JPS5962705A - Fluid pressure cylinder - Google Patents

Fluid pressure cylinder

Info

Publication number
JPS5962705A
JPS5962705A JP57171516A JP17151682A JPS5962705A JP S5962705 A JPS5962705 A JP S5962705A JP 57171516 A JP57171516 A JP 57171516A JP 17151682 A JP17151682 A JP 17151682A JP S5962705 A JPS5962705 A JP S5962705A
Authority
JP
Japan
Prior art keywords
piston
ultrasonic
cylinder
fluid pressure
piston rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57171516A
Other languages
Japanese (ja)
Other versions
JPH025926B2 (en
Inventor
Tatsuo Miyagi
達夫 宮城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
Kayaba Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kayaba Industry Co Ltd filed Critical Kayaba Industry Co Ltd
Priority to JP57171516A priority Critical patent/JPS5962705A/en
Publication of JPS5962705A publication Critical patent/JPS5962705A/en
Publication of JPH025926B2 publication Critical patent/JPH025926B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52004Means for monitoring or calibrating
    • G01S7/52006Means for monitoring or calibrating with provision for compensating the effects of temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52004Means for monitoring or calibrating
    • G01S2007/52014Means for monitoring or calibrating involving a reference reflector integrated in the sensor or transducer configuration

Abstract

PURPOSE:To enable to measure the stroke of a piston against a cylinder by providing a concave part on the end face of the piston for obtaining the rate between propagation times of ultrasonic waves reflected and returned by the concave part and a non-concave part. CONSTITUTION:The ultrasonic wave transmitted from an ultrasonic-wave transmitting/receiving unit 5 provided on the side of a cylinder 1 is reflected at two spots on the end face of a piston 3, and times for these reflected ultrasonic waves to return to the ultrasonic-wave transmitting/receiving unit 5 are measured. By taking the product of the rate between these measured signals and the depth of a cocave 6, the position of the piston 3, that is, the stroke of a piston rod 2 can be obtained with high accuracy without reference to the change of fluid pressure and the like. At this stage, one spot among two on the end face of the piston 3 can be convexed besides being concaved.

Description

【発明の詳細な説明】 IEシリンダvc 係り 、、特に、シリンダ内IC 
出入−’J=るピストンロツドの出入位置孕、シリンダ
内の流体圧力や流体粘度等の変化等に関係なく、超音波
送受信器を用いて高精度に検出するようにL− rc 
k 体圧シリンダに関する。
[Detailed description of the invention] Related to IE cylinder vc, especially IC in cylinder
L-rc is designed to be detected with high accuracy using an ultrasonic transceiver, regardless of the entry/exit position of the piston rod, changes in fluid pressure or fluid viscosity within the cylinder, etc.
k Regarding the body pressure cylinder.

従来力・ら、流体圧系の自動制御手段と【一で、制御指
令π応動[2てシリンダ中のピストンロッドの出入量を
検出[7、その検出データと前記制御指令データとの誤
差データに基づいて、前記ピストンロッドの出入位置を
設定指令位置に保持させる工うjで]また流体圧ン1ノ
ンダが提供さ7!、でいる。
Conventional force, automatic control means for the fluid pressure system [1] responds to the control command [2] detects the amount of movement in and out of the piston rod in the cylinder [7] uses the error data between the detected data and the control command data. Based on this, the in/out position of the piston rod is maintained at the set command position] Also, a fluid pressure pump is provided. , is there.

一方,.ピストンロツドの前記出入量を検出する手段す
なわちピストンロッドの出入位置検出センナとして、従
来力・ら、シリンダ側に設けた超音波の送信器から、移
動するピストンの一端面に向って超音波ケ発射し、その
、ピストンから反射(2て戻ってくる超音波を、同じく
シリンダに設けた受信器によって受信(2、その超音波
の伝播時間よりピストンロッドの出入位置を検出するも
のが提供さtl、るに至っている(実開昭56〜104
606号)。
on the other hand,. As a means for detecting the amount of movement in and out of the piston rod, that is, as a sensor for detecting the movement position of the piston rod, an ultrasonic wave is emitted from an ultrasonic transmitter installed on the cylinder side toward one end surface of the moving piston. , The ultrasonic waves reflected from the piston (2) and returned are received by a receiver (2) also provided in the cylinder, which detects the in/out position of the piston rod from the propagation time of the ultrasonic waves. It has reached (1987-104)
No. 606).

