JPS596530A - Correction of deflection strain at charged beam exposure device - Google Patents

Correction of deflection strain at charged beam exposure device

Info

Publication number
JPS596530A
JPS596530A JP11558482A JP11558482A JPS596530A JP S596530 A JPS596530 A JP S596530A JP 11558482 A JP11558482 A JP 11558482A JP 11558482 A JP11558482 A JP 11558482A JP S596530 A JPS596530 A JP S596530A
Authority
JP
Japan
Prior art keywords
height
charged beam
deflection
correction
deflection distortion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11558482A
Other languages
Japanese (ja)
Inventor
Kiichi Takamoto
喜一 高本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP11558482A priority Critical patent/JPS596530A/en
Publication of JPS596530A publication Critical patent/JPS596530A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/304Controlling tubes by information coming from the objects or from the beam, e.g. correction signals

Abstract

PURPOSE:To enhance the precision of positioning of a charged beam onto the surface of a sample by a method wherein deflection strain at the level surface of the arbitrary height is measured precisely to obtain the correction formulas of deflection strain. CONSTITUTION:The charged beam is focused in height (z1) of the level surface to measure deflection strain. The correction equations of deflection strain at the level surfaces of the same heights with a low standard mark and a high standard mark are decided using the standard marks of the two faces of high and low holding the focus in this condition as it is. Then, the values of Ai(z1), Bi(z1), (i=0-9) are calculated performing substitution as z=z1 at the formula I . As a result, the equations II can be obtained as the correction equations of deflection strain at height (z1). Because the position of the focus of the beam is not altered when the formulas II are obtained, the beam injected on the surface of the sample comes moving on a straight line. Accordingly, the quantity of deflection strain measured according to the standard marks of the two faces of high and low can be expressed by the linear function of height (z), and the formula II have the coefficients of the more precise values as the correction formulas of the deflection strain at height z=z1 than the usual method.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は荷電ビームを偏向して/4’タンを露光する荷
電ビーム露光装置において、任意の高さの水準面に荷電
ビーム光学系の焦点を合わせた場合に、該水準面におけ
る偏向歪を正確に測定する方法、および仁の偏向歪測定
結果に基づき試料面上に荷電ビームを正確に位置決めす
る方法に関するものである。
Detailed Description of the Invention [Technical Field of the Invention] The present invention provides a charged beam exposure apparatus that deflects a charged beam to expose a /4' tan, and focuses a charged beam optical system on a level plane at an arbitrary height. When combined, the present invention relates to a method for accurately measuring deflection distortion on the level plane, and a method for accurately positioning a charged beam on a sample surface based on the measurement results of the deflection distortion.

(発明の技術的背景とその問題点〕 荷電ビーム露光装置を用いてシリコンウヱハ等の試料面
上に荷電ビームを正確に位置決めしてノやタンを露光す
るためには、荷電ビーム露光装置の光学系に固有表偏向
歪を測定し、試料面の高さに応じて偏向歪を補正する必
要がある。
(Technical background of the invention and its problems) In order to accurately position the charged beam on the surface of a sample such as a silicon wafer using a charged beam exposure device and expose the holes, the optical system of the charged beam exposure device is required. It is necessary to measure the eigenplane deflection distortion and correct the deflection distortion according to the height of the sample surface.

従来のこの種の方法について説明する。A conventional method of this type will be explained.

偏向歪を測定するための試料移動用ステージに固定する
標準マークとして、高さが100〜200Itrn異な
る2面から成る標準マークを用いる。まず、低い方の標
準マークと同一の高さの水準面に荷電ビームの焦点を合
わせ、該標準マークを偏向フィールド内のnXn(n=
3.5,7゜9・・・)の格子点にステージで移動し、
各格子点においてレーデ測長器で測定されたステージの
位置と該標準マークのビーム偏向系によるマーク検出位
置とから、偏向歪を求める。この偏向歪測定結果から、
以下に示すような低い標準マークと同一高さの水準面に
おける偏向歪補正式を決定する。
A standard mark consisting of two surfaces with heights different by 100 to 200 Itrn is used as a standard mark fixed to a sample moving stage for measuring deflection strain. First, the charged beam is focused on a level plane at the same height as the lower standard mark, and the standard mark is placed within the deflection field by nXn (n=
Move the stage to the lattice points of 3.5, 7°9...),
Deflection distortion is determined from the position of the stage measured by the Rade length measuring device at each grid point and the mark detection position of the standard mark by the beam deflection system. From this deflection distortion measurement result,
Determine the deflection distortion correction formula for a level plane at the same height as the low standard mark as shown below.

