JPS5965256A - Measurement of sulfate ion in anionic surfactant - Google Patents

Measurement of sulfate ion in anionic surfactant

Info

Publication number
JPS5965256A
JPS5965256A JP17672082A JP17672082A JPS5965256A JP S5965256 A JPS5965256 A JP S5965256A JP 17672082 A JP17672082 A JP 17672082A JP 17672082 A JP17672082 A JP 17672082A JP S5965256 A JPS5965256 A JP S5965256A
Authority
JP
Japan
Prior art keywords
solution
sulfate ions
anionic surfactant
nitric acid
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17672082A
Other languages
Japanese (ja)
Inventor
Megumi Kudo
恵 工藤
Shintarou Satsuno
札野 新太郎
Shinichiro Yamaguchi
山口 信一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP17672082A priority Critical patent/JPS5965256A/en
Publication of JPS5965256A publication Critical patent/JPS5965256A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/74Optical detectors

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

PURPOSE:To perform the quantitative analysis of SO4<--> with good accuracy, by a method wherein an aqueous solution containing NaNO3 or NaClO4 is added to a specimen solution and the resulting mixture is injected into an anion exchange resin column while a nitric acid solution of ferric nitrate to the column passing liquid to measure ultraviolet absorption. CONSTITUTION:A solution specimen 2 of an anionic surfactant and 0.01-0.5M solution of NaNO3 or NaClO4 from a liquid feed part 1 are sent to a specimen introducing part 3 and, after mixing, the solution mixture is injected into an anion exchange resin column 4. To the eluted liquid of the column 4, a 0.01- 1.0M nitric acid solution containing 0.001-0.1M of ferric nitrate is sent from a liquid feed part 6 and both of them are mixed in a mixing part 5 to measure ultraviolet absorption generated by the complex formation of SO4<--> in the eluted liquid and FE<3+> by a fluidized photometer 7 while the measured value is compared with the calibration curve preliminarily obtained from known SO4<--> concn. to record and display the SO4<--> concn. by a recording apparatus 8. By this method, SO4<--> is automatically measured in good efficiency without receiving the the obstruction of the substance coexisting in the specimen solution.

Description

【発明の詳細な説明】 (発明の属する技術分野〕 本発明は、液相流動系におりる陰イオン界面活性剤中の
硫酸イオンの測定方法に関する。特に硫酸イオンを検出
して定量する測定方法に関する。
Detailed Description of the Invention (Technical Field to Which the Invention Pertains) The present invention relates to a method for measuring sulfate ions in an anionic surfactant in a liquid phase fluid system.In particular, a method for detecting and quantifying sulfate ions. Regarding.

〔従来技術の説明〕[Description of prior art]

従来、硝酸第二鉄を含有する硝酸溶液を使用した液相流
動系における硫酸イオンの測定方法が、特公昭54−2
6918により知られている。この方法は、上記硝酸溶
液に試料溶液を添加し、陰イオン交換樹脂を充填した分
離カラムを通過させた後にこの溶液の紫外部吸収を測定
して硫酸イオンを測定する方法であって、試料溶液中に
共存する物質の影響を受けることなく簡単な操作で硫酸
イオンを検出および定量できる優れた方法である。
Conventionally, a method for measuring sulfate ions in a liquid phase flow system using a nitric acid solution containing ferric nitrate was published in Japanese Patent Publication No. 54-2.
6918. In this method, a sample solution is added to the nitric acid solution, passed through a separation column filled with anion exchange resin, and then the ultraviolet absorption of this solution is measured to measure sulfate ions. This is an excellent method for detecting and quantifying sulfate ions with simple operations without being affected by substances coexisting therein.

しかし、上記従来の測定方法では、分離カラムを通過す
る/8液に第二鉄イオンが含まれているため、試料溶液
中に10%程度の濃度の陰イオン界面活性剤が共存する
と、第二鉄イオンと陰イオン界面活性剤との反応で沈殿
を生じ、硫酸イオンを連続的に測定することが困難にな
る欠点があった。
However, in the conventional measurement method described above, since the liquid passing through the separation column contains ferric ions, if an anionic surfactant with a concentration of about 10% coexists in the sample solution, ferric ions may be present. This method has the disadvantage that the reaction between iron ions and anionic surfactants causes precipitation, making it difficult to continuously measure sulfate ions.

