JPS5965505A - Bearing device for expansion turbine - Google Patents

Bearing device for expansion turbine

Info

Publication number
JPS5965505A
JPS5965505A JP17612482A JP17612482A JPS5965505A JP S5965505 A JPS5965505 A JP S5965505A JP 17612482 A JP17612482 A JP 17612482A JP 17612482 A JP17612482 A JP 17612482A JP S5965505 A JPS5965505 A JP S5965505A
Authority
JP
Japan
Prior art keywords
bearing
bearing housing
housing
shaft
thrust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17612482A
Other languages
Japanese (ja)
Inventor
Kazuo Okamoto
和夫 岡本
Teruo Ota
大田 輝雄
Kazuo Ihara
井原 一夫
Yasuo Nakatani
中谷 安夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17612482A priority Critical patent/JPS5965505A/en
Publication of JPS5965505A publication Critical patent/JPS5965505A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • F01D25/162Bearing supports
    • F01D25/164Flexible supports; Vibration damping means associated with the bearing

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Support Of The Bearing (AREA)

Abstract

PURPOSE:To prevent thermal deformation of a bearing housing by a method wherein the captioned device is provided a bearing for supporting a rotary body and a gas bearing composed of a bearing housing to support the bearing, and said bearing housing is formed by a material having higher thermal conductivity than that of the bearing. CONSTITUTION:Gas of a high pressure and low temperature flows through an inlet 1, to be subjected to adiabatic expansion in a rotor 3 arranged at one end of a shaft 2, flows to an outlet 4 as low pressure gas of further lower temperature and then a fan 5 arranged at the other end of the shaft 2 is rotated. On the other hand, a thrust is supported by a bearing housing 7 and a thrust bearing through a thrust plate 6 arranged at the central part of the shaft 2, and the shaft 2 is supported by a bearing 8. In this case, the bearing housing 7 is made of material having higher thermal conductivity than that of the bearing 8, for example, electric copper. Thereby, a heat generated at the bearing 8 is efficiently transmitted to the bearing housing 7 to prevent thermal deformation of the bearing housing 7.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は膨張タービンの軸受装置に係り、特に回転体を
支持する軸受と、この軸受を支持する軸受ハウジングよ
りなる気体軸受とを有する膨張タービンの軸受装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a bearing device for an expansion turbine, and more particularly to a bearing device for an expansion turbine having a bearing for supporting a rotating body and a gas bearing comprising a bearing housing for supporting the bearing. This invention relates to a bearing device.

〔従来技術〕[Prior art]

膨張タービンの軸受装置は回転体を支持している軸受と
、この軸受を支持する軸受ハウジングよりなる気体軸受
とから構′成されている。このように構成された軸受装
置で軸受およQj受ハウジングの材質は強度、摩耗およ
び゛腐食等を考慮して選定されるが、この種低温の流体
を断熱膨張させる膨張タービンにおいては一般にステン
レス銅相が使用されている。
A bearing device for an expansion turbine is comprised of a bearing that supports a rotating body and a gas bearing that is made up of a bearing housing that supports this bearing. In a bearing device configured as described above, the material of the bearing and Qj bearing housing is selected taking into consideration strength, wear, corrosion, etc., but in this type of expansion turbine that adiabatically expands low-temperature fluid, stainless steel is generally used. phase is used.

ところでこのような比較的熱伝導率の小さいステンレス
鋼材を軸受および軸受ハウジングに使用しているので、
11111受で発生した熱i、t n1ll受ハウシツ
クを伝導し難いため軸受ハウシック薔こ大きな温m−勾
配が生じるようになり、軸受ハウジンク薔こ熱変形が生
じ、気体軸受部の軸受隙間に大きな影響を与え、軸受負
荷容量の減少をきたしていた。
By the way, since stainless steel material with relatively low thermal conductivity is used for bearings and bearing housings,
Since the heat generated in the 11111 bearing is difficult to conduct through the bearing housing, a large temperature gradient occurs in the bearing housing, causing thermal deformation of the bearing housing, which has a large effect on the bearing clearance of the gas bearing part. This resulted in a decrease in bearing load capacity.

