JPS596401B2 - program control device - Google Patents

program control device

Info

Publication number
JPS596401B2
JPS596401B2 JP10474076A JP10474076A JPS596401B2 JP S596401 B2 JPS596401 B2 JP S596401B2 JP 10474076 A JP10474076 A JP 10474076A JP 10474076 A JP10474076 A JP 10474076A JP S596401 B2 JPS596401 B2 JP S596401B2
Authority
JP
Japan
Prior art keywords
temperature
program
difference
contact
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10474076A
Other languages
Japanese (ja)
Other versions
JPS5329477A (en
Inventor
一「し」 小林
武弘 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP10474076A priority Critical patent/JPS596401B2/en
Publication of JPS5329477A publication Critical patent/JPS5329477A/en
Publication of JPS596401B2 publication Critical patent/JPS596401B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)
  • Control Of Temperature (AREA)

Description

【発明の詳細な説明】 本発明は、プロセス制御システムにおけるプログラム制
御装置に関し、特に、制御対象の状態に応じてプログラ
ムの進行速度を制御する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a program control device in a process control system, and particularly to a device that controls the progress speed of a program according to the state of a controlled object.

例えば、加熱炉の温度制御において、従来は、炉内の代
表的な一点の温度のみに着目して昇温、降温制御を行つ
ていたため、熱源から炉内各点に至る時定数の差により
温度差が生じ、この温度差が甚だしくなると被処理物の
品質に悪影響を与える欠点があつた。
For example, when controlling the temperature of a heating furnace, conventionally the temperature was raised or lowered by focusing only on the temperature at one representative point in the furnace. A temperature difference occurs, and when this temperature difference becomes significant, there is a drawback that it adversely affects the quality of the object to be processed.

本発明は、例えば炉内の各点の温度差のように、制御対
象内の異なる測定点における物理量の差が、本来のプロ
グラム装置を何ら変更することなく、許容値を超えない
ように管理する制御装置を提供せんとするものである。
The present invention manages differences in physical quantities at different measurement points within a controlled object, such as temperature differences between points in a furnace, so that they do not exceed allowable values without making any changes to the original programming device. The purpose is to provide a control device.

次に本発明の実施例を加熱炉の温度制御について説明す
る。
Next, an embodiment of the present invention will be described regarding temperature control of a heating furnace.

第1図は、本発明の実施例の制御系統図である。FIG. 1 is a control system diagram of an embodiment of the present invention.