〔発明の目的〕[Purpose of the invention]

本発明は、上記欠点を解消するもので、試料溶液中に陰
イオン界面活性剤が大量に含まれていても、この陰イオ
ン界面活性剤の影響を受けることなく、簡単な操作で連
続的に硫酸イオンを検出して定量できる硫酸イオンの測
定方法を提供することを目的とする。
The present invention solves the above-mentioned drawbacks, and even if the sample solution contains a large amount of anionic surfactant, it can be used continuously without being affected by the anionic surfactant. An object of the present invention is to provide a method for measuring sulfate ions that can detect and quantify sulfate ions.

〔発明の特徴〕[Features of the invention]

本発明は、硝酸ナトリウムまたは過塩素酸ナトリウムを
含有する溶液に試料溶液を添加し、陰イオン交換樹脂を
充填した分δ1tカラムを通過させた後に硝酸第二鉄を
含有する硝酸溶液を添加し、添加後の/8液の紫外部吸
収を測定して液相流動系にお&ノる硫酸イオンの検出お
よび足口を行うことを特徴とする特 許 以下本発明の特徴を図面に基づいて説明する。
In the present invention, a sample solution is added to a solution containing sodium nitrate or sodium perchlorate, and after passing through a minute δ1t column packed with an anion exchange resin, a nitric acid solution containing ferric nitrate is added, A patent characterized in that sulfate ions in a liquid phase flow system are detected and detected by measuring the ultraviolet absorption of the /8 liquid after addition.Hereinafter, the features of the present invention will be explained based on the drawings. .

第1図は本発明の測定工程の流れ図である。第1図にお
いて、送液部l,ば定量ポンプ等により構成され、硝酸
す1−リウム溶液または過塩素酸ナトリウム/8液を送
出ずる。この送液部1にば、試料溶液2が一定量添加さ
れる試料導入部3が接続される。この試料導入部3には
、陰イオン交換樹脂の充填された分離力ラム4が接続さ
れる。このカラム4には、混合部5が接続される。この
混合部5ば、カラム4を通過した溶液と送液部6から送
出される硝酸第二鉄を含有する硝酸溶液とを混合する。
FIG. 1 is a flowchart of the measurement process of the present invention. In FIG. 1, the liquid feeding section 1 is composed of a metering pump and the like, and delivers a 1-lium nitrate solution or a sodium perchlorate/8 solution. A sample introducing section 3 into which a fixed amount of sample solution 2 is added is connected to this liquid feeding section 1 . A separation force ram 4 filled with anion exchange resin is connected to this sample introduction section 3. A mixing section 5 is connected to this column 4. This mixing section 5 mixes the solution that has passed through the column 4 and the nitric acid solution containing ferric nitrate sent from the liquid sending section 6 .

この混合部5には、混合液の紫外部吸収を測定する流動
光度計7が設けられる。この流動光度計7には、光度計
7の測定値を自動的に記録する自動記録装置8が接続さ
れる。
This mixing section 5 is provided with a flow photometer 7 that measures the ultraviolet absorption of the mixed liquid. An automatic recording device 8 that automatically records the measured values of the photometer 7 is connected to the flow photometer 7 .

このような構成で、本発明の測定方法について説明する
With such a configuration, the measurement method of the present invention will be explained.

送液部1から送出された硝酸ナトリウム溶液または過塩
素酸ナトリウム溶液を試料導入部3で試料溶液に添加し
た後、この添加された試料溶液を分離力ラム4に注入す
る。ここで試料溶液中に硫酸イオンが存在すると、硫酸
イオンはカラム4中の陰イオン交換樹脂とイオン交換反
応を起こす。
After adding the sodium nitrate solution or sodium perchlorate solution sent from the liquid feeding section 1 to the sample solution in the sample introduction section 3, the added sample solution is injected into the separation force ram 4. If sulfate ions are present in the sample solution, the sulfate ions cause an ion exchange reaction with the anion exchange resin in the column 4.