ところが、前記超音波の伝播速度は、シリンダ中に充填
さ71.た作動流体の圧力変化や温度変化に伴う粘度変
化の影響を受は易いものであり、【2かもピストンロッ
ドの変位量すなわち出入量と超音波の伝播時間とは必ず
[、も正確に対応すルモので社なく1.従って、ピスト
ンロッドの出入量を正確に測定することができなかった
のである。
However, the propagation velocity of the ultrasonic wave is 71. It is easy to be affected by pressure changes of the working fluid and viscosity changes due to temperature changes. 1. Therefore, it was not possible to accurately measure the amount of movement in and out of the piston rod.

本発明はかかる従来の欠点を改善しようとするものであ
り、シリンダ側に設けた超音波送受信器を用いて、作動
流体の圧力変化や粘度変化に影響さrl、ずπ、常して
正確なピストンロッドの出入位置の測定を行うこと全目
的とするものである。
The present invention aims to improve such conventional drawbacks, and uses an ultrasonic transmitter/receiver installed on the cylinder side to ensure accurate measurement of rl, zπ, and The overall purpose is to measure the in/out position of the piston rod.

このため、本発明においては、超音波送受信器全シリン
ダ側に設け、こf+、らに対向するピストン端面に凹所
または6所を設け、その凹所または6所がある部分とな
い部分の両方に同時に超音波全発射1−1こf+、ら両
者を反射して超音波送受信器に戻ってくる超に波の伝播
時間の比率および前記凹所または6所の超音波進行方向
寸法から、演算器によってピストンまたはピストンロッ
ドのシリンダに対する出入量を計測1一つる構成と17
たのである。
Therefore, in the present invention, the ultrasonic transmitter/receiver is provided on all cylinder sides, and a recess or six locations are provided on the end face of the piston opposite to the ultrasonic transmitter/receiver. Calculate from the ratio of the propagation time of the ultrasonic waves that simultaneously emit all of the ultrasonic waves 1-1 f+, and both of which are reflected and return to the ultrasonic transmitter/receiver, and the dimensions of the recess or six locations in the ultrasonic traveling direction. A configuration in which the amount of movement of the piston or piston rod into and out of the cylinder is measured using a device;
It was.

以下に、本発明の実施例を図面に基づいて具体的に説明
する。
Embodiments of the present invention will be specifically described below based on the drawings.

第1図は流体圧シリンダの一実施例を示【2、一部を切
断し7て示[、である。同図において、1は流体例えば
作動油を充填Lmシリンダ、2はこのシリンダ1の一封
止端、1/j摺動自在に貫通さセタピストンロンド、3
はこのピストンロッド2端に取シ付けら111、かつシ
リンダ内周面に摺接するピストン、4はこのピストン3
外周に嵌め込んだシールリング、5はピストン3の一端
面に対向するように、シリンダ1の一端部に液密的Qで
支持させた超音波送受信器であり、必要に応じこ71.
らの送信部および受信部を兼用できる構成と(−たり、
独立させたりすることができる。6は前記ピストン3の
一端面に形成1−た凹所である。ここで超音波送受信器
6はピストン3の端面の凹所のある部分とない部分とに
超音波を同時発射し、ピストン3のその端面で反射さf
L lc超音波を再びそ′の超音波送受信器5vcて受
信する構成となっている。
FIG. 1 shows an embodiment of a fluid pressure cylinder [2, partially cut away 7]. In the same figure, 1 is a cylinder Lm filled with a fluid such as hydraulic oil, 2 is one sealed end of this cylinder 1, 1/j is a seta piston rond that is slidably penetrated, and 3
111 is attached to the end of this piston rod 2, and 4 is a piston that comes into sliding contact with the inner circumferential surface of the cylinder; 4 is this piston 3;
A seal ring 5 fitted on the outer periphery is an ultrasonic transmitter/receiver supported by a liquid-tight Q at one end of the cylinder 1 so as to face one end surface of the piston 3.
It has a configuration that allows it to be used as both the transmitter and receiver.
It can be made independent. 6 is a recess formed in one end surface of the piston 3. Here, the ultrasonic transmitter/receiver 6 simultaneously emits ultrasonic waves to a portion with a recess and a portion without a recess on the end surface of the piston 3, and the ultrasonic wave is reflected by the end surface of the piston 3.
The configuration is such that the LLC ultrasonic waves are received again by the ultrasonic transceiver 5vc.

