JPS5963830A - Optical signal amplifier - Google Patents

Optical signal amplifier

Info

Publication number
JPS5963830A
JPS5963830A JP57175094A JP17509482A JPS5963830A JP S5963830 A JPS5963830 A JP S5963830A JP 57175094 A JP57175094 A JP 57175094A JP 17509482 A JP17509482 A JP 17509482A JP S5963830 A JPS5963830 A JP S5963830A
Authority
JP
Japan
Prior art keywords
light source
optical signal
wavelength
optical fiber
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57175094A
Other languages
Japanese (ja)
Other versions
JPS6230717B2 (en
Inventor
Kazuhiro Noguchi
一博 野口
Taiji Murakami
村上 泰司
Yasuro Kimura
康郎 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57175094A priority Critical patent/JPS5963830A/en
Publication of JPS5963830A publication Critical patent/JPS5963830A/en
Publication of JPS6230717B2 publication Critical patent/JPS6230717B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/2912Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form characterised by the medium used for amplification or processing
    • H04B10/2916Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form characterised by the medium used for amplification or processing using Raman or Brillouin amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/30Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects
    • H01S3/302Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects in an optical fibre

Abstract

PURPOSE:To obtain an optical signal with large amplitude by making a signal and excitation light having different wavelength from each other incident to one end of an optical fiber and taking out an optical signal having wavelength equal to that of the excitation light from the other end. CONSTITUTION:An optical signal modulated in amplitude at 1.38-1.41mum wavelength e.g. is generated from a semiconductor laser 12, large amplitude continuous signal with about 1.32mum wavelength is generated from Nd:YAG laser 13 and both signals are made incident to one end of an optical fiber 15. The Raman amplification phenomenon is induced in the optical fiber 15 and the output energy of the Nd:YAG laser 13 is transferred to the output light of a semiconductor laser 12. When an optical output having wavelength equal to that of output light from the Nd:YAG laser 12 is taken out from the other end of the optical fiber 15 through a band filter 16, the output light is modulated to the light having a phase reverse to a modulated input 11 and the modulated light is transmitted through the optical fiber 17.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、通信用光信号を増幅する光信号増幅器に関す
る。特に、光ファイバの内部で生じるラマン増幅現象を
利用して、光信号を増幅する光信号増幅器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to an optical signal amplifier that amplifies communication optical signals. In particular, the present invention relates to an optical signal amplifier that amplifies optical signals by utilizing the Raman amplification phenomenon that occurs inside an optical fiber.

〔従来技術の説明〕[Description of prior art]

一本の単一モード光ファイバに周波数Fsの信号光と、
この信号光の周波数とは異なる周波数Fpの振幅□の大
きい励起光を同時に注入すると、Fi=2Fp−Fs なる周波数のアイドラ光が発生し、励起光、信号光およ
びアイドラ光の間に位相整合条件が満たされると、励起
光のエネルギーが信号光およびアイトう光へ移行する現
象が知られている。これを四光子混合増幅現象といい、
この現象を利用した光信号増幅器が次の文献に報告され
ている。
Signal light of frequency Fs in one single mode optical fiber,
When pumping light with a frequency Fp different from the frequency of the signal light and a large amplitude □ is simultaneously injected, an idler light with a frequency of Fi = 2Fp-Fs is generated, and a phase matching condition is established between the pumping light, signal light, and idler light. It is known that when the above is satisfied, the energy of the excitation light is transferred to the signal light and the light beam. This is called the four-photon mixing amplification phenomenon.
An optical signal amplifier that utilizes this phenomenon is reported in the following literature.