この反応に規定される一定の時間を経過した後に硫酸イ
オンはカラム4から溶出してくる。
Sulfate ions are eluted from column 4 after a certain period of time defined by this reaction has elapsed.

次いで、この溶出した硫酸イオンは、混合部5で送液部
6から送出されてくる発色液である硝酸第二鉄を含有す
る硝酸溶液と混合され、第二鉄イオンと錯体を形成する
。この錯体は流動光度計7に導入され、錯体特有の紫外
部吸収が測定され、あらかじめ作成した検量線により硫
酸イオンの定量が可能となる。この光度計7の測定値を
自動記録装置8に書込み、さらに図外のデータ処理装置
に入力して記憶させれば、硫酸イオンのデータ処理自動
化システムを実現することができる。
Next, the eluted sulfuric acid ions are mixed in the mixing section 5 with a nitric acid solution containing ferric nitrate, which is a coloring liquid and sent out from the liquid sending section 6, to form a complex with the ferric ions. This complex is introduced into the flow photometer 7, the ultraviolet absorption characteristic of the complex is measured, and the sulfate ion can be quantified using a calibration curve prepared in advance. By writing the measured values of the photometer 7 into the automatic recording device 8 and further inputting and storing them into a data processing device (not shown), an automated data processing system for sulfate ions can be realized.

本発明者らの研究によれば、上記測定法では、硝酸溶液
中に硫酸イオン以外のイオンが含まれても、また大量の
陰イオン界面活性剤が硫酸イオンと共存しても、硫酸イ
オンと反応して錯体を形成ずる第二鉄イオンをカラム通
過後に試料溶液と混合するため、硫酸イオンのカラ人通
過時間に影響を及ぼずことがない。これにより試料溶液
中に共存物質が存在しても能率よく硫酸イオンを定量す
ることができる。
According to the research of the present inventors, in the above measurement method, even if ions other than sulfate ions are contained in the nitric acid solution, or even if a large amount of anionic surfactant coexists with sulfate ions, sulfate ions and Since the ferric ions that react to form a complex are mixed with the sample solution after passing through the column, the time taken for the sulfate ions to pass through the column is not affected. This makes it possible to efficiently quantify sulfate ions even if coexisting substances are present in the sample solution.

第2図に試料溶液中に各種の共存物質が存在した場合の
測定結果を示す。第2図において、たて軸はイオン濃度
、よこ軸は時間である。
Figure 2 shows the measurement results when various coexisting substances were present in the sample solution. In FIG. 2, the vertical axis represents ion concentration and the horizontal axis represents time.

(alは、硫酸イオンのみ (blは、硫酸イオンと塩化物イオンとリン酸イオン (C1は、硫酸イオンと長鎖アルキルベンゼンスルボン
酸ナトリウム をそれぞれ含有した試料溶液の測定結果である。
(al: sulfate ion only; bl: sulfate ion, chloride ion, and phosphate ion; C1: measurement result of a sample solution containing sulfate ion and long-chain sodium alkylbenzene sulfonate, respectively.

ただしくC)の長鎖アルキルベンゼンスルホン酸ナトリ
ウムの濃度は10%である。
However, the concentration of C) long-chain sodium alkylbenzene sulfonate is 10%.

第2図から明らかなように、本発明によれば陰イオン界
面活性剤等の影響を全く受けずに硫酸イオンの定量が可
能である。
As is clear from FIG. 2, according to the present invention, sulfate ions can be determined without being affected by anionic surfactants or the like.

