JPS59619A - Thermal detector for engine suction air flow rate - Google Patents

Thermal detector for engine suction air flow rate

Info

Publication number
JPS59619A
JPS59619A JP57110001A JP11000182A JPS59619A JP S59619 A JPS59619 A JP S59619A JP 57110001 A JP57110001 A JP 57110001A JP 11000182 A JP11000182 A JP 11000182A JP S59619 A JPS59619 A JP S59619A
Authority
JP
Japan
Prior art keywords
air
flow rate
air passage
air flow
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57110001A
Other languages
Japanese (ja)
Inventor
Sadayasu Ueno
上野 定寧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57110001A priority Critical patent/JPS59619A/en
Publication of JPS59619A publication Critical patent/JPS59619A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F5/00Measuring a proportion of the volume flow

Abstract

PURPOSE:To improve the precision of flow rate measurement and to simplify a chamber shape, by providing straightening elements in a cylindrical center chamber formed of an air cleaner element and arranging thermo-sensitive elements in a by-pass air passage provided separately from a main air passage. CONSTITUTION:Air from an intake passes through an inflow part 19, the window hole 18 of an outer circumferential edge, and a gap part 14 and then passes through the air cleaner element 12 uniformly in an inward radial direction to enter the cylindrical center chamer 16, wherein the air is straightened axially by straightening elements in a cylindrical guide cylinder 10 and passed through an air buffer chamber 7, main air passage part 1, and venturi 2. The air buffer chamber 7 is coupled directly with the front end of the air passage part 1, so dust is carried mainly by the main air flow and almost no dust enters the by- pass passage 3 provided aside. Therefore, no dust sticks to neither thermosensitive resistor 4 nor 5 and high-precision measurement is performed. The straightening elements 11 are arranged in the extra space, so the shape of the chamber is simplified.

Description

【発明の詳細な説明】 本発明は内燃機関の電子制御燃料噴射装置における熱式
流量計による吸入空気流量の測定方式に関し、特にエア
クリーナとしての構造にも関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring intake air flow rate using a thermal flow meter in an electronically controlled fuel injection system for an internal combustion engine, and particularly to a structure as an air cleaner.

上記′電子制御燃料噴射装置の吸入空気流量検出のうち
、熱式は感温抵抗体が吸入空気流中で熱伝達する現象を
応用したもので、空気の質量流量を計測できる利点があ
り、感温抵抗体の寸法を小さく作れば応答性が速くなり
、消費電力の軽減と機械的強度の向上が得られる。この
ような熱式流量計による空気流量の測定は平均流速の検
知により質量流量を読取るのであるから、検出すべき全
流量範囲にわたって高精度を得るためには、通路中の流
速と密度が一様に分布していることと、空気の流れが通
路の軸方向に沿って軸対称に進行することが必要である
。ところが上記従来方式の例えば可動ベーン式やカルマ
ン渦式の場合では全流量によるベーンその他の可動体の
運動を利用するため、熱式の場合の上記のような流れに
対する厳しい制約ないし矯正を必らずしも要求しない。
Among the intake air flow rate detection methods for electronically controlled fuel injection systems mentioned above, the thermal method applies the phenomenon in which a temperature-sensitive resistor conducts heat in the intake air flow, and has the advantage of being able to measure the mass flow rate of air. If the temperature resistor is made smaller in size, its response becomes faster, reducing power consumption and improving mechanical strength. Measuring air flow with such a thermal flowmeter reads the mass flow rate by detecting the average flow velocity, so in order to obtain high accuracy over the entire flow rate range to be detected, it is necessary to ensure that the flow velocity and density in the passage are uniform. It is necessary for the air flow to proceed axially symmetrically along the axial direction of the passage. However, in the case of the above-mentioned conventional methods, such as the movable vane method and the Karman vortex method, the movement of vanes and other movable bodies due to the full flow rate is used, so there is no need to strictly restrict or correct the flow as described above in the case of the thermal method. I don't even ask for it.

そのため熱式以外の方式用に設計されたエアクリーナの
構成配置は一般的には熱式のような局所的かつ静的な流
速検出法には必らずしも適当でない。また上記のような
熱式以外の従来の流量検出方式の通路構成やエアクリー
ナを熱式流量計に適用すると、ダストが感温抵抗体に付
着して特性の経時変化を招きやすいという問題点もある
。さらにまた熱式流量計による場合には、空気通路の曲
率、断面積、内壁面の凹凸、エアクリーナエレメントの
ダストによる汚れの偏り等が特性の経時変化の原因とな
りやすいことも大きな問題点である。
Therefore, air cleaner configurations designed for non-thermal systems are generally not necessarily suitable for localized, static flow rate sensing methods such as thermal systems. Additionally, if a conventional flow rate detection type passage configuration or air cleaner other than the thermal type described above is applied to a thermal type flowmeter, there is the problem that dust can easily adhere to the temperature-sensitive resistor and cause the characteristics to change over time. . Furthermore, in the case of a thermal flowmeter, a major problem is that the curvature of the air passage, the cross-sectional area, the unevenness of the inner wall surface, uneven dirt due to dust on the air cleaner element, etc. tend to cause changes in characteristics over time.