次に、この流体圧シリンダの作用について詳述する。い
ま、ピストン30所定位置において、超音波送受信器5
からピストン3端面までの距離を第2図に示すように1
1前記凹所の深さをΔ11 ピストン3の厚みをdとす
る。なお、d〉4Δl となるようKdの大きさを選定
し、ピストン3の背面の反射波より凹所底面からの反射
波の方を早く受信部に到達させるようにしである。そこ
で超音波の伝播速度kCs前記ピストン3端面で反射さ
71.る反射波P1と凹所6の底面での反射波P2の各
伝播時間をT□、ΔT□と【、て、距離l、Δlを算式
的に求めると、  t7C’T□、Δl=CΔT1 と
なる。L〜かし、T□およびΔ1r1は流体圧力や流体
粘度の変化によって変わり、前記のl、Δt2正確に求
めることができない。
Next, the operation of this fluid pressure cylinder will be explained in detail. Now, at the piston 30 predetermined position, the ultrasonic transceiver 5
The distance from to the end surface of piston 3 is 1 as shown in Figure 2.
1 The depth of the recess is Δ11, and the thickness of the piston 3 is d. The magnitude of Kd is selected so that d>4Δl, so that the reflected wave from the bottom of the recess reaches the receiving section faster than the reflected wave from the back surface of the piston 3. Therefore, the propagation velocity of the ultrasonic wave kCs is reflected by the end surface of the piston 3 71. The respective propagation times of the reflected wave P1 at the bottom of the recess 6 and the reflected wave P2 at the bottom of the recess 6 are T□, ΔT□ [, and the distances l and Δl are calculated mathematically as follows: t7C'T□, Δl=CΔT1 Become. Since L, T□, and Δ1r1 vary depending on changes in fluid pressure and fluid viscosity, the above l and Δt2 cannot be determined accurately.

そこで前記二式の一方′と他方に代入[、、、l=T□
/Δ′F□×Δl とす扛ば、流体圧力や流体粘度の変
化にも拘わらず、常VcTIとΔT□との比が後述のよ
うに一定となるので、このTt /ΔTt k求めるこ
とにより、既知のΔlと合わせて容易かつ正確VC1す
なわちピストンロッド2の出入量を求めることができる
。このように、反射波の伝播速度Cに無関係に、前記伝
播時間の凡用/Δ′11□および既知の凹所6の深さΔ
lがら、lk正確に求めらγ1.ることが分かる。
Therefore, substitute one ' and the other of the above two equations [,,,l=T□
/Δ'F□×Δl, the ratio between VcTI and ΔT□ remains constant as described later, despite changes in fluid pressure and fluid viscosity, so by calculating Tt /ΔTtk, , and the known Δl, it is possible to easily and accurately determine VC1, that is, the amount of movement in and out of the piston rod 2. In this way, regardless of the propagation speed C of the reflected wave, the general value of the propagation time /Δ'11□ and the known depth of the recess 6 Δ
γ1. I understand that.

第3図(α)は上記場合において超音波信号Pα□の送
信時点と2つの反射波信号”a11’ + PtL8の
受信時点とのタイミング関係ケ示す各信号のタイムチ、
ヤードであり、この場合における超音波の伝播時間T1
.Δηの比率は前記のようET、/ΔT□−にとなって
いる。ここで前記流体圧力−や流体粘度が変化E−た場
合に、前記伝播時間はそ71.らの変化に等しく応答[
2て第3図Cb)のようにT2゜ΔT2のように変化す
るが、T2/ΔT2= i’□/ΔT1−にとなり、そ
の伝播時間の比は流体圧力や流体粘度などの変化に拘わ
らず常に一定となる。
FIG. 3 (α) shows the timing relationship between the transmission time of the ultrasonic signal Pα□ and the reception time of the two reflected wave signals “a11′ + PtL8” in the above case.
yards, and the propagation time of the ultrasonic wave in this case T1
.. The ratio of Δη is ET, /ΔT□− as described above. Here, when the fluid pressure or fluid viscosity changes E-, the propagation time becomes 71. responds equally to changes in [
2, as shown in Figure 3 Cb), T2゜ΔT2 changes, but T2/ΔT2 = i'□/ΔT1-, and the propagation time ratio remains the same regardless of changes in fluid pressure, fluid viscosity, etc. Always constant.