ここで、(x、y)は偏向フィールド内の荷電ビーム照
射位置の設計値である。(XtD t YtD)′は偏
向歪補正後の位置座標で、低い標準i−りと同一高さの
試料面上にノ臂タンを露光する場合には、(XtD 、
 Yzn )の値に基づいてビームが偏向される。
Here, (x, y) are designed values of the charged beam irradiation position within the deflection field. (XtD t YtD)' is the position coordinate after deflection distortion correction. When exposing the armpit on the sample surface at the same height as the low standard i-
The beam is deflected based on the value of Yzn ).

上記と同様にして高い方の標準マークを用いた偏向歪測
定から、高い標準マークと同一高さの水準面における以
下に示すような偏向歪補正ココテ、(x z y )お
よび(xhn −Yho )の意味は式(1)と同様で
ある。
From the deflection distortion measurement using the higher standard mark in the same manner as above, the following deflection distortion correction coefficients (x z y ) and (xhn - Yho ) on the level plane at the same height as the higher standard mark are calculated. has the same meaning as equation (1).

つぎに、シリコンウェハ等の試料面上にパタンを露光す
る場合、まず描画する偏向フィールドの中心をビーム光
軸直下に移動し、該偏向フィールドに対応する試料面の
高さを高さ測定器によシ測定する。ここで、低い方の標
準マークの高さを該高さ測定器によシ測定した結果をt
、同様に高い方の標準マークの高さ測定結果をh、試料
面の高さ測定結果を2とする。式(1)、式(2)を用
いそ高さ2における偏向歪補正式を以下のように決定す
る。
Next, when exposing a pattern on a sample surface such as a silicon wafer, first move the center of the deflection field to be drawn directly below the beam optical axis, and use a height measuring device to measure the height of the sample surface corresponding to the deflection field. Measure carefully. Here, the height of the lower standard mark is measured using the height measuring device, and the result is t.
Similarly, let h be the height measurement result of the higher standard mark, and 2 be the height measurement result of the sample surface. Using equations (1) and (2), the deflection distortion correction equation at height 2 is determined as follows.

式(3)は、高さ2における偏向歪補正式であシ、式(
3)の右辺における各係数は式(1)、式(2)の対応
する各係数を直線補間して求められている。高さ2の偏
向フィールドにパタンを露光する場合、まず高さ2に荷
電ビームの焦点を合わせ、つぎに、各パタンの設計デー
タにおける位置座標(x t y )を式(3)の右辺
の(X、Y)に代用して(x、 、 yD)に変換し、
(xD、 yD)に基づいて荷電ビームを偏向して試料
面上の所定の位置に/4タンを露光する。
Equation (3) is a deflection distortion correction equation at a height of 2, and the equation (
Each coefficient on the right side of 3) is obtained by linearly interpolating the corresponding coefficients of equations (1) and (2). When exposing a pattern to a deflection field with a height of 2, first focus the charged beam at a height of 2, and then calculate the position coordinates (x t y ) in the design data of each pattern as ( X, Y) and convert it to (x, , yD),
The charged beam is deflected based on (xD, yD) and a /4 tan is exposed at a predetermined position on the sample surface.

従来の方法では、2面の標準マークの高さにおける偏向
歪測定結果を基準として偏向歪を補正していたので、2
面の標準マークの各高さから離れた高さの試料面にパタ
ンを描画する場合、/4タンの位置決め精度が低下する
。また動的焦点補正等の技術を用いようとした場合、係
数の直線補間は成立しないのでツクタンの位置決め精度
がさらに低下するという欠点があった。
In the conventional method, the deflection distortion was corrected based on the deflection distortion measurement results at the height of the standard marks on the two sides.
When a pattern is drawn on a sample surface at a height apart from each height of the standard mark on the surface, the positioning accuracy of the /4 button decreases. Furthermore, when attempting to use a technique such as dynamic focus correction, linear interpolation of coefficients does not hold, so there is a drawback that the positioning accuracy of the tactile lens further deteriorates.