本発明に使用する硝酸ナトリウムの濃度は0.01〜0
.5M (モル濃度)の範囲が、また過塩素酸ナトリウ
ムの濃度は0.01〜0.5Mの範囲が、また硝酸第二
鉄の濃度は0.001〜O,IMの範囲が、さらに硝酸
の濃度は0.O1〜1.0Mの範囲であることが好まし
い。
The concentration of sodium nitrate used in the present invention is 0.01 to 0.
.. The concentration of sodium perchlorate is in the range of 0.01 to 0.5M, the concentration of ferric nitrate is in the range of 0.001 to O.IM, and the concentration of nitric acid is in the range of 5M (molar concentration). The concentration is 0. It is preferable that it is in the range of 01 to 1.0M.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、カラム通過後に硫
酸イオンと錯形成反応を生じる第二鉄イオンを混合する
ので、試料溶液中に硫酸イオン以外のイオンが含まれて
いても、また特に10%程度の濃度の陰イオン界面活性
剤が含まれていても、沈殿を生じることなく、簡単な諌
作で連続的に硫酸イオンの検出および定量を行うことが
できる優れた効果がある。
As described above, according to the present invention, since ferric ions that undergo a complex formation reaction with sulfate ions are mixed after passing through the column, even if the sample solution contains ions other than sulfate ions, Even if the anionic surfactant is contained at a concentration of about 10%, it has the excellent effect of being able to continuously detect and quantify sulfate ions without causing precipitation and with simple modifications.

したがって、本発明は工業製品である陰イオン界面活性
剤中の硫酸イオンの定量に有効である。
Therefore, the present invention is effective for quantifying sulfate ions in anionic surfactants, which are industrial products.

〔実施例による説明〕[Explanation based on examples]

以下本発明の態様を明確にするために、実施例を示して
さらに具体的に説明するが、ここに示す例はあくまでも
一例であってこれにより本発明の範囲を限定するもので
はない。
EXAMPLES In order to clarify the aspects of the present invention, the present invention will be described in more detail by way of examples, but the examples shown here are merely examples and do not limit the scope of the present invention.

(実施例I) 0.06 MのGi’i ff5tナトリウムを定量ポ
ンプで毎分1.0  m12送出し、これに0.05%
の硫酸ナトリウム水/8液20μβを試料/8液として
添加し、 TSKゲルLS−222(東洋曹達製)を充
填した陰イオン交換樹脂カラム(内1条4m++、長さ
 150m5)を通した後、0.01Mの硝酸第二鉄を
含有する0、2Mの硝酸溶液と混合し、混合したt&を
流動光度計で紫外部吸収を測定した。あらかじめ作成し
た検量線より硫酸イオンの含量を求めた結果を第1表に
示す。
(Example I) 0.06 M Gi'i ff5t sodium was delivered at 1.0 m12 per minute using a metering pump, to which 0.05%
After adding 20μβ of sodium sulfate water/8 solution as sample/8 solution and passing it through an anion exchange resin column (one column 4m++, length 150m5) packed with TSK Gel LS-222 (manufactured by Toyo Soda), It was mixed with a 0.2M nitric acid solution containing 0.01M ferric nitrate, and the ultraviolet absorption of the mixed t& was measured using a flow photometer. Table 1 shows the results of determining the content of sulfate ions from a calibration curve prepared in advance.

(実施例■) 長鎖アルキル硫酸エステルナトリウム塩を含む陰イオン
界面活性剤10 gを精秤し、純水にて正確に100m
βにして試料溶液とした。この試料溶液20μρを用い
て実施例Iと同様に硫酸イオンの含量を求め、硫酸ナト
リウムの含量を算出した。その結果を第1表に示す。
(Example ■) Accurately weigh 10 g of an anionic surfactant containing long-chain alkyl sulfate sodium salt, and add exactly 100 m of pure water.
β was used as a sample solution. Using 20 μρ of this sample solution, the content of sulfate ions was determined in the same manner as in Example I, and the content of sodium sulfate was calculated. The results are shown in Table 1.

(比較例1) 0.01 Mの硝酸第二鉄を含む0.1Mの硝酸水溶液
を定量ポンプで毎分1.0 mjl!送出し、これに2
0%のアルキルヘンゼンスルホン酸す1−リウム水溶液
20μβを試料溶液として添加し、実施例Iと同一のカ
ラムを通した後に流動光度計で紫外部吸収を測定した。
(Comparative Example 1) A 0.1M nitric acid aqueous solution containing 0.01M ferric nitrate was pumped at 1.0 mjl/min using a metering pump! Send out, 2 for this
20 μβ of 0% 1-lium alkylhenzenesulfonate aqueous solution was added as a sample solution, and after passing through the same column as in Example I, the ultraviolet absorption was measured using a flow photometer.