なお、必要に応じて前記のようIcI、て求めたlを時
間微分するこ(!;VCより、ピストンロッド2の速度
および加速度を求めることも可能となる。
If necessary, the velocity and acceleration of the piston rod 2 can also be determined from VC by time-differentiating l determined by IcI as described above (!; VC.

第4図はこのようにしてl勿求めるための電気信号演算
装置である。同図において、11は超音波発振器を含む
超音波送受信器6の受信部で、前記各反射波に対応する
信号Tl +ΔT0が出力さfl1、こγl、らが除算
器12VC入力さγLるようになっている。この除算器
12ではT□/ΔT1を演算【7た後、その結果を次段
の乗算器13VC入力し、ここで信号発生器14から出
力さ71.た凹所6の深さ信号ΔlとともにT□/ΔT
1xΔlの演算を行った後、その結果を表示器15Vc
入、力したり、外部制御回路に入力1またりする。なお
こγ1.らの各除算器12、乗算器13、信号発生器’
14t/f:、ディジタル回路として構成することがで
きる。
FIG. 4 shows an electrical signal calculation device for calculating the signal in this manner. In the figure, reference numeral 11 denotes a receiving section of an ultrasonic transmitter/receiver 6 including an ultrasonic oscillator, and a signal Tl + ΔT0 corresponding to each of the reflected waves is outputted, and signals fl1, γl, and the like are input to a divider 12VC, γL. It has become. After calculating T□/ΔT1 in this divider 12, the result is input to the next stage multiplier 13VC, where it is output from the signal generator 14. T□/ΔT along with the depth signal Δl of the recess 6
After calculating 1xΔl, the result is displayed on the display 15Vc.
Input, input, or input 1 to an external control circuit. Naoko γ1. Each divider 12, multiplier 13, signal generator'
14t/f: Can be configured as a digital circuit.

このようにシリンダ1側に設けた超音波送受信器5から
送信し7た超音波をピストン3端面の三箇所で反射させ
、こ71、らの反射超音波が超音波送受信器らに帰って
くる丑での時間全計測し、こγl、らの計測信号の比率
と凹所の深さとの積をとることにより、そのピストン3
の位置すなわちピストンロッド2の出入量を、流体圧力
などの変化に関係なく高精度に求めることができる。
In this way, the ultrasonic waves transmitted from the ultrasonic transceiver 5 provided on the cylinder 1 side are reflected at three locations on the end face of the piston 3, and these reflected ultrasonic waves return to the ultrasonic transceiver. By measuring the entire time in the ox and taking the product of the ratio of these measurement signals and the depth of the recess, the piston 3
, that is, the amount of movement in and out of the piston rod 2 can be determined with high accuracy regardless of changes in fluid pressure and the like.

この場合πピストン3端面の三箇所のうち一箇所は凹所
のほか凹所とすることができる。
In this case, one of the three locations on the end surface of the π piston 3 may be a recess in addition to the recess.