(文献) K、Washio et al、  ” A
mplication and Frequency 
 Conversion  of  InGaA’sP
  La5er  Light  1nOptical
 Fiber P’umped in the Low
 Dispersion )egion at 1.3
 1t m ” Topical Meeting o
n 0ptical  Fiber  Communi
cation、  Ar1zona、八pril  1
3− 15.1982 pp60 − 第1図はこの従来例増幅器の構成図である。半導体レー
ザlは波長1.387rmの光信号を発生し、Nd:Y
AGレーザ2は波長1.32.u mの光信号を発生ず
る。この2つのレーザの出力光は、ハーフミラ−3を用
いて単一モード光ファイバ4に入射される。この光ファ
イバ4の内部で上記式の周波数のアイドラ光が発生し、
このアイドラ光の振幅が半導体レーザ1の出力光より大
きくなって、帯域濾波器5を介して取り出される。この
従来例装置では、光ファイバ4にコア直径11μm、高
次モードカッ1−オフ波ff11.2μm1長さ約30
mの単一モード光ファイバを使用して、ピーク出力15
W1パルス幅O54μsの光パルスで励起したとき、こ
の光ファイバ4の中で約47dB増幅され、励起光パル
スのピーク出力を30Wにしたときには、約60dBの
増幅が行われることが報告されている。
(Reference) K., Washio et al., “A.
plication and frequency
Conversion of InGaA'sP
La5er Light 1nOptical
Fiber P'umped in the Low
Dispersion )egion at 1.3
1t m ” Topical Meeting o
n 0ptical fiber community
cation, Ar1zona, 8pril 1
3-15.1982 pp60 - Figure 1 is a block diagram of this conventional amplifier. The semiconductor laser l generates an optical signal with a wavelength of 1.387rm, and the Nd:Y
AG laser 2 has a wavelength of 1.32. It generates an optical signal of um. The output lights of these two lasers are input into a single mode optical fiber 4 using a half mirror 3. An idler light having a frequency of the above formula is generated inside this optical fiber 4,
The amplitude of this idler light becomes larger than the output light of the semiconductor laser 1 and is extracted through the bandpass filter 5. In this conventional device, the optical fiber 4 has a core diameter of 11 μm, a higher-order mode cutoff wave length of 11.2 μm, and a length of approximately 30 μm.
peak power of 15 m using single mode optical fiber
It has been reported that when pumped with a light pulse with a W1 pulse width of 054 μs, it is amplified by about 47 dB in this optical fiber 4, and when the peak output of the pump light pulse is set to 30 W, it is amplified by about 60 dB.

しかし、この従来例装置では、光ファイバ4として、信
号光と励起光との間で位相整合条件を満足させるような
特殊な単一モード、光ファイバを用いることが必要であ
り、このような光ファイバは一般の通信用に使用するに
は適当ではなく、また出力信号光の波長は上記のように
アイドラ光であり、これは一般の通信用光ファイバのO
H基吸収11邊失の大きい領域にあるので、この波長で
ば長距頗目云送が困難である。
However, in this conventional device, it is necessary to use a special single mode optical fiber that satisfies the phase matching condition between the signal light and the excitation light as the optical fiber 4. The fiber is not suitable for use in general communication, and the wavelength of the output signal light is idler light as mentioned above, which is different from the O of general communication optical fiber.
Since the wavelength is in a region where the loss of H group absorption is large, long-distance transmission is difficult at this wavelength.

〔発明の目的〕[Purpose of the invention]

4、発明は、特殊な光ファイバを使用する必要がなく、
出力光が通常の光ファイバの低損失波長領域にある光信
号増幅器を提供することを目的とする。
4. The invention does not require the use of special optical fibers,
It is an object of the present invention to provide an optical signal amplifier whose output light is in the low-loss wavelength region of a normal optical fiber.

〔発明の特徴〕[Features of the invention]

本発明は、変調信号入力端子と、 この変調信号入力端子の信号により振幅変1tldされ
た光信号を発生する第一の光源と、 この第一の光源の発する光信号より僅かに波長が相違し
振幅の大きい連続的な光信号を発生する第二の光源と、 」二記第−の光源が発生ずる光信号と上記第二の光源が
発生ずる光信号との間にラマン増幅現象を誘起させる光
ファイバと、 上記第一の光源が発生ずる光信号と上記第二の光源が発
生する光信号とを同時に上記光ファイバの一端に入射さ
せる第一の手段と、 −に記第二の光源の発生する光信号の波長に等しい波長
の信号であって上記第一の光源の出力光とは逆の位相に
変調された光信号を上記光ファイバの他端から取り出す
第二の手段と を備えたことを特徴とする。
The present invention includes a modulation signal input terminal, a first light source that generates an optical signal whose amplitude is changed by the signal of the modulation signal input terminal, and a light source that generates an optical signal whose wavelength is slightly different from that of the optical signal emitted by the first light source. a second light source that generates a continuous optical signal with large amplitude; inducing a Raman amplification phenomenon between the optical signal generated by the second light source and the optical signal generated by the second light source; an optical fiber; a first means for simultaneously inputting an optical signal generated by the first light source and an optical signal generated by the second light source into one end of the optical fiber; and second means for extracting from the other end of the optical fiber an optical signal having a wavelength equal to the wavelength of the generated optical signal and modulated in a phase opposite to that of the output light of the first light source. It is characterized by