〔発明の目的〕[Purpose of the invention]

本発明は以上の点に鑑みなされたものであり、その目的
とするところは、軸受ハウジンクの熱変形を防止した膨
張ターピノの軸受装置を提供するにある。
The present invention has been made in view of the above points, and an object thereof is to provide a bearing device for an expansion terpino in which thermal deformation of a bearing housing is prevented.

〔発明の概要〕[Summary of the invention]

すなわち、本発明は軸受ハウジングを軸受より熱伝導率
の大きい材料で構成したことを特徴とするものである。
That is, the present invention is characterized in that the bearing housing is made of a material having higher thermal conductivity than the bearing.

〔発明の実施例〕[Embodiments of the invention]

以−F、図示した実施例に基づいて本発明を説明する。 Hereinafter, the present invention will be explained based on the illustrated embodiments.

第1図には本発明の一実施例が示されている。同図に示
し−であるように高圧で低温のガスは処理流体人口1よ
り流入し、回転体であるシャフト2の一方端に付いてい
るロータ3内で断熱膨張し、より温度が下った低圧のガ
スとして処理流体出口4へ流れる。この場合の仕事量は
シャフト2の他方端に伺いている。Z1ン5が回転する
ことにより吸収される。スうストはシャフト2の中央部
にあるスラストプレート6を介して軸受ハウジンク7お
よびスラスト軸受(軸受ハウジング7のスラストプレー
ト6と対向する面に付いているが図示せず)で支持され
、シャフト2は軸受8 (ジャーナル軸受)によって支
持される。そして軸受ガスは軸受流体人口9より流入し
、軸受室内を通り軸受流体出口10から排出され、制動
ガスは制動流体入口11より流入し、ファン5で圧縮さ
れ制動流体出口12から流出する。
FIG. 1 shows an embodiment of the invention. As shown in the figure, high-pressure and low-temperature gas flows in from the processing fluid 1 and expands adiabatically within the rotor 3 attached to one end of the rotating shaft 2, resulting in lower temperature and lower pressure. flows to the processing fluid outlet 4 as a gas. In this case, the amount of work is applied to the other end of the shaft 2. It is absorbed by the rotation of Z1-5. The thrust is supported by the bearing housing 7 and the thrust bearing (attached to the surface facing the thrust plate 6 of the bearing housing 7, but not shown) via the thrust plate 6 in the center of the shaft 2. is supported by bearing 8 (journal bearing). The bearing gas flows in from the bearing fluid port 9, passes through the bearing chamber and is discharged from the bearing fluid outlet 10, and the braking gas flows in from the braking fluid inlet 11, is compressed by the fan 5, and flows out from the braking fluid outlet 12.

このような膨張ターピノが高速で回転している場合のス
ラスト軸受および軸受ハウジング7の熱移動を、その熱
移動について示した第2図および前述の第1図を参照し
ながら説明する。熱移動には第2図に実線の矢印で示し
たようにロータ3側へ伝導する熱量Q1があり、ケーシ
ング13との移動熱量Q2.Q、があり、71ン5側か
ら伝導される熱量Q4があり、モして各軸受部(軸受8
およびスラスト軸受)から伝導される各軸受部の発熱量
QB+1、Q7等があるが、スラスト軸受および軸受ノ
・ウジング7の温度分布はこれらQ、からQ、の熱量の
収支がバランスするような温度となる。
The heat transfer of the thrust bearing and the bearing housing 7 when such an expansion terpino rotates at high speed will be explained with reference to FIG. 2, which shows the heat transfer, and the above-mentioned FIG. 1. As for heat transfer, there is an amount of heat Q1 conducted to the rotor 3 side as shown by the solid arrow in FIG. Q, and there is an amount of heat Q4 conducted from the 71 and 5 side, and each bearing part (bearing 8
There is a calorific value QB+1, Q7, etc. of each bearing part conducted from the thrust bearing and thrust bearing), but the temperature distribution of the thrust bearing and bearing nozzle 7 is such that the balance of the heat amount from Q to Q is balanced. becomes.