以上詳細に説明〔〜た通り、この発明によγ1.ば制御
指令に応動(2てシリンダに対するピストンロットの出
入量を検出E〜で、その検出データと制御指令データと
の誤差デ〜りに基づいて前記ピストンロットの出入量を
制御する流体圧シリンダ、において、前記ピストンロッ
ト°の一端に凹所または凹所を設け、こ7r、らの凹所
または凹所のある部分およびない部分の両方に同時に超
音波を発射1−1こrtら両方2反射[7て超音波送受
信器に戻ってくる超音波の到達時間比率および前記凹所
または凹所の超音波発射方向寸法から、ピストンロット
の出入量を正確に計測することが可能となるものであり
、このような流体圧シリンダを用いrl、ば、従来のよ
うにシリンダ内の流体圧力や流体精度などの変化に伴っ
て、計測結果がずfl、て【−まうという欠点を取り除
くことができるという利点が得らfl、るものである。
As described above in detail, the present invention provides γ1. a fluid pressure cylinder that responds to a control command (2) detects the amount of movement of the piston rod into and out of the cylinder, and controls the amount of movement of the piston rod based on the error between the detected data and the control command data; , a recess or recess is provided at one end of the piston rod, and ultrasonic waves are simultaneously emitted to both the recess or the part with and without the recess. [7] From the arrival time ratio of the ultrasonic waves returning to the ultrasonic transmitter/receiver and the dimensions of the recess or the recess in the ultrasonic emission direction, it is possible to accurately measure the amount of movement in and out of the piston rod. By using such a fluid pressure cylinder, it is said that it is possible to eliminate the conventional drawback that measurement results vary due to changes in fluid pressure or fluid accuracy within the cylinder. There are advantages to be gained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる流体シリンダの一実施例ケ示す
一部縦断正面囚、第2図は要部の拡大説明図、第3図(
α) 、 (b)は流体圧力等の変化前後に亘る超音波
の伝播時間を示す説明図、第4図は超音波送受信器に接
続さ71.る信号演算装置のブロック回路図である。 1・・・・・・・・・シリンダ 2・・・・・・・・・ピストンロット 3・・・・・・・・・ピストン 5・・・・・・・・・超音波送受信器 6・・・・・・・・凹所 特 許 出 願 人  萱場工業株式会社代 理 人 
弁理士  天 野   泉矛3 図 室4 図 刃/1図 腎2 I!11
Fig. 1 is a partially longitudinal front view showing one embodiment of a fluid cylinder according to the present invention, Fig. 2 is an enlarged explanatory view of the main part, and Fig. 3 (
α) and (b) are explanatory diagrams showing the propagation time of ultrasonic waves before and after changes in fluid pressure, etc., and FIG. FIG. 2 is a block circuit diagram of a signal calculation device. 1...Cylinder 2...Piston rod 3...Piston 5...Ultrasonic transmitter/receiver 6.・・・・・・Recess patent applicant Kayaba Kogyo Co., Ltd. Agent
Patent Attorney Amano Izumiko 3 Diagram Room 4 Zuba / 1 Diagram Kidney 2 I! 11

Claims (2)

【特許請求の範囲】[Claims] (1)制f卸指令に応動してシリンダ内ケピストンロン
トが出入する量を検出し、この検出データと前記制御指
令データとの誤差データπ基づいて、前記ピストンロッ
ドの出入量を前記制御指令データ通りの位置にセットす
る流体圧シリンダにおいて、前記シリンダ側には超音波
送受信器を設置・丈、この超音波送受信器に対向するピ
ストン端面に凹所ま爬は凸PJiを設けてなり、このピ
ストン端面の凹PgTまたは晶析がある部分とない部分
の両方に対し、前記超音波送受信器から超音波を発射し
、こfl、らの両者を反射E−で超音波送受信器に戻っ
てくるまでの超音波の伝播時間の比率および前記凹所ま
たは晶析の超音波進行方向寸法から、ピストン′または
ピストンロッドのン1ノンダにおける軸方向位置を演算
できる工うvc(、たことを特徴とする流体圧7リンダ
(1) Detect the amount by which the piston rod moves in and out of the cylinder in response to the control command, and based on the error data π between this detection data and the control command data, adjust the amount by which the piston rod moves in and out according to the control command. In a fluid pressure cylinder to be set at a position according to data, an ultrasonic transmitter/receiver is installed on the cylinder side, and a concave or convex PJi is provided on the end face of the piston facing the ultrasonic transmitter/receiver. The ultrasonic wave is emitted from the ultrasonic transmitter/receiver to both the concave PgT of the piston end surface or the area where there is crystallization and the area where there is no crystallization, and both of these waves are reflected back to the ultrasonic transmitter/receiver by reflection E-. The axial position of the piston' or the piston rod at the end of the piston' or the piston rod can be calculated from the ratio of the propagation time of the ultrasonic waves to Fluid pressure 7 cylinders.
(2)超音波送受信器は送信部と受信部とが独立[−で
設けら71.てなる特許請求の範囲第1項に記載の流体
圧シリンダ
(2) In the ultrasonic transceiver, the transmitter and receiver are independent [-71. The fluid pressure cylinder according to claim 1 consisting of
JP57171516A 1982-09-30 1982-09-30 Fluid pressure cylinder Granted JPS5962705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57171516A JPS5962705A (en) 1982-09-30 1982-09-30 Fluid pressure cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57171516A JPS5962705A (en) 1982-09-30 1982-09-30 Fluid pressure cylinder

Publications (2)

Publication Number Publication Date
JPS5962705A true JPS5962705A (en) 1984-04-10
JPH025926B2 JPH025926B2 (en) 1990-02-06

Family

ID=15924565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57171516A Granted JPS5962705A (en) 1982-09-30 1982-09-30 Fluid pressure cylinder