第一の光源は波長的1.38μm〜1.41μmの光信
号を発生ずる半導体レーザにより構成され、第二の光源
は波長的1.32μmの光信号を発生ずるNd:YAG
レーザにより構成され、第二の手段が波長的1.321
trnの光信号に対して通過域を有する帯域濾波器を含
む構成が好ましい。
The first light source is composed of a semiconductor laser that generates an optical signal with a wavelength of 1.38 μm to 1.41 μm, and the second light source is a Nd:YAG laser that generates an optical signal with a wavelength of 1.32 μm.
The second means has a wavelength of 1.321
A configuration including a bandpass filter having a passband for the trn optical signal is preferable.

第一の手段は誘電体多層薄膜により形成されたダイクロ
インクミラーを含むことが好ましい。
Preferably, the first means includes a dichroic ink mirror formed from a dielectric multilayer thin film.

ここで、Nd:YAGレーザとは、Ndイオンをン占に
−(オンとして含むイツトリウム・アJI/ミニウム・
ガーネットを材料主成分とする固体レーザである。
Here, the Nd:YAG laser refers to yttrium, aluminum, chloride, etc., which contains Nd ions as an on.
This is a solid-state laser whose main material is garnet.

〔実施例による説明〕[Explanation based on examples]

第2図は本発明実施例光信号増幅器の構成図である。入
力端子11には、変調信号入力が電気信号として与えら
れる。第一の光源12は半導体レーザで、波長が約1.
38〜1.41メrmの光信号を発生し、その出力光は
上記入力端子11の変調信号人力により振幅変調される
ように構成される。第二の光源13はNd:YAGレー
ザで、波長約1.32.u mの振幅の大きい連続光を
発生する。第一の光源12の出力光と第二の光源13の
出力光はダイクロイックミラー14で合成されて、光フ
ァイバ15の一端に入射される。ダイクロイックミラー
14は、誘電体多層HH’Aにより構成される。これば
、光源I2の出力光を高効率に透過させ、光源13の出
力光は高効率に反射させるように各多層薄膜が構成され
ている。
FIG. 2 is a block diagram of an optical signal amplifier according to an embodiment of the present invention. A modulated signal input is given to the input terminal 11 as an electrical signal. The first light source 12 is a semiconductor laser with a wavelength of approximately 1.5 mm.
An optical signal of 38 to 1.41 merm is generated, and the output light is amplitude-modulated by the input terminal 11 of the modulation signal. The second light source 13 is a Nd:YAG laser with a wavelength of approximately 1.32. Generates continuous light with a large amplitude of um. The output light of the first light source 12 and the output light of the second light source 13 are combined by a dichroic mirror 14 and input into one end of an optical fiber 15. The dichroic mirror 14 is composed of dielectric multilayer HH'A. In this way, each multilayer thin film is configured to transmit the output light of the light source I2 with high efficiency and reflect the output light of the light source 13 with high efficiency.

光ファイバ14ばラマン増幅現象を誘起させる光ファイ
バである。
The optical fiber 14 is an optical fiber that induces the Raman amplification phenomenon.

光ファイバ15の他端では、その出力光が帯域濾波器1
6を通過して光ファイバ17の一端に入射されるように
構成され、光ファイバ17の他端の出力光は、受信装置
18に供給される。帯域濾波器16の通過帯域波長は、
Nd : YAGレーザ光源13の出力光波長であり、
半導体レーザ光源12の出力光波長は阻止するように構
成される。光ファイバ17は長距離通信用の光ファイバ
とすることができる。
At the other end of the optical fiber 15, the output light is passed through a bandpass filter 1.
6 and enters one end of an optical fiber 17, and the output light from the other end of the optical fiber 17 is supplied to a receiving device 18. The passband wavelength of the bandpass filter 16 is
Nd: Output light wavelength of the YAG laser light source 13,
The output light wavelength of the semiconductor laser light source 12 is configured to be blocked. Optical fiber 17 can be an optical fiber for long distance communication.