〔発明の目的〕[Purpose of the invention]

本発明はこれらの欠点を除去するため、任意 −の高さ
2に焦点を合わせた場合の荷電ビームを偏向したときに
生じる偏向歪を測定できるようにするとともに、任意の
高さ2における偏向歪測定結果に基づいて試料面上にパ
タンを描画する際に偏向歪を補正するようにしたもので
、以下詳細に説明する。
In order to eliminate these drawbacks, the present invention makes it possible to measure the deflection distortion that occurs when deflecting a charged beam when focused at an arbitrary height 2, and also to measure the deflection distortion at an arbitrary height 2. This method corrects deflection distortion when drawing a pattern on a sample surface based on measurement results, and will be described in detail below.

〔発明の実施例〕 ゛ まず、従来の技術として説明した偏向歪補正方法におい
て、各係数を直線補間して高さ2における偏向歪補正式
を決定したが、各係数の直線補間が厳密に成シ立っ場合
について説明する。
[Embodiment of the Invention] First, in the deflection distortion correction method explained as the conventional technique, each coefficient was linearly interpolated to determine the deflection distortion correction formula at a height of 2. Let's explain the case of standing up.

ここでは、簡単の−ため誓座標の補正についてのみ説明
する。
Here, for the sake of simplicity, only the correction of the vowed coordinates will be explained.

式(1)、式(2)を変形して次式を得る。Equations (1) and (2) are transformed to obtain the following equation.

XtD−)(−4to+At、X+At2Y+−+ A
L、Yj(4)XhD−X=Aho+Ah、X+Ah2
Y+−+Ah9Y5    (5)標準マークを用いた
偏向歪の枳11定結果は、ビーム偏向器に入力されfc
データ(Xl p Ys )と、レーデ測長器で測定さ
れた値よシ算出される(Xl。
XtD-) (-4to+At, X+At2Y+-+ A
L, Yj (4)XhD-X=Aho+Ah, X+Ah2
Y+-+Ah9Y5 (5) The constant result of deflection distortion using the standard mark is input to the beam deflector and fc
It is calculated based on the data (Xl p Ys ) and the value measured by the Radhe length measuring device (Xl.

Y)に対応するステージの移動距離(XLi 、 YL
j)の組で与えられる。偏向歪i=存在しない場合、(
、Xl 、 Yj) = (XLi 、YLj)となる
。式(1)、式(2)の各係数は、各式の右辺の(X、
Y)に(XLl 、 yLj)を、各式の左辺の(Xt
D 、 Yzn)または(Xhn −YhD)に(xl
、Yj)を代用することによって算出される。
The moving distance of the stage corresponding to Y) (XLi, YL
It is given as a set of j). If deflection distortion i = does not exist, (
, Xl, Yj) = (XLi, YLj). Each coefficient of equation (1) and equation (2) is calculated by (X,
(XLl, yLj) for Y), and (Xt
D, Yzn) or (Xhn-YhD) with (xl
, Yj).

式(4) 、 (5)において、(X、 y)=(Xt
、t y YLJ )となったとする。(XLl 、 
Yt J)はレーザ演1j長器によシ求められた基準と
なる座標値でl)、式%式%) の基準座標値(Xt4 p ”LJ )におけるX方向
の偏向歪の量を与えている。この偏向歪の量が高さ方向
、即ち2方向に対して2の一次関数で変化するとき、任
意の高さ2において基準座標値(Xt、1− Yt、j
)における偏向歪の量(XzD−XLl)は (6) で与えられる。
In equations (4) and (5), (X, y)=(Xt
, ty YLJ). (XLl,
Yt J) is the reference coordinate value obtained by the laser performance 1j length machine l), giving the amount of deflection strain in the X direction at the reference coordinate value (Xt4 p ”LJ) of the formula When the amount of deflection distortion changes in the height direction, that is, in two directions, as a linear function of 2, the reference coordinate value (Xt, 1 - Yt, j
) is given by (6).

式(6)は、式(4)、式(5)の各々対応する係数を
直線補間して求めた式と一致する。即ち、偏向歪本発明
は、このような原理を利用するものである。まず、偏向
歪を測定する水準面の高さzlに荷電ビームの焦点を合
わせる。つぎに、焦点をこのままの状態にして、高低2
面の標準マークを用いて、従来と同様な方法で式(1)
、式(2)を決定する。つぎに、式(35においてK 
=* 1と置いてAi(zl)y Bl(tl)(1=
0〜9 )を算出する。この結果、高さzlにおける偏
向歪補正式として次式を得る。
Equation (6) matches the equation obtained by linearly interpolating the coefficients corresponding to each of Equation (4) and Equation (5). That is, the deflection distortion of the present invention utilizes such a principle. First, a charged beam is focused on the height zl of the level plane whose deflection distortion is to be measured. Next, keep the focus as it is and change the height to 2.
Formula (1) is calculated in the same way as before using the standard mark on the surface.
, determine equation (2). Next, in equation (35), K
=* Putting 1, Ai(zl)y Bl(tl)(1=
0 to 9). As a result, the following equation is obtained as a deflection distortion correction equation at the height zl.