本発明は熱式流量計による吸入空気流量検出装置につい
て以上に列挙したような従来の問題点を解決することを
目的とするもので、前掲の特許請求の範囲の欄に記載し
fc特徴を有するものである。
The present invention aims to solve the conventional problems listed above regarding an intake air flow rate detection device using a thermal flowmeter, and has fc features as described in the claims section above. It is something.

第1図は上記の特徴を有する本発明装置の一実施例を示
す縦断正面図である。図において1は主空気通路部、2
はベンチュリ、3は上記主空気通路部1をバイパスして
ベンチュリ2の最狭部内壁面に開口するバイパス空気通
路、4および5は該バイパス通路3内に設置された熱式
流量計の感温抵抗体、6は該両抵抗体4.5の駆動回路
モジュール、7は上記主空気通路部1上流側に同心的に
取付けられた扁平円筒状空気緩衝室、8は該空気緩衝室
7の周縁部底面に開口するバイパス入口、9は該空気緩
衝室7の上流側に取付けられたエアクリーナ構体支持板
、10は上記主空気通路部1および空気緩衝室7と同心
の円筒状に上記支持板5を貫通して形成された案内筒、
11は該案内筒10内に取付けられたハニカムコアまた
はメツシュ等の空気流整流要素、12は該案内筒10を
同心状に適宜間隔で包囲して上記支持板9上に固定され
たエアクリーナエレメント、13は該エアクリーナエレ
メント12の外周を間隔部14を介し同心状に包囲して
上記支持板9に支持された外壁体、15は上記エアクリ
ーナエレメント12で包囲される円筒状中央室16の上
流側遮断板、17は上記間隔部14の上流側遮断板、1
8は該′!1IAl!l?板17に設けられた窓孔、1
9は上記両遮断板15゜17と被覆板20との間に形成
せられた外部空気流入部、21は外部空気取入口である
FIG. 1 is a longitudinal sectional front view showing an embodiment of the apparatus of the present invention having the above characteristics. In the figure, 1 is the main air passage, 2
is a venturi, 3 is a bypass air passage that bypasses the main air passage section 1 and opens to the inner wall surface of the narrowest part of the venturi 2, and 4 and 5 are temperature-sensitive resistors of a thermal flow meter installed in the bypass passage 3. 6 is a drive circuit module for both the resistors 4 and 5; 7 is a flat cylindrical air buffer chamber installed concentrically on the upstream side of the main air passage section 1; 8 is a peripheral edge of the air buffer chamber 7; 9 is an air cleaner structure support plate attached to the upstream side of the air buffer chamber 7; 10 is a cylindrical support plate 5 that is concentric with the main air passage 1 and the air buffer chamber 7; A guide tube formed through the
11 is an air flow rectifying element such as a honeycomb core or mesh installed in the guide tube 10; 12 is an air cleaner element fixed on the support plate 9 surrounding the guide tube 10 concentrically at appropriate intervals; Reference numeral 13 denotes an outer wall that concentrically surrounds the outer periphery of the air cleaner element 12 via the spacer 14 and is supported by the support plate 9. Reference numeral 15 denotes an upstream block of the cylindrical central chamber 16 surrounded by the air cleaner element 12. A plate 17 is an upstream blocking plate 1 of the spacer 14.
8 is the same! 1IAl! l? Window hole provided in plate 17, 1
Reference numeral 9 designates an external air inflow port formed between the shielding plates 15, 17 and the cover plate 20, and 21 designates an external air intake port.

上記空気緩衝室7は、この実施例のようにバイパス形エ
アフローメータの場合、ベンチュリ負圧に工って上記バ
イパス人口8から吸引されるバイパス流の取込みを静圧
取込みとするために設けられたものである。これに対し
、第2図の実施例では上記のような空気緩衝室7を設け
る代シに、前記主空気通路部1の上流側を案内筒10の
下流側に直結してエアクリーナエレメント12で包囲さ
れた中央室16内に設置した場合を示す。
In the case of a bypass type air flow meter as in this embodiment, the air buffer chamber 7 is provided to take in the bypass flow sucked from the bypass port 8 into static pressure by creating a venturi negative pressure. It is something. In contrast, in the embodiment shown in FIG. 2, instead of providing the air buffer chamber 7 as described above, the upstream side of the main air passage section 1 is directly connected to the downstream side of the guide tube 10 and surrounded by an air cleaner element 12. The case is shown in which it is installed in the central chamber 16.

上記実施例から明らかなように、本発明装置においては
、取入口21から流入部19に流入した空気は外周縁の
り孔18を介して円筒状外壁13で包囲された間隔部1
4内に入った後、一様に内向きラディアル方向にエアク