炉1には加熱用バーナ2、炉内温度を計測するための主
温度計3及び副温度計4がそれぞれ設けられており、主
温度計の測定値をθ1、副温度計の測定値をθ2とする
。プログラム装置PROには、予め制御されるべきプロ
グラムが設定されていて。このプログラム出力E。を基
準値とし、主温度計3による測定値θ1をフィードバッ
ク値として、その偏差に従い燃料制御弁6が制御される
。本発明の特徴部分は、上述の制御系統に、以下説明す
るプログラム進行速度減速機能を付与したところにある
。即ち、減算器Tにより求められる二点の測定値の差の
絶対値、△θ■1θ1−θ21と、温度差△θの許容値
△θ0の差を減算器8により求め、△θ<△θ0のとき
は所定の基準昇温(又は降温)速度でプログラムを進行
させ、△θ>△θoになると、プログラム速度調節器R
Cの機能により、その差値(△θ−△θo)の大きさに
応じてプログラム進行速度が適宜減速され、従って、△
θ=△θoに保つよう制御される。昇温行程における炉
内温度上昇の模型的特性図を第2図に示す。図において
特性囚は時定数の小さい点Aにおける温度を示し、特性
(B)は時定数の大きい点Bにおける温度を示している
。点Aがある温度に達してから点Bがその温度に達する
までには時間Tiの遅れが存在し、また、ある時刻にお
ける両点の温度差は△θ1である。炉の構造測定点を変
えずに昇温速度を減速させるときは、第3図に示すよう
に、点Aがある温度に達してから点Bがその温度にまで
達する遅れ時間T2は、時定数が炉の構造に依存するも
のであるため、第2図における遅れ時間T1に等しく、
T1=T2が成立し、従つて、昇温速度が減じただけ両
点の温度差△θ2は、△θ1よりも小さいものとなる。
本発明の技術思想は、プロセス制御装置に応じて種々な
態様で実施することができるが、次にいくつかの具体的
実施例を説明する。第4図は、アナログ演算による実施
例を示す。
The furnace 1 is equipped with a heating burner 2, a main thermometer 3, and a sub-thermometer 4 for measuring the temperature inside the furnace.The measured value of the main thermometer is θ1, and the measured value of the sub-thermometer is θ2. shall be. Programs to be controlled are set in advance in the program device PRO. This program output E. is set as a reference value, and the measured value θ1 by the main thermometer 3 is set as a feedback value, and the fuel control valve 6 is controlled according to the deviation. A feature of the present invention is that a program progress speed reduction function, which will be described below, is added to the above-mentioned control system. That is, the difference between the absolute value of the difference between the measured values at two points, △θ■1θ1-θ21, obtained by the subtractor T, and the tolerance value △θ0 of the temperature difference △θ is obtained by the subtractor 8, and △θ<△θ0 In this case, the program proceeds at a predetermined standard temperature increase (or temperature decrease) rate, and when △θ>△θo, the program speed regulator R
By the function of C, the program progress speed is appropriately reduced according to the magnitude of the difference value (△θ−△θo), and therefore, △
It is controlled to maintain θ=Δθo. Fig. 2 shows a schematic characteristic diagram of the temperature rise in the furnace during the temperature rise process. In the figure, characteristic (B) indicates the temperature at point A where the time constant is small, and characteristic (B) indicates the temperature at point B where the time constant is large. There is a delay of time Ti from when point A reaches a certain temperature until point B reaches that temperature, and the temperature difference between the two points at a certain time is Δθ1. When slowing down the heating rate without changing the measurement points of the furnace structure, as shown in Figure 3, the delay time T2 from when point A reaches a certain temperature until point B reaches that temperature is determined by a time constant. Since it depends on the structure of the furnace, it is equal to the delay time T1 in FIG.
T1=T2 holds true, and therefore, the temperature difference Δθ2 between the two points becomes smaller than Δθ1 by the amount that the temperature increase rate is reduced.
The technical idea of the present invention can be implemented in various ways depending on the process control device, and some specific examples will be described next. FIG. 4 shows an embodiment using analog calculation.

図において、9は乗算器、10はミラー積分器であり、
乗算器9の被乗数Esはプログラムに設定されている基
準変化速度に係る信号、乗算器9の乗数ER,はプログ
ラム速度調節器RCの出力信号であつて、△θ〈△θo
のときにEB=1となり△θ〉△θoのときは△θの増
大につれてE?{次第に減少するよう定められている。
ミラー積分器10の入力EI=ES−E青であり、ミラ
ー積分器10の出力E。は、EO=−f′EIdt(た
だし、ττは積分器の時定数)となる。従つて、△θが
△θoをこえると、ER〈1となるから乗算器9の出力
EIは次第に減少し、温度調節計TCへ導入されする信
号E。
In the figure, 9 is a multiplier, 10 is a Miller integrator,
The multiplicand Es of the multiplier 9 is a signal related to the standard rate of change set in the program, the multiplier ER of the multiplier 9 is an output signal of the program speed regulator RC, and △θ〈△θo
When EB=1 and △θ>△θo, as △θ increases, E? {It is determined that it will gradually decrease.
The input of Miller integrator 10, EI=ES-E blue, and the output of Miller integrator 10, E. is EO=-f'EIdt (where ττ is the time constant of the integrator). Therefore, when Δθ exceeds Δθo, ER<1, so the output EI of the multiplier 9 gradually decreases, and the signal E is introduced to the temperature controller TC.

の変化速度は一・E1に比例して低下すτる。The rate of change of τ decreases in proportion to 1·E1.

第5図にデジタル的な実施例を示す。FIG. 5 shows a digital embodiment.

