outer surface.

なお、この絶縁スペーサ11は、その径方向の厚み、つ
まり、第2図の記号Aで示す寸法が後述する、このスペ
ーサの両面に当接される2枚の磁器板の厚みよりも大き
くなるように形威されたものである。
Note that this insulating spacer 11 is designed so that its radial thickness, that is, the dimension indicated by symbol A in FIG. It was shaped by

15はこの絶縁スペーサ11の通孔12内に装填されて
なる円板状正特性サーミス夕で、その両平面に全面電極
16.16’が設けられている。
Reference numeral 15 denotes a disk-shaped positive temperature coefficient thermistor which is loaded into the through hole 12 of the insulating spacer 11, and electrodes 16 and 16' are provided on both surfaces thereof.

17,1e(は前記絶縁スペーサ11の外径とほぼ同じ
大きさの同じく熱伝導良好な磁器円板であり、その一平
面中央部に膜状の外部接続用電極17a,IBaがスク
リーン印刷、蒸着等の手段で設けられるとともに、この
外部接続用電極17 a ,18 aとそれぞれ連接さ
れる外部取出用電極17b,18bが磁器円板17.1
8のほぼ端部にまで設けられている。
17, 1e (is a porcelain disk having approximately the same size as the outer diameter of the insulating spacer 11 and also having good thermal conductivity, and a film-like external connection electrode 17a, IBa is screen-printed and vapor-deposited in the center of one plane. The external connection electrodes 17b and 18b connected to the external connection electrodes 17a and 18a, respectively, are connected to the ceramic disc 17.1.
It is provided almost to the end of 8.

19.20はこれらの磁器円板17.18の周端部近傍
の複数個所に設けられたそれぞれ小孔であって、この小
孔19.20は前記絶縁スペーサ11の小孔13と各々
合致されるものである。
Numerals 19 and 20 are small holes provided at a plurality of locations near the circumferential ends of these ceramic discs 17 and 18, and these small holes 19 and 20 are aligned with the small holes 13 of the insulating spacer 11, respectively. It is something that

そしてこの磁器円板17.18は前記絶縁スペーサ11
に、これを挾持するように当接され、かつそのそれぞれ
の外部接続用電極17 a ,18 aが、絶縁スペー
サ11の通孔12内に装填されている正特性サーミスタ
15の両電極16.16’とそれぞれ当接されている。
The porcelain disks 17 and 18 are connected to the insulating spacer 11.
Both electrodes 16 and 16 of the positive temperature coefficient thermistor 15 are brought into contact with each other so as to sandwich it, and the respective external connection electrodes 17 a and 18 a are loaded into the through hole 12 of the insulating spacer 11 . ' and are abutted respectively.

この場合これらの磁器円板17.18は、その小孔19
.20が絶縁スペーサ11の小孔13に合致され、かつ
外部取出用電極17b,18bが絶縁スペーサ11の切
り溝14.14’上に位置するよう設置されなければな
らない。
In this case, these porcelain disks 17,18 have their small holes 19
.. 20 must be aligned with the small hole 13 of the insulating spacer 11, and the electrodes 17b and 18b for external extraction must be positioned on the grooves 14 and 14' of the insulating spacer 11.

21は磁器円板17.18および絶縁スペーサ11の小
孔19.20および13に挿通されたボルトであり、ナ
ット22とともにそれらを一体に固着している。
Bolts 21 are inserted through the small holes 19, 20 and 13 of the porcelain disk 17, 18 and the insulating spacer 11, and together with a nut 22, they are fixed together.

なおこの固着手段はボルト、ナットに限らずハトメ、リ
ベット等の他のいかなる固着ピンであってもよく、また
熱伝導性接着剤を併用して固着することも単なる設計変
更の域をでるものではない。
Note that this fixing means is not limited to bolts and nuts, but may also be any other fixing pins such as grommets and rivets.Furthermore, it is not beyond a mere design change to use a thermally conductive adhesive for fixing. do not have.

23.23’は、前記絶縁スペーサ11に設けられてい
る切り溝14.14’内に嵌入され、磁器円板17.1
8の外部取出用電極17b,18bとそれぞれ電気的に
接続されているリード線である。
23.23' is fitted into the cut groove 14.14' provided in the insulating spacer 11, and is inserted into the porcelain disc 17.1.
These are lead wires that are electrically connected to the external extraction electrodes 17b and 18b of No.8, respectively.

本考案正特性サーミスタを用いた発熱体装置は本質的に
上述のように構威されるものであるが、次の諸点につい
ては特に図面のものに限ることはない。
Although the heating element device using the positive temperature coefficient thermistor of the present invention is essentially constructed as described above, the following points are not limited to those shown in the drawings.