この測定法では、5回繰り返し測定を行うと、分離カラ
ムの圧力が惣激に上昇して測定不能となった。
In this measurement method, after repeating the measurement five times, the pressure in the separation column increased so dramatically that measurement became impossible.

一方、この比較例の試料溶液を実施例Iと同一条件で測
定したところ、カラムは何等異當圧力を示さず、50回
以上の連続測定を行うことができた。
On the other hand, when the sample solution of this comparative example was measured under the same conditions as in Example I, the column did not exhibit any abnormal pressure, and continuous measurements could be carried out 50 times or more.

第1表Table 1

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の測定工程の流れ図。 第2図はその測定結果を示す特性図。 ■、6・・・送液部、3・・・試料導入部、4・・・分
離カラム、5・・・混合部、7・・・流動光度計、8・
・・自動記録装置。 特許出願人 花王石鹸株式会社 代理人 弁理士 井出直孝 第1図 閤
FIG. 1 is a flowchart of the measurement process of the present invention. FIG. 2 is a characteristic diagram showing the measurement results. ■, 6...Liquid feeding part, 3...Sample introduction part, 4...Separation column, 5...Mixing part, 7...Flow photometer, 8...
...Automatic recording device. Patent applicant Kao Soap Co., Ltd. Agent Patent attorney Naotaka Ide Figure 1

【分】       時間[令] CG)        (b) 第2図 322一 時間[分] (C)[Minute] Time [Time] CG) (b) Figure 2 322-1 time [minutes] (C)

Claims (1)

【特許請求の範囲】 (11硝酸ナトリウムまたは過塩素酸ナトリウムを含有
する溶液に試料溶液を添加し、 この試料溶液の添加された溶液を陰イオン交換樹脂が充
填された分離カラムに注入し、このカラムを通過した溶
液に硝酸第二鉄を含有する硝酸溶液を添加し、 この硝酸溶液の添加された溶液の紫外部吸収を測定する
ことにより液相流動系における硫酸イオンを測定する陰
イオン界面活性剤中の硫酸イオンの測定方法。 (2)硝酸す1−リウムの濃度が0.01〜0.5M 
(モル濃度)である特許請求の範囲第+11項に記載の
陰イオン界面活性剤中の硫酸イオンの測定方法。 (3)過塩素酸ナトリウムの濃度が0.01−0.5M
である特許請求の範囲第(11項に記載の陰イオン界面
活性剤中の硫酸イオンの測定方法。 (4)硝酸第二鉄の濃度が0.001〜0.1Mである
特許請求の範囲第+11項ないし第(3)項のいずれか
に記載の陰イオン界面活性剤中の硫酸イオンの測定方!
 法。 (5)硝酸の濃度が0.01〜1.0Mである特許請求
の範囲第(11項ないし第(4)項のいずれかに記載の
陰イオン界面活性剤中の硫酸イオンの測定方法。 (6)  紫外部吸収の測定を流動光度針で行い、その
測定値を自動記録装置で記録する特許請求の範囲第tl
)項ないし第(5)項のいずれかに記載の陰イオン界面
活性剤中の硫酸イオンの測定方法。
[Claims] (11) A sample solution is added to a solution containing sodium nitrate or sodium perchlorate, and the solution to which the sample solution is added is injected into a separation column packed with an anion exchange resin. Anionic surfactant that measures sulfate ions in a liquid phase flow system by adding a nitric acid solution containing ferric nitrate to the solution that has passed through the column and measuring the ultraviolet absorption of the solution to which the nitric acid solution has been added. Method for measuring sulfate ions in the agent. (2) The concentration of 1-lium nitrate is 0.01 to 0.5M.
(Molar concentration) The method for measuring sulfate ions in an anionic surfactant according to claim 11. (3) Concentration of sodium perchlorate is 0.01-0.5M
(4) The method of measuring sulfate ions in an anionic surfactant according to claim 11. (4) The concentration of ferric nitrate is 0.001 to 0.1M. + How to measure sulfate ions in an anionic surfactant according to any one of Items 11 to 3)!
Law. (5) A method for measuring sulfate ions in an anionic surfactant according to any one of claims 11 to (4), wherein the concentration of nitric acid is 0.01 to 1.0 M. ( 6) Claim tl which measures ultraviolet absorption with a fluidized photometric needle and records the measured value with an automatic recording device.
A method for measuring sulfate ions in an anionic surfactant according to any one of items ) to (5).
JP17672082A 1982-10-06 1982-10-06 Measurement of sulfate ion in anionic surfactant Pending JPS5965256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17672082A JPS5965256A (en) 1982-10-06 1982-10-06 Measurement of sulfate ion in anionic surfactant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17672082A JPS5965256A (en) 1982-10-06 1982-10-06 Measurement of sulfate ion in anionic surfactant