このように構成された装置では、光ファイバ15に入射
されたNd : YAGレーザ光源13の出力光は、半
導体レーザ光源12の出力光がこの光ファイバ15にと
もに存在することにより、ラマン増幅現象が誘起される
。ずなわち、Nd:YAGレーザ光源13の出力光エネ
ルギーが1、光ファイバ15を伝播するにつれて半導体
レーザ光源12の出力光に移り、その結果として波長1
.32μmの光信号強度はほとんど零になり、半導体レ
ーザ光源12の出力光波長に等しい波長の光信号の振幅
が大きくなる。
In the device configured in this way, the output light of the Nd:YAG laser light source 13 that is incident on the optical fiber 15 is affected by the Raman amplification phenomenon due to the presence of the output light of the semiconductor laser light source 12 in the optical fiber 15. induced. That is, as the output light energy of the Nd:YAG laser light source 13 is 1, it is transferred to the output light of the semiconductor laser light source 12 as it propagates through the optical fiber 15, and as a result, the wavelength of the light is 1.
.. The intensity of the optical signal at 32 μm becomes almost zero, and the amplitude of the optical signal having the same wavelength as the output light wavelength of the semiconductor laser light source 12 increases.

一方、光ファイバ15に半導体レーザ光源12からの出
力光が存在しないときには、このような現象ば起ごらず
Nd : YAGレーザ光源13の出力光波長1.32
μmがそのまま光ファイバ15の他端に送出される。し
たがって、光ファイバ15の他端から送出される波m1
.321rmの光信号成分は、半導体シー9′光源12
の出力光の逆位相に変調された光信号となる。しかも、
Nd : YAGレーザ光源13の信号振幅は大きくす
ることができるので、光ファイン\15の他端から送出
される波長1.32μmの光信号は、半導体レーデ光源
12の出力光信号より大きくすることができる。
On the other hand, when there is no output light from the semiconductor laser light source 12 in the optical fiber 15, such a phenomenon does not occur and the output light wavelength of the Nd:YAG laser light source 13 is 1.32.
μm is directly transmitted to the other end of the optical fiber 15. Therefore, the wave m1 sent out from the other end of the optical fiber 15
.. The 321 rm optical signal component is transmitted to the semiconductor sheet 9' light source 12.
This becomes an optical signal modulated to have the opposite phase of the output light. Moreover,
Since the signal amplitude of the Nd: YAG laser light source 13 can be increased, the optical signal with a wavelength of 1.32 μm sent out from the other end of the optical fine\15 can be made larger than the output optical signal of the semiconductor radar light source 12. can.

第3図は各信号の時間関係を示すタイムチャートである
。第3図(A)はNdニーYAGレーザ光l+h+ 1
3の出力光レベルを示ず。すなわらNd:YAGレーザ
光源13は高いレベルP1の連続光を送出]′る。第3
図(B)は半導体レーザ光源12の出力光レベルを示す
。この出力光のレベルP2は低く入力端子11の信号に
より変調されている。第3図(C)は光ファイバ15の
出力光レベルを示す。
FIG. 3 is a time chart showing the time relationship of each signal. Figure 3 (A) shows Nd knee YAG laser beam l+h+ 1
3 does not indicate the output light level. That is, the Nd:YAG laser light source 13 emits continuous light at a high level P1. Third
Figure (B) shows the output light level of the semiconductor laser light source 12. The level P2 of this output light is low and is modulated by the signal at the input terminal 11. FIG. 3(C) shows the output light level of the optical fiber 15.

ずなわら半導体レーザ光源12の出力光がない時間には
、Nd : YAGレーザ光源13の出力光レベルP1
が光ファイバ15でいくぶん減衰されて、レベルPよ 
′で送出される。しかし、光ファイン\15に半導体レ
ーデ光源12の出力光が存在する時間にば、光ファイバ
15の内部でラマン増幅現象が誘起されて、Nd:YA
Gレーザ光源13の出力光は消滅して、光ファイバ15
の他端には現れなし)。したがって、Nd:YAGレー
ザ光源13の出力光波長1.32.lZmの光信号は、
半導・体レーザ光源12の出力光の逆の位相に変調され
て、光ファイバ15の出力端に送出される。
During the time when there is no output light from the Zunawara semiconductor laser light source 12, the output light level P1 of the Nd:YAG laser light source 13 is
is somewhat attenuated by the optical fiber 15, and the level reaches P.
’ is sent. However, during the time when the output light from the semiconductor radar light source 12 is present in the optical fiber \15, a Raman amplification phenomenon is induced inside the optical fiber 15, and the Nd:YA
The output light of the G laser light source 13 disappears and is transmitted to the optical fiber 15.
(no appearance at the other end). Therefore, the output light wavelength of the Nd:YAG laser light source 13 is 1.32. The optical signal of lZm is
It is modulated to have an opposite phase to the output light of the semiconductor/body laser light source 12 and is sent to the output end of the optical fiber 15.