式(7)を求める際に、ビームの焦点位置は変化させて
いないので、試料面上に入射するビームは直線上を運動
してくる。したがって、高低2面の標準マークによって
測定される偏向歪の量は完全に高さ2の一次関数となっ
ている。即ち、式(7)は、Z : Z 1の高さにお
ける偏向歪補正式として、従来法よ)も厳密な値の係数
を有している。なお、荷電ビームの焦点深度は深いため
、100〜200μmの高低差のある標準マークを問題
なく検出できる。
When formula (7) is obtained, the focal position of the beam is not changed, so the beam incident on the sample surface moves on a straight line. Therefore, the amount of deflection distortion measured by the standard marks on the two high and low surfaces is completely a linear function of the height 2. That is, equation (7) is a deflection distortion correction equation at the height of Z:Z1, and the conventional method also has coefficients with exact values. Note that, since the depth of focus of the charged beam is deep, standard marks having a height difference of 100 to 200 μm can be detected without any problem.

つぎに、本発明による偏向歪補正法の応用例について説
明する。
Next, an application example of the deflection distortion correction method according to the present invention will be explained.

ノやタンヲ描画するシリコンウエノ・について、予め高
さ方向の変形を測定する。なおこの技術は、電子ビーム
露光装置にあっては周知の技術になっている。その結果
、ツヤタンを描画するウニ・・が高さ22とzhの間に
あったとする。本発明による方法によル、!”1tおよ
びt、 =Z hにおける偏向歪補正式を求め、各フィ
ールドの描画に当っては各フィールドの2値に応じて2
==22とz = z >の各補正係数を直線補間する
。さらに、5=zlとw = z hO差が大きい場合
、あるいはよシ厳密な偏向歪補正が必要な場合には、z
=xlとz = z hの間にz=z1.zl、z5・
・・等の水準面を設定し、実際の描画に肖っては直線補
間を行う2つの測定された水準面を試料面の高さに応じ
て選択することによ“って、直線補間に伴う補正係数設
定時の誤差を減少することができる。
The deformation in the height direction of the silicon wafer used to draw the surface and the surface of the surface is measured in advance. Note that this technique is a well-known technique for electron beam exposure apparatuses. As a result, it is assumed that the sea urchin that draws the glossy tongue is between the heights 22 and zh. By the method according to the invention! ``Determine the deflection distortion correction formula for 1t and t, =Zh, and when drawing each field, calculate the
==22 and each correction coefficient of z = z > is linearly interpolated. Furthermore, if the difference between 5 = zl and w = z hO is large, or if more precise deflection distortion correction is required, z
=xl and z=z1 between z=zh. zl, z5・
..., etc., and select two measured level planes for linear interpolation according to the height of the sample surface in the actual drawing. It is possible to reduce errors when setting correction coefficients.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、任意の高さの水準面における偏向
歪を厳密に測定し、偏向歪補正式を求めることができる
ようにしたので、荷電ビーム露光装置によシバタンを描
画する場合、荷電ビームの試料面上への位置決め精度を
向上させることができる。また、試料の高さに応じて荷
電ビームの焦点を合わせたシ、試料の高さに応じたπ平
面内で動的焦点補正を行つたりする場合においても偏向
歪を正確に補正できるという利点がある。本発明紘、特
にサブミクロンAタンによるLSI製造等のように、ノ
母タンの微細化に伴ってパタンの位置決め精度への要求
が厳しくなる場合に有効であZ
As explained above, we have made it possible to strictly measure the deflection distortion on a level plane of any height and obtain the deflection distortion correction formula. positioning accuracy on the sample surface can be improved. Another advantage is that deflection distortion can be corrected accurately even when focusing the charged beam according to the height of the sample or performing dynamic focus correction within the π plane according to the height of the sample. There is. The present invention is particularly effective in cases where the demand for pattern positioning accuracy becomes stricter as the mother tongue becomes finer, such as in LSI manufacturing using submicron A tongues.