Publications (1)

Publication Number Publication Date
JPS5965256A true JPS5965256A (en) 1984-04-13

Family

ID=16018591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17672082A Pending JPS5965256A (en) 1982-10-06 1982-10-06 Measurement of sulfate ion in anionic surfactant

Country Status (1)

Country Link
JP (1) JPS5965256A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0755779A (en) * 1993-08-19 1995-03-03 Kawasaki Steel Corp Managing method for neutral salt liquid of stainless steel plate manufacturing process
CN106950271A (en) * 2017-05-12 2017-07-14 盐城工学院 Electrode and its preparation method and application

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0755779A (en) * 1993-08-19 1995-03-03 Kawasaki Steel Corp Managing method for neutral salt liquid of stainless steel plate manufacturing process
CN106950271A (en) * 2017-05-12 2017-07-14 盐城工学院 Electrode and its preparation method and application

Similar Documents

Publication Publication Date Title
JPS5965256A (en) Measurement of sulfate ion in anionic surfactant
JPH05203641A (en) Method of making liquid phase substance having concentration of carbon dioxide established previously
US3846074A (en) Determination of p2o5
Kamson Spectrophotometric determination of iodate, iodide and acids by flow injection analysis
GB1326923A (en) Method and apparatus for analyzing a liquid containing macromolecules that would interfere with the analysis
Buck et al. Coulometric Titration of Aniline
Rechnitz et al. Determination of Nitrilotriacetic Acid (NTA) with Ion-Selective Membrane Electrodes
CN103018400A (en) Quantitative analysis method of chlorine element in radioactive product
Langer et al. Location of End Point on Certain Graphical Titration Curves
Nobrega et al. Ionic strength effect on the rate of reduction of Hexacyanoferrate (III) by ascorbic acid: A flow injection kinetic experiment
Baur et al. Hexamminecobalt (III) Tricarbonatocobaltate (III)-A New Analytical Titrant.
Chen et al. A metallic cobalt electrode for the indirect potentiometric determination of calcium and magnesium in natural waters using flow injection analysis
US3923608A (en) Method of detecting low levels of cyanide
Yashphe et al. Quantitative Method for Differential Determination of Hydroxylamine and Beta-Aspartyl Hydroxamate in Mixtures
Jones et al. Colorimetric determination of propionaldehyde
Gehring et al. Determination of sodium nitrate in sodium nitrite by selective ion electrode measurement
US3857762A (en) Continuous analysis for copper concentration
Markin et al. The preparation of a solution of plutonium (V) in 0· 2 M HNO3
US3457145A (en) Liquid and gas analysis
Blakeley et al. Photometric precipitation titrations
Nagy et al. A novel titration technique for the analysis of streamed samples—the triangle-programmed titration technique: Part 3. Titrations with Electrically Generated Bromine
CN106645557A (en) Method for measuring content of free formaldehyde in n-phenylglycinonitrile product
US3850761A (en) Cyanide decomplexing
Hirozawa et al. Amperometric Titration of Sulfamates with Dropping Mercury Cathode
Radić et al. Sulfide ion-selective electrode as potentiometric sensor for lead (II) ion in aqueous and nonaqueous medium