ごのよ・うに本発明は、ラマン増幅現象により増幅され
た信号を利用するのではなく、ラマン増幅現象によりエ
ネルギーを失う連続光の方を利用するところに著しい特
徴があり、この点において前述の従来例とぽ原理的に相
違する。
As you can see, the present invention has a remarkable feature in that it uses continuous light that loses energy due to the Raman amplification phenomenon, rather than using a signal amplified by the Raman amplification phenomenon. It is fundamentally different from the conventional example.

一般にNd:’YAGレーザは大出力の光信号を発生さ
せることができる。本発明の装置では、Nd:YAGレ
ーザ光源13の出力光レベルは、光ファイバ15の中で
誘導ラマン散乱効果などの非線型の光学現象を受ける直
前まで高くすることができる。またNd:YAGレーザ
光源13の出力光波長1.32μmは、一般の通信用光
ファイ/Nを高効率で少ない損失で伝播する。したがっ
て、ラマン増幅現象によりエネルギーを受ける側を利用
するのではなく、エネルギーを失う側を利用するこ′と
が光通信用の増幅器あるいは変調器としてはるかに有利
である。
In general, Nd:'YAG lasers can generate high-output optical signals. In the apparatus of the present invention, the output light level of the Nd:YAG laser light source 13 can be increased to the point just before it is subjected to nonlinear optical phenomena such as stimulated Raman scattering effects in the optical fiber 15. Further, the output light wavelength of 1.32 μm from the Nd:YAG laser light source 13 propagates through a general communication optical fiber/N with high efficiency and little loss. Therefore, it is far more advantageous for optical communication amplifiers or modulators to utilize the side that loses energy rather than the side that receives energy due to the Raman amplification phenomenon.

−に記実施例では、ラマン増幅現象を誘起するために、
信号伝送用光ファイバ17とは別の光ファイバ15を用
いるように説明したが、信号伝送用光フアイバ自身がラ
マン増幅現象を誘起するに十分な特性を有する場合には
、信号伝送用光ファイバの中で上記の作用を行わせるこ
とができる。このときには、別の光ファイバは不要にな
る。
In the embodiment described in -, in order to induce the Raman amplification phenomenon,
Although it has been explained that the optical fiber 15 separate from the signal transmission optical fiber 17 is used, if the signal transmission optical fiber itself has sufficient characteristics to induce the Raman amplification phenomenon, the signal transmission optical fiber 17 may be used. The above operations can be carried out inside. At this time, no separate optical fiber is required.

−に記実施例に示す箒域濾波器16は光ファイバ17の
出ノ月則に配置することもできる。また、通信用光ファ
イバ17は、波i1.3a〜1.41μmの光信号に対
する伝送損失は、波長1.32μmの光信号に対する伝
送損失はdB表示で約4倍はど大きいので、この帯域濾
波器16を省いても、出力に波長1.32μmの光信号
のみを得るように構成することができる。
The filter area filter 16 shown in the embodiment described in - can also be arranged in the same manner as the optical fiber 17. In addition, the communication optical fiber 17 has a transmission loss for an optical signal with a wavelength i of 1.3a to 1.41 μm, which is about 4 times as large in dB as a transmission loss for an optical signal with a wavelength of 1.32 μm. Even if the device 16 is omitted, the configuration can be such that only an optical signal with a wavelength of 1.32 μm is obtained as an output.

」二記実施例は第一の光源として半導体レーザを用い、
第二の連続光の光源としてNd : YAGレーザを用
いる例を説明したが、他の種類の光源を用いて同様の原
理の装置を構成することができる。
” The second embodiment uses a semiconductor laser as the first light source,
Although an example has been described in which an Nd:YAG laser is used as the second continuous light source, it is possible to configure a device based on the same principle using other types of light sources.