(1)磁器円板17.18に設ける外部接続用電極17
a,18aおよび外部取り出し用電極17b,18bの
形状。
(1) External connection electrodes 17 provided on the porcelain discs 17 and 18
a, 18a and the shapes of the external extraction electrodes 17b, 18b.

これらに要するに正特性サーミスタ15の両電極16.
16’と当接されてリード線23.23’に接続される
ものであればよい。
In short, these include both electrodes 16 of the positive temperature coefficient thermistor 15.
16' and is connected to the lead wires 23 and 23'.

(2)磁器円板17.18の一方の肉厚を厚くすること
(2) Increase the thickness of one side of the porcelain discs 17 and 18.

これは肉厚を厚くすれば、その熱伝導率が大きくなり正
特性サーミスタ15の熱が良好にその内部を通って他方
の磁器円板へ供給できるためである。
This is because the thicker the wall, the higher its thermal conductivity, allowing the heat of the positive temperature coefficient thermistor 15 to pass through its interior and be supplied to the other ceramic disk.

(3)磁器円板17.18、絶縁スペーサ11,正特性
サーミスタ15の形状を円形にすること。
(3) The shapes of the ceramic disks 17 and 18, the insulating spacer 11, and the positive temperature coefficient thermistor 15 are circular.

角形であってもよい。It may be rectangular.

(4)正特性サーミスタ15の電極16.16’が両平
面に全面付与されていること。
(4) The electrodes 16 and 16' of the positive temperature coefficient thermistor 15 are provided entirely on both planes.

両面から熱を取り出せるような電極形状であれば、低熱
抵抗型のもの等いかなるものでもよい。
Any electrode shape, such as a low heat resistance type, may be used as long as the electrode shape can extract heat from both sides.

次に本考案装置を実際に発熱体として適用した場合につ
いて詳述する。
Next, the case where the device of the present invention is actually applied as a heating element will be described in detail.

この場合磁器円板18側に放熱板(図示せず)を当接さ
せるものとする。
In this case, a heat sink (not shown) is brought into contact with the ceramic disk 18 side.

リード線23.23’に電源を接続して、外部取出用電
極17b,18bおよび外部接続用電極17 a ,1
8aを通して正特性サーミスタ15に電圧を印加する。
Connect a power source to the lead wires 23 and 23', and connect the external extraction electrodes 17b and 18b and the external connection electrodes 17a and 1.
A voltage is applied to the positive temperature coefficient thermistor 15 through 8a.

すると正特性サーミスタ15は発熱を開始し、この熱は
磁器円板17.18に伝達される。
The positive temperature coefficient thermistor 15 then begins to generate heat, and this heat is transferred to the porcelain discs 17, 18.

磁器円板18に伝達された熱は直接放熱板に伝えられて
放熱し、また磁器円板17に伝達された熱は、径方向の
厚みがその磁器円板17の厚みよりも大である環状ある
いは角環状の絶縁スペーサ11を通って磁器円板18に
伝えられ、やはり放熱板から放熱されるのである。
The heat transferred to the porcelain disk 18 is directly transferred to the heat sink and radiated, and the heat transferred to the porcelain disk 17 is transferred to the annular plate whose radial thickness is greater than the thickness of the porcelain disk 17. Alternatively, the heat is transmitted to the porcelain disk 18 through the rectangular annular insulating spacer 11, and is also radiated from the heat sink.

この場合磁器円板および絶縁スペーサは、いずれも熱伝
導性良好なる材質であるため、放熱板への熱伝達はすこ
ぶる良好である。
In this case, since both the ceramic disk and the insulating spacer are made of materials with good thermal conductivity, heat transfer to the heat sink is very good.

すなわち本考案発熱体装置は、正特性サーミスタ15の
発生熱をその両平面より取り出し、同じ1個の放熱板(
その他の被加熱体)に集束させて放熱させるというもの
であり、前掲熱抵抗θを大きくする条件の、有効放熱面
積Aを大きくすることおよび種々の熱抵抗を並列接続す
ることを満足でき、さらには外部接続用電極が磁器板に
設けられた膜状のものであるため、その熱容量がきわめ
て小さくかつ磁器板との熱結合が良好であることから総
合熱抵抗を小さくできるというものである。
That is, the heating element device of the present invention extracts the heat generated by the PTC thermistor 15 from both its planes, and uses the same heat sink (
This method satisfies the above-mentioned conditions for increasing the thermal resistance θ by increasing the effective heat dissipating area A and connecting various thermal resistors in parallel. Since the external connection electrode is a film-shaped electrode provided on the porcelain plate, its heat capacity is extremely small and the thermal coupling with the porcelain plate is good, so that the overall thermal resistance can be reduced.