このような温度分布をする軸受ハウジンク7、に軸受8
より熱伝導率の大きい材料例えば電気鋼を使用したので
、軸受8で発生した熱は軸受ハウジング7をよく伝導す
るようになって、軸受ノ・ウジング7の変形が防止され
る。すなわち電気銅の熱伝導度は20℃において300
KCa1/m・h・℃であり、軸受8および従来の軸受
ハウジングに使用されているステンレス鋼材の5US3
04の熱伝導度は同じく20℃において14Kcal/
m・h、・℃であるので、軸受8での発熱量および軸受
ハウジング7の周囲境界条件等を同一とし、伝熱量を1
00 Kcal/b  とすれば軸受ハウジング7の単
位長さ当りの温度差は808304使用の場合で7.1
℃、電気銅使用の場合で0.33℃となって、軸受ハウ
ジング7の温度分布の変動幅は電気銅を使用した方が5
US304を使用した場合よりも非常に小さくなる。そ
して熱変形量はS LI 8.304の線膨張係数が7
.5X10−’%、電気銅のそれが16 X 10”−
’ %ftO:)テ、S U S 304 使用0:)
場合力1m当り約0.5mm+電気銅使用の場合が1m
当り約0.005龍となって、電気鋼を使用した方が5
TJS304を使用した場合よりも格段と小さくなる。
The bearing 8 is placed in the bearing housing 7, which has such a temperature distribution.
Since a material with higher thermal conductivity, such as electrical steel, is used, the heat generated in the bearing 8 is well conducted through the bearing housing 7, and deformation of the bearing housing 7 is prevented. In other words, the thermal conductivity of electrolytic copper is 300 at 20°C.
KCa1/m・h・℃, and 5US3 of the stainless steel material used in the bearing 8 and the conventional bearing housing.
The thermal conductivity of 04 is also 14Kcal/at 20℃
Since the temperature is m・h,・℃, the amount of heat generated in the bearing 8 and the surrounding boundary conditions of the bearing housing 7 are the same, and the amount of heat transfer is 1.
00 Kcal/b, the temperature difference per unit length of the bearing housing 7 is 7.1 when using 808304.
℃, when electrolytic copper is used, it is 0.33℃, and the fluctuation range of the temperature distribution of the bearing housing 7 is 5.5℃ when electrolytic copper is used.
It is much smaller than when US304 is used. The amount of thermal deformation is determined by the linear expansion coefficient of SLI 8.304 being 7.
.. 5 x 10-'%, that of electrolytic copper is 16 x 10''-
' %ftO:) Te, SUS 304 use 0:)
Approximately 0.5 mm per meter of force + 1 meter when using electrolytic copper
It is about 0.005 dragon per hit, and it is better to use electric steel.
It is much smaller than when TJS304 is used.

このように軸受ハウジング7の熱変形が小さくなるので
、気体軸受部の軸受隙間すなわちスラスト軸受および軸
受ハウジング7とスラスト、プレート6との間の軸受隙
間が良好に維持され、軸受性能が良好に維持される。
Since the thermal deformation of the bearing housing 7 is reduced in this way, the bearing clearance of the gas bearing part, that is, the bearing clearance between the thrust bearing and the bearing housing 7 and the thrust plate 6 is maintained well, and the bearing performance is maintained well. be done.

なお本実施例では軸受ハウジング7に電気銅を使用した
場伺について説明したが、電気銅に限定されるものでは
なぐりん脱酸銅、無酸素銅等を使用しても同様な作用効
果を奏することができる。
Although this embodiment describes the case where electrolytic copper is used for the bearing housing 7, the bearing housing 7 is not limited to electrolytic copper, and similar effects can be achieved by using deoxidized copper, oxygen-free copper, etc. be able to.

〔発明の効果〕〔Effect of the invention〕

上述のように本発明は、軸受ハウジンクを軸受より熱伝
導率の大きい材料で構成したので、軸受で発生した熱が
軸受ハウジングをよく伝導するようになって、軸受ハウ
ジングの熱変形が防止されるようになり、軸受ハウジン
グの熱変形を防止した膨張タービンの軸受装置を得るこ
とができる。
As described above, in the present invention, the bearing housing is made of a material with higher thermal conductivity than the bearing, so the heat generated in the bearing is well conducted through the bearing housing, and thermal deformation of the bearing housing is prevented. Thus, it is possible to obtain a bearing device for an expansion turbine in which thermal deformation of the bearing housing is prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の膨張ターピノの軸受装置の一実施例の
縦断側面図、第2図は四じ〈一実施例の軸受ハウジング
の熱移動を示す説明図である。 2・・・・・・シャフト (回転体)、6・・・・・ス
ラストプレート、7・・・・・軸受ハウジング(気体軸
受)、8・・・・・・軸受 代理人 升理士  薄 1)利 宰 3I−1図 才2図
FIG. 1 is a longitudinal sectional side view of one embodiment of the bearing device for an expansion terpino according to the present invention, and FIG. 2 is an explanatory diagram showing heat transfer in the bearing housing of the fourth embodiment. 2...Shaft (rotating body), 6...Thrust plate, 7...Bearing housing (gas bearing), 8...Bearing agent Masu Rishi Usui 1) Rizai 3I-1 Illustration 2