Claims (1)

【特許請求の範囲】[Claims] 電子ビーム、イオンビーム等を用いる荷電ビーム露光装
置において、荷電ビームを偏向して試料面上に該荷電ビ
ームを位置決めする際に生じる偏向歪の補正方法であっ
て、偏向歪測定用の標準マークとして高さの異なる2水
準面にマークを設置した標準マークを用い、荷電ビーム
の焦点を任意の高さに合わせた状態において該荷電ビー
ムによシ高低2面の標準マークで偏向歪を測定し、この
高低2面における測定結果から焦点を合わせた水準面に
おける偏向歪補正式を求めることを特徴とする荷電ビー
ム露光装置における偏向歪補正方法。
A method for correcting deflection distortion that occurs when deflecting a charged beam and positioning the charged beam on a sample surface in a charged beam exposure device that uses an electron beam, ion beam, etc., and used as a standard mark for measuring deflection distortion. Using a standard mark with marks set on two level planes with different heights, with the focus of the charged beam set at an arbitrary height, deflection distortion is measured with the standard marks on two planes of high and low heights by the charged beam, A method for correcting deflection distortion in a charged beam exposure apparatus, characterized in that a deflection distortion correction formula for a focused level plane is determined from measurement results for the two high and low planes.
JP11558482A 1982-07-05 1982-07-05 Correction of deflection strain at charged beam exposure device Pending JPS596530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11558482A JPS596530A (en) 1982-07-05 1982-07-05 Correction of deflection strain at charged beam exposure device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11558482A JPS596530A (en) 1982-07-05 1982-07-05 Correction of deflection strain at charged beam exposure device

Publications (1)

Publication Number Publication Date
JPS596530A true JPS596530A (en) 1984-01-13

Family

ID=14666202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11558482A Pending JPS596530A (en) 1982-07-05 1982-07-05 Correction of deflection strain at charged beam exposure device

Country Status (1)

Country Link
JP (1) JPS596530A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6134935A (en) * 1984-07-26 1986-02-19 Toshiba Corp Image drawing device by charged particle beam
WO1997001184A1 (en) * 1995-06-20 1997-01-09 Nikon Corporation Positioning method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6134935A (en) * 1984-07-26 1986-02-19 Toshiba Corp Image drawing device by charged particle beam
WO1997001184A1 (en) * 1995-06-20 1997-01-09 Nikon Corporation Positioning method
US6002487A (en) * 1995-06-20 1999-12-14 Nikon Corporation Alignment method for performing alignment between shot areas on a wafer

Similar Documents

Publication Publication Date Title
KR101352996B1 (en) Charged particle beam writing apparatus
US7694426B2 (en) Method for eliminating sources of error in the system correction of a coordinate measuring machine
JPH0244137B2 (en)
US4396901A (en) Method for correcting deflection distortion in an apparatus for charged particle lithography
JP2960746B2 (en) Beam irradiation method, electron beam drawing method, beam irradiation apparatus, and electron beam drawing apparatus
Rahimi et al. Improving measurement accuracy of position sensitive detector (PSD) for a new scanning PSD microscopy system
JPS596530A (en) Correction of deflection strain at charged beam exposure device
WO2022041673A1 (en) Vertical protection method and device based on dual-stage motion system of photolithography machine
JPH04269613A (en) Method for focusing charged beam
TW494519B (en) Method for determining overlay measurement uncertainty
US5708276A (en) Electron-beam exposure device and a method of detecting a mark position for the device
CN111272074A (en) Position sensitive detector model establishing method based on laser tracking measurement system
JPS62149127A (en) Device for charged beam exposure
JP2786660B2 (en) Charged beam drawing method
JPH07111943B2 (en) Electronic beam exposure system
JPS59107512A (en) Pattern drawing method by charge beam and charge beam exposure device
KR101450518B1 (en) Electron beam lithography and method for adjusting focus thereof
JP2010073870A (en) Charged particle beam lithography apparatus and method
JP2786662B2 (en) Charged beam drawing method
JPH0778429B2 (en) Ranging device
JPS6041226A (en) Charged particle ray device
Lebiedzik Multiple Electron Detector Method for Quantitative Microtopographic Characterization in the SEM.
JPH07120618B2 (en) Particle beam drawing method
JPH05166708A (en) Electron beam exposure method
JP2786661B2 (en) Charged beam drawing method