また正特性サーミスタ15として、いわゆる低熱抵抗型
のものを用いれば、さらにその総合熱抵抗を小さくでき
る。
Further, if a so-called low thermal resistance type thermistor 15 is used as the positive temperature coefficient thermistor 15, the overall thermal resistance can be further reduced.

従って例えば保温器用の発熱体として用いた場合には、
速熱性が良好であるのみならず、周囲温度の変化に敏感
に反応し、良好な保温性能をもたせることができる。
Therefore, for example, when used as a heating element for a heat insulator,
Not only does it have good heat-fast properties, but it also responds sensitively to changes in ambient temperature and can provide good heat retention performance.

すなわち正特性サーミスタは、周囲温度が変わると即座
にその抵抗温度特性の急峻な部分にて動作点が変わり、
これに伴って電力をす早く変化させ内部温度を常に一定
に保つように作用するのである。
In other words, when the ambient temperature changes, the operating point of a positive temperature coefficient thermistor immediately changes at the steep part of its resistance-temperature characteristic.
Along with this, the power is quickly changed to keep the internal temperature constant.

また上述のように熱抵抗を小さくすることにより、その
熱放散係数を実質的に大きくでき、発熱量を大きくさせ
ることができるとともに、正特性サーミスタそのものの
寸法を小さくでき、特性の安定なかつ安価なものにでき
る。
In addition, by reducing the thermal resistance as described above, the heat dissipation coefficient can be substantially increased, and the amount of heat generated can be increased. At the same time, the dimensions of the positive temperature coefficient thermistor itself can be reduced, and the It can be made into something.

さらに本考案ではこれ以上の記載はしないが、熱抵抗低
下に基づく諸々の周知の効果を発揮することはいうまで
もない。
Furthermore, although no further description will be given in the present invention, it goes without saying that various well-known effects based on the reduction in thermal resistance are exhibited.

なおこれらはいずれも熱抵抗低下の観点からみた効果で
あるが、本考案では次のような構造上の効果をも有する
Note that these are all effects seen from the perspective of reducing thermal resistance, but the present invention also has the following structural effects.

すなわち全体が絶縁性材料で構威されているので、その
使途が大巾に拡大されるのみならず、使用者側で新な絶
縁処理が全く不用となり、総合的なコスト低下が促せる
とともに、この新な絶縁処理を施さないことにより熱抵
抗の変化もなく、常に良好な状態での使用が可能になる
In other words, since the entire product is made of insulating material, its uses are not only greatly expanded, but the user does not need any new insulation treatment, which reduces overall costs. By not applying this new insulation treatment, there is no change in thermal resistance, and the product can be used in good condition at all times.

また全体を磁器材料で構成する場合には、高温での使用
も可能になり、これまた使途が拡大される。
Furthermore, if the entire device is made of porcelain material, it can be used at high temperatures, which further expands its uses.