Country Status (1)

Country Link
JP (1) JPS5962705A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005003571A1 (en) * 2003-07-04 2005-01-13 Horst Siedle Gmbh & Co. Kg Method for determining a current position of a piston movably accommodated in a cylinder
WO2009015741A1 (en) * 2007-07-27 2009-02-05 Truma Gerätetechnik GmbH & Co. KG Device for determining the position of a piston in a cylinder
WO2019091512A1 (en) 2017-11-10 2019-05-16 Grob-Werke Gmbh & Co. Kg Method and device for determining the position of a piston of a hydraulic cylinder of a machine tool
US10365247B2 (en) * 2016-09-12 2019-07-30 Hamilton Sundstrand Corporation Movable member assembly having a sensor assembly
EP3744987A1 (en) * 2019-05-27 2020-12-02 Hamilton Sundstrand Corporation Ultrasonic position detection temperature calibration
EP3808994A1 (en) * 2019-10-17 2021-04-21 Hamilton Sundstrand Corporation Performance enhancement of controllers for varying temperature conditions in hydraulic actuators

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005003571A1 (en) * 2003-07-04 2005-01-13 Horst Siedle Gmbh & Co. Kg Method for determining a current position of a piston movably accommodated in a cylinder
WO2009015741A1 (en) * 2007-07-27 2009-02-05 Truma Gerätetechnik GmbH & Co. KG Device for determining the position of a piston in a cylinder
US10365247B2 (en) * 2016-09-12 2019-07-30 Hamilton Sundstrand Corporation Movable member assembly having a sensor assembly
WO2019091512A1 (en) 2017-11-10 2019-05-16 Grob-Werke Gmbh & Co. Kg Method and device for determining the position of a piston of a hydraulic cylinder of a machine tool
DE102017129445A1 (en) 2017-11-10 2019-05-16 Grob-Werke Gmbh & Co. Kg Method and device for determining the position of a piston of a hydraulic cylinder of a machine tool
EP3744987A1 (en) * 2019-05-27 2020-12-02 Hamilton Sundstrand Corporation Ultrasonic position detection temperature calibration
EP3808994A1 (en) * 2019-10-17 2021-04-21 Hamilton Sundstrand Corporation Performance enhancement of controllers for varying temperature conditions in hydraulic actuators
US11078937B2 (en) 2019-10-17 2021-08-03 Hamilton Sunstrand Corporation Performance enhancement of controllers for varying temperature conditions in hydraulic actuators

Also Published As

Publication number Publication date
JPH025926B2 (en) 1990-02-06

Similar Documents

Publication Publication Date Title
US5315880A (en) Method for measuring fluid velocity by measuring the Doppler frequency shift or microwave signals
US5341345A (en) Ultrasonic stand-off gauge
Figueroa et al. A method for accurate detection of time of arrival: Analysis and design of an ultrasonic ranging system
EP0158678A1 (en) System for ultrasonically detecting the relative position of a moveable device
ES2098439T3 (en) DEVICE FOR MEASURING THE SPEED OF A FLUID.
GB8324591D0 (en) Locating towed marine object
US4894810A (en) Method and a device for measuring a distance by means of ultrasonic pulses
US3388372A (en) Determination of ocean sound velocity profiles
JPS5962705A (en) Fluid pressure cylinder
JPS5550173A (en) Method of measuring distance by ultrasonic wave
JPH05192332A (en) Ultrasonic transmitting testing device
EP1546758A2 (en) Acoustic method and device for distance measurement
RU2066852C1 (en) Method of finding of distribution of sound velocity in liquids downwards over depth
JPS6234007Y2 (en)
JPS59135307A (en) Stroke detector for cylinder
JP3036172B2 (en) Liquid level detector in pressure vessel
US20230066279A1 (en) Ultrasonic flow sensor
JPS63277912A (en) Stroke detector for cylinder type actuator
JPH02104340A (en) Measuring probe for elasticity of blood vessel
SU1749705A1 (en) Hydroacoustic apparatus for determining sound speed and angle of inclination of soil
JPH07174843A (en) Sonic velocity correcting device in position measurement and its method
JP2520911B2 (en) Flow rate / flow meter
JPH02275387A (en) Detecting apparatus of flying speed
JPH0474990A (en) Distance meter
JPH05240719A (en) Ultrasonic remote water temperature measuring device