第1のパルスゼネレータPG−1は許容値△θo゛に対
応する一定のパルスレートを有し、第2のパルスゼネレ
ータPG−2は温度差1θ1−θ21に対応してパルス
レートが変化し、温度差△θが大きいほどパルスレート
が大きくなる。パルスモータPMは端子Uの入力パルス
数に追従して正方向に回転し、端子Dの入力パルス数に
追従して負方向に回転し、.端子U及び端子Dの双方に
入力があるときはそのパルス数の差に従つて正又は負方
向に回転する。接点U及び接点Dはプログラム設定器P
ROにより開閉制御されるもので、昇温指示のとき接点
Uが接となり、降温指示のとき接点Dが接となる。接点
A,及びA2はいずれも減算器8の出力(△θ−△θo
)が正のときセツトされる記憶素子、例えば制御リレー
に追従して作動するa接点であり、昇温指示のとき接点
A2が接となり、降温指示のとき接点a1が接となる。
可変抵抗器RVはパルスモータPMの回転角に従つて分
圧比が変化するもので、定電圧Eの電圧を入力とし、出
力E。が温度調節計TCの基準側入力に導入されている
。今、昇温プログラムにおいて、△θく△θoのときは
接点Uのみが接となつてパルスモータPMは所定の速度
で正方向に回転して出力E。を基準昇温速度で増大させ
るが、△θ〉△θoになると上記に加えて、接点A2が
接となり第2のパルスゼネレータPG−2の出力パルス
が端子Dにも導入されるからパルスモータPMの回転速
度は減速される。降温プログラムにおいては、Δθ△θ
oのときは接点Dのみが接となつてパルスモータPMは
所定の速度で負方向に回転するが、△θ〉△θ0になる
と接点a1を通して第2のパルスゼネレータPG−2の
出力パルスも同時に端子Uに導入されてパルスモータP
Mの負方向回転速度が減速される。本発明は、上述した
加熱炉に限られるものでなく、時間遅れ現象が顕著なも
の6例えば熱に関す▼る装置、化学変化を伴うもの、微
生物の生育に関するもの等に広く実施することができる
The first pulse generator PG-1 has a constant pulse rate corresponding to the tolerance value △θo゛, and the second pulse generator PG-2 has a pulse rate that changes corresponding to the temperature difference 1θ1-θ21, The larger the difference Δθ, the larger the pulse rate. The pulse motor PM rotates in the positive direction following the number of input pulses at the terminal U, rotates in the negative direction following the number of input pulses at the terminal D, and so on. When there is input to both terminals U and D, the motor rotates in the positive or negative direction according to the difference in the number of pulses. Contacts U and D are program setter P
Opening/closing is controlled by RO, and contact U is closed when a temperature increase instruction is issued, and contact D is closed when a temperature decrease instruction is issued. Both contacts A and A2 are connected to the output of the subtracter 8 (△θ−△θo
) is a positive contact, which is set in accordance with a memory element, such as a control relay, and is an a contact that operates in accordance with a control relay; contact A2 is closed when the temperature is instructed to rise, and contact a1 is closed when the temperature is instructed to be lowered.
The variable resistor RV has a voltage division ratio that changes according to the rotation angle of the pulse motor PM, and has a constant voltage E as an input and an output E. is introduced into the reference side input of the temperature controller TC. Now, in the temperature increase program, when △θ and △θo, only contact U is in contact, and pulse motor PM rotates in the forward direction at a predetermined speed to output E. is increased at the standard temperature increase rate, but when △θ>△θo, in addition to the above, contact A2 becomes a contact and the output pulse of the second pulse generator PG-2 is also introduced to terminal D, so the pulse motor PM The rotational speed of is reduced. In the temperature reduction program, Δθ△θ
o, only the contact D is in contact and the pulse motor PM rotates in the negative direction at a predetermined speed, but when △θ〉△θ0, the output pulse of the second pulse generator PG-2 is simultaneously transmitted through the contact a1. Pulse motor P is introduced into terminal U.
The negative direction rotational speed of M is reduced. The present invention is not limited to the above-mentioned heating furnace, but can be widely applied to devices in which the time delay phenomenon is noticeable6, such as devices related to heat, devices involving chemical changes, devices related to the growth of microorganisms, etc. .