Claims (1)

【特許請求の範囲】 1 回転体を支持する軸受と、この軸受を支持する軸受
ハウジングよりなる気体軸受とを設けた膨張ターピノの
軸受装置において、前記軸受ノ・ウジノブを前記軸受よ
り熱伝導率の大きい材料で構成したことを特徴とする膨
張タービンの軸受装置。 2 前Me軸受ノ・ウジノブをりん脱酸銅、電気鋼。 無酸素銅のいずれかで構成した特許請求の範囲第1項記
載の膨張タービンの軸受装置。
[Scope of Claims] 1. In an expansion terpino bearing device including a bearing that supports a rotating body and a gas bearing made of a bearing housing that supports this bearing, the bearing knob has a higher thermal conductivity than the bearing. A bearing device for an expansion turbine characterized in that it is made of a large material. 2. The front Me bearing knob is made of phosphor deoxidized copper and electrical steel. A bearing device for an expansion turbine according to claim 1, wherein the bearing device is made of oxygen-free copper.
JP17612482A 1982-10-08 1982-10-08 Bearing device for expansion turbine Pending JPS5965505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17612482A JPS5965505A (en) 1982-10-08 1982-10-08 Bearing device for expansion turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17612482A JPS5965505A (en) 1982-10-08 1982-10-08 Bearing device for expansion turbine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP31195287A Division JPS63159604A (en) 1987-12-11 1987-12-11 Bearing device for expansion turbine

Publications (1)

Publication Number Publication Date
JPS5965505A true JPS5965505A (en) 1984-04-13

Family

ID=16008091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17612482A Pending JPS5965505A (en) 1982-10-08 1982-10-08 Bearing device for expansion turbine

Country Status (1)

Country Link
JP (1) JPS5965505A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428978A (en) * 1977-08-04 1979-03-03 Granbom Bo Sealing device for pressure fluid cylinder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428978A (en) * 1977-08-04 1979-03-03 Granbom Bo Sealing device for pressure fluid cylinder

Similar Documents

Publication Publication Date Title
US3536418A (en) Cryogenic turbo-molecular vacuum pump
US7267523B2 (en) Composite shaft
Mikula et al. A comparison of tilting pad thrust bearing lubricant supply methods
BR112015011676A2 (en) aerostatic bearing use as a seal
JPS57212395A (en) Molecular pump
US20170321710A1 (en) Molten Metal Transfer Pump
GB1391206A (en) Thermodynamic method and device for carrying out the method
JPS5696198A (en) Pump
US4289985A (en) Electrical machine with cryogenic cooling
JPS5965505A (en) Bearing device for expansion turbine
US3546508A (en) Self-pumping liquid metal current collector
JPS63159604A (en) Bearing device for expansion turbine
JPH06193598A (en) Very low temperature rotary equipment
CN210092982U (en) Cooling structure for permanent magnet motor
JPH01249996A (en) Blower for high temperature gas
GB8909504D0 (en) Pump with seal cooling means
Mann et al. A Refrigeration System Incorporating a Low-Capacity, High-Speed, Gas-Bearing-Supported Expansion Turbine
JP3097386B2 (en) Vacuum pump
JPS63144737A (en) Generation set containing piping
Beremand et al. Experimental performance characteristics of three identical Brayton rotating units
ES317057A1 (en) Improvements in electric motor pump sets
Wood et al. NATIONAL AERONAUTICS AND SPACE ADMlN ISTRATION
JPS61167712A (en) Thrust bearing
English et al. Potassium rankine systems technology
JPH01249997A (en) Blower