さらに全体が完全に固着されているので、振動等の衝撃
に強く長寿命であるとともに、部品点数が少く、製造も
容易である等、その工事的利益は多大である。
Furthermore, since the entire structure is completely fixed, it is resistant to shocks such as vibration and has a long life, and has many construction benefits, such as having a small number of parts and being easy to manufacture.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案を説明するための図、第2図は本考案発
熱体装置の一実施例を示す側断面図、第3図は本考案に
用いる絶縁スペーサの形状例図、第4図は同じく磁器板
の形状例図である。 11一絶縁スペーサ、13一小孔、15一正特性サーミ
スタ、16.16’一電極、17.18一磁器円板、1
7 a ,18 1−外部接続用電極、17b,18b
一外部取り出し用電極、19.20一小孔、21−ボル
ト、22−ナット、23.24一リード線。
Fig. 1 is a diagram for explaining the present invention, Fig. 2 is a side cross-sectional view showing one embodiment of the heating element device of the present invention, Fig. 3 is an example of the shape of an insulating spacer used in the present invention, Fig. 4 1 is also a diagram showing an example of the shape of a porcelain plate. 11 - insulating spacer, 13 - small hole, 15 - positive temperature coefficient thermistor, 16.16' - one electrode, 17.18 - porcelain disk, 1
7 a, 18 1-External connection electrode, 17b, 18b
1 electrode for external extraction, 19.20 1 small hole, 21 bolt, 22 nut, 23.24 lead wire.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 正特性サーミスタを装填してなり、この正特性サーミス
タの厚みとほぼ同等の厚みを有する熱伝導性良好なる環
状あるいは角環状の絶縁スペーサと、この絶縁スペーサ
の周縁に設けられた複数個の小孔と、前記絶縁スペーサ
の両面にそれぞれ放射状に設けられたリード線嵌入用切
り溝と、前記絶縁スペーサの両面に当接されかつ周縁近
傍に前記小孔と合致する複数個の小孔が設けられてなる
2枚の磁器板と、この両磁器板の正特性サーミスタとの
当接面にそれぞれ設けられてなる膜状の外部接続用電極
と、この各外部接続用電極とそれぞれ連続して同じく磁
器板に設けられてなる外部取出用電極と、この外部取出
用電極にそれぞれ取り付けられ、前記絶縁スペーサのリ
ード線嵌入用切り溝に嵌合されてなるリード線と、前記
絶縁スペーサおよび2枚の磁器板の小孔に嵌入されてそ
れらを固着してなる固着ピンとからなり、前記絶縁スペ
ーサの径方向の厚みが前記2枚の磁器板の厚みよりも大
きくなるようにしたことを特徴とする正特性サーミスタ
を用いた発熱体装置。
An annular or rectangular insulating spacer loaded with a positive temperature coefficient thermistor and having good thermal conductivity and having a thickness almost equal to the thickness of the positive coefficient thermistor, and a plurality of small holes provided at the periphery of the insulating spacer. and grooves for inserting lead wires provided radially on both sides of the insulating spacer, and a plurality of small holes that abut on both sides of the insulating spacer and match the small holes near the periphery. two porcelain plates; a film-like external connection electrode provided on the abutment surface of the positive temperature coefficient thermistor on both porcelain plates; an external extraction electrode provided on the external extraction electrode, a lead wire attached to the external extraction electrode and fitted into a lead wire insertion groove of the insulating spacer, the insulating spacer and two porcelain plates. and a fixing pin that is inserted into a small hole to fix them together, and the radial thickness of the insulating spacer is larger than the thickness of the two porcelain plates. A heating element device using
JP1975104908U 1975-07-28 1975-07-28 Heating element device using positive temperature coefficient thermistor Expired JPS596633Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1975104908U JPS596633Y2 (en) 1975-07-28 1975-07-28 Heating element device using positive temperature coefficient thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1975104908U JPS596633Y2 (en) 1975-07-28 1975-07-28 Heating element device using positive temperature coefficient thermistor

Publications (2)

Publication Number Publication Date
JPS5218443U JPS5218443U (en) 1977-02-09
JPS596633Y2 true JPS596633Y2 (en) 1984-02-29

Family

ID=28586227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1975104908U Expired JPS596633Y2 (en) 1975-07-28 1975-07-28 Heating element device using positive temperature coefficient thermistor

Country Status (1)

Country Link
JP (1) JPS596633Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013020805A (en) * 2011-07-11 2013-01-31 Kurabe Industrial Co Ltd Heater structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4532202Y1 (en) * 1966-07-26 1970-12-09

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5416345Y2 (en) * 1973-04-12 1979-06-27

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4532202Y1 (en) * 1966-07-26 1970-12-09

Also Published As

Publication number Publication date
JPS5218443U (en) 1977-02-09

Similar Documents

Publication Publication Date Title
US3914727A (en) Positive-temperature-coefficient-resistor package
US4855570A (en) Electric fluid heating unit having radial PTC ceramic heating elements
JPH0366182A (en) Thermoelectric conversion device
JP2001512885A (en) Electric PTC heating device
JPS596633Y2 (en) Heating element device using positive temperature coefficient thermistor
JPS5854796Y2 (en) Heating element device using positive temperature coefficient thermistor
JP2000150114A (en) Heater
TWI599308B (en) Heat dispersing device
JP3060968B2 (en) Positive characteristic thermistor and positive characteristic thermistor device
JP2003308812A (en) Battery pack
CN207994006U (en) Battery pack
JPS6125563Y2 (en)
JP2001351764A (en) Positive characteristic ceramic heating element unit
JPH0714029B2 (en) Power semiconductor device
CN210091843U (en) PTC thermistor for high voltage and assembly thereof
KR200156191Y1 (en) Heating assembly of ptc
JPS5910712Y2 (en) Heating element device using positive temperature coefficient thermistor
CN214099709U (en) Heat dissipation electric core group
JPH07201454A (en) Positive characteristic thermistor heating unit
JP2518847Y2 (en) Fin heater
JPS6029196Y2 (en) Heating element device using positive temperature coefficient thermistor
JPS608437Y2 (en) thermoelectric element
JPS5816123Y2 (en) Multistage collector type electron beam tube
JPH0386590U (en)
JPH05190303A (en) Positive characteristic thermistor