本発明は、本来のプログラムを変更することなく、設定
値の変化率を制御するだけで実施できるから実施化が容
易であり、例えば、陶磁器の焼成炉などでは温度差が製
品の品質に大きく影響するばかりでなく、高温のため撹
拌機を設けることが困難であるため本発明装置の導入効
果は特に著しい。
The present invention is easy to implement because it can be implemented simply by controlling the rate of change of the set value without changing the original program.For example, in a ceramic firing furnace, temperature differences have a large effect on the quality of the product. Not only that, but also because it is difficult to provide a stirrer due to the high temperature, the effect of introducing the apparatus of the present invention is particularly remarkable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の制御系統図である。 第2図及び第3図は上記実施例の作用を説明する特性図
である。第4図及び第5図は本発明特徴部分の具体的実
施例を示す回路図である。1・・・・・・炉、2・・・
・・・バー九3,4・・・・・・温度計、6・・・・・
・燃料制御弁、RC・・・・・・プログラム速度調節器
、PRO・・・・・・プログラム設定器、TC・・・・
・・温度調節計。
FIG. 1 is a control system diagram of an embodiment of the present invention. FIGS. 2 and 3 are characteristic diagrams illustrating the operation of the above embodiment. FIGS. 4 and 5 are circuit diagrams showing specific embodiments of the features of the present invention. 1...Furnace, 2...
... Bar 9 3, 4 ... Thermometer, 6 ...
・Fuel control valve, RC...Program speed regulator, PRO...Program setting device, TC...
··Temperature Controller.

Claims (1)

【特許請求の範囲】[Claims] 1 所定のプログラムに従い制御対象を制御する装置に
おいて、上記制御対象に係る少なくとも二点の測定値の
差が所定値をこえたことを検出する手段と、プログラム
進行速度減速手段とを有し、上記測定値の差が所定値を
こえて増大したとき上記プログラムの進行を減速させる
ことにより上記制御対象内部における状態が均一化され
るよう構成されたプログラム制御装置。
1. A device for controlling a controlled object in accordance with a predetermined program, comprising means for detecting that a difference between measured values at at least two points regarding the controlled object exceeds a predetermined value, and a program progress speed reduction means, A program control device configured to equalize the state inside the controlled object by slowing down the progress of the program when the difference in measured values increases beyond a predetermined value.
JP10474076A 1976-08-31 1976-08-31 program control device Expired JPS596401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10474076A JPS596401B2 (en) 1976-08-31 1976-08-31 program control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10474076A JPS596401B2 (en) 1976-08-31 1976-08-31 program control device

Publications (2)

Publication Number Publication Date
JPS5329477A JPS5329477A (en) 1978-03-18
JPS596401B2 true JPS596401B2 (en) 1984-02-10

Family

ID=14388883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10474076A Expired JPS596401B2 (en) 1976-08-31 1976-08-31 program control device

Country Status (1)

Country Link
JP (1) JPS596401B2 (en)

Also Published As

Publication number Publication date
JPS5329477A (en) 1978-03-18

Similar Documents

Publication Publication Date Title
US4558430A (en) Controller of digital control system and method for controlling the same
GB1463988A (en) Systems for controlling the temperature within an enclosure
JPS635401A (en) Proportional control method for program temperature regulator
US4374351A (en) Digital drive unit regulator
KR910006498B1 (en) Position control system
JPS62112028A (en) Controller for chassis dynamometer system
CN108398901A (en) Intelligent heating furnace control system and its control method
JPS596401B2 (en) program control device
US2972446A (en) Optimal controller
US2593562A (en) Control system
Zinober Adaptive relay control of second-order systems
US4698574A (en) Process control apparatus
CN113485094B (en) Method and device for obtaining process optimal ZN model
US3692986A (en) Process control method and apparatus for regulating temperature
EP0071262A1 (en) Method of controlling an enamelling oven
JPS5813809B2 (en) Combustion control method using low excess air
US3706339A (en) Control system
JPH02125311A (en) Temperature controller
JP2682060B2 (en) Controller and method of determining output range of controller
JPH01174828A (en) Mixer for hot and cold water
US3104956A (en) Automatic control devices for use in cyclic processes
SU484496A1 (en) Pid Regulator
JPS6117445Y2 (en)
JPH0323835B2 (en)
JPH06214607A (en) Velocity type controller