この場合に、変調された入力光の波長が連続光の波長よ
り長いとは限らず、相互にラマン増幅現象を誘起するも
のであれば、これを利用することができる。第一の光源
と第二の光源の波長の相違は、相り一にラマン増幅現象
を誘起することができる程度に選ばれる。
In this case, the wavelength of the modulated input light is not necessarily longer than the wavelength of the continuous light, and as long as they mutually induce the Raman amplification phenomenon, this can be utilized. The difference in wavelength between the first light source and the second light source is selected to such an extent that the Raman amplification phenomenon can be mutually induced.

(効果の説明) 以上説明したように、本発明によれば、光通信に有利な
波長であって、入力信号により変調された大振幅の光信
号が送出される光信号増幅器が得られる。この増幅器を
利用することにより、光フアイバ通信の伝送距離を飛躍
的に増大させることができる。本発明の装置では、入力
光信号の位相を整合させるなどの複雑かつ精密な操作を
一切必要としないので装置は安定である。また光ファイ
バとして特殊なものを使用する必要がない。
(Description of Effects) As described above, according to the present invention, it is possible to obtain an optical signal amplifier that sends out a large-amplitude optical signal modulated by an input signal at a wavelength that is advantageous for optical communication. By using this amplifier, the transmission distance of optical fiber communication can be dramatically increased. The device of the present invention is stable because it does not require any complicated and precise operations such as matching the phases of input optical signals. Furthermore, there is no need to use a special optical fiber.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例装置の構成図。 第2図は本発明実施例装置の構成図。 第3し1ばその動作説明用のタイムチャー1−011・
・・変altJ (M号の入力端2子、12・・・第一
の光源(半導体レーf) 、13・・・第二の光源(N
d:YAGレーリ゛、連続光を送出する。)、14・・
・ダイクロイ・ツクミラー、15・・・ラマン増幅現象
を誘起する)しファイバ、16・・・帯域濾波器(第二
の光源の出力光波長を透過する。)、17・・・光ファ
イノ\、18・・・受信装置特許出願人・日本電信電話
公社 代理人弁理士 井 出 直 孝 第 2回 菓 3図
FIG. 1 is a configuration diagram of a conventional device. FIG. 2 is a configuration diagram of an apparatus according to an embodiment of the present invention. 3rd time chart 1-011 for explaining its operation.
...Variable altJ (M input terminal 2, 12...first light source (semiconductor laser f), 13...second light source (N
d: YAG Rayleigh, sends out continuous light. ), 14...
- dichroic mirror, 15... induces the Raman amplification phenomenon), fiber, 16... bandpass filter (transmits the output light wavelength of the second light source), 17... optical fiber, 18 ... Receiving device patent applicant / Patent attorney representing Nippon Telegraph and Telephone Public Corporation Naotaka Ide 2nd edition Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)変MJ&を信号入力端子と、 この変調信号入力端子の信号により振幅変調された光信
号を発生する第一の光源と、 この第一の光源の発する光信号より僅かに波長が相違し
振幅の大きい連続的な光信号を発生ずる第二の光源と、 上記第一の光源が発生する光信号と上記第二の光源が発
生ずる光信号との間にラマン増幅現象を誘起させる光フ
ァイバと、 上記第一の光源が発生する光信号と−F記第二の光源が
発生ずる光信号とを同時に上記光ファイバの一端に入射
さ・口る第一の手段と、 上記第二の光源の発生ずる光信号の波長に等しい波長の
信号であって上記第一の光源の出力光とは逆の位相に変
調された光信号を上記光ファイバの他端から取り出す第
二の手段と を備えた光信号増幅器。
(1) A variable MJ& signal input terminal, a first light source that generates an optical signal whose amplitude is modulated by the signal of this modulation signal input terminal, and an optical signal whose wavelength is slightly different from that of the optical signal emitted by this first light source. a second light source that generates a continuous optical signal with large amplitude; and an optical fiber that induces a Raman amplification phenomenon between the optical signal generated by the first light source and the optical signal generated by the second light source. and a first means for simultaneously inputting an optical signal generated by the first light source and an optical signal generated by the second light source mentioned above into one end of the optical fiber, and the second light source. and second means for extracting from the other end of the optical fiber an optical signal having a wavelength equal to the wavelength of the optical signal generated by the optical fiber and modulated in a phase opposite to that of the output light of the first light source. optical signal amplifier.
(2)第一の光源は波長約1.38# m −1,4L
u mの光信号を発生ずる半導体レーザにより構成され
、第二の光源は波長約1.32μmの光信号を発生ずる
Nd:YAGレーザにより構成され、第二の手段が波長
約1.32μmの光信号に対して通過域を有する帯域濾
波器を含む 特許請求の範囲第(11項に記載の光信号増幅器。
(2) The first light source has a wavelength of approximately 1.38# m -1.4L
The second light source is composed of a Nd:YAG laser that generates an optical signal with a wavelength of about 1.32 μm, and the second means generates light with a wavelength of about 1.32 μm. The optical signal amplifier according to claim 11, which includes a bandpass filter having a passband for the signal.
(3)第一の手段は誘電体多層薄膜により形成されたグ
イクロイックミラーを含む特許請求の範囲第(1)項に
記載の光信号増幅器。
(3) The optical signal amplifier according to claim (1), wherein the first means includes a gicchroic mirror formed of a dielectric multilayer thin film.
JP57175094A 1982-10-04 1982-10-04 Optical signal amplifier Granted JPS5963830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57175094A JPS5963830A (en) 1982-10-04 1982-10-04 Optical signal amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57175094A JPS5963830A (en) 1982-10-04 1982-10-04 Optical signal amplifier

Publications (2)

Publication Number Publication Date
JPS5963830A true JPS5963830A (en) 1984-04-11
JPS6230717B2 JPS6230717B2 (en) 1987-07-03

Family

ID=15990142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57175094A Granted JPS5963830A (en) 1982-10-04 1982-10-04 Optical signal amplifier

Country Status (1)

Country Link
JP (1) JPS5963830A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191986A (en) * 1984-10-12 1986-05-10 Nec Corp Optical amplifier for optical communication
JPS63161731A (en) * 1986-12-25 1988-07-05 Nec Corp Sequential error correction decoding device
JPH02150728A (en) * 1988-12-01 1990-06-11 Nec Corp Laser light detecting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191986A (en) * 1984-10-12 1986-05-10 Nec Corp Optical amplifier for optical communication
JPS63161731A (en) * 1986-12-25 1988-07-05 Nec Corp Sequential error correction decoding device
JPH0445017B2 (en) * 1986-12-25 1992-07-23 Nippon Electric Co
JPH02150728A (en) * 1988-12-01 1990-06-11 Nec Corp Laser light detecting device

Also Published As

Publication number Publication date
JPS6230717B2 (en) 1987-07-03

Similar Documents

Publication Publication Date Title
JP2640445B2 (en) Optical amplifier
KR101915757B1 (en) Optical pulse laser with low repetition rate and driving method of the same
JPH06252483A (en) Optical generator of high-power signal for communication apparatus
JPH0846271A (en) Channel width adjusting apparatus for multichannel optical fiber amplified light source
KR101915750B1 (en) Optical pulse laser with low repetition rate and driving method of the same
JPH11218792A (en) Optical limiter
CN110176712B (en) Random fiber laser generation method and system
JPS5963830A (en) Optical signal amplifier
JPS5965828A (en) Amplification system for optical signal
JP2713395B2 (en) Optical fiber amplifier and optical fiber transmission device
US6252701B1 (en) Optical fiber amplifier
JPH0422928A (en) Optical fiber amplifier
JP3053255B2 (en) Optical fiber amplifier
JPS6022638Y2 (en) High power optical pulse generator
JPS5853243A (en) Light transmitting system
JP2682870B2 (en) Optical amplifier
JP2001305594A (en) Optical parametric amplifier
JPH03215982A (en) Fiber type light amplifier
KR20180076522A (en) Optical pulse laser with low repetition rate and driving method of the same
WO2020168733A1 (en) Nanosecond pulsed laser light source structure having tunable pulse width and power
JPS5851636A (en) Optical transmission system
JP2921971B2 (en) Optical fiber transmission system
JPS59101628A (en) Optical fiber amplifier
JPH07273724A (en) Noise light generator
JPH0675254A (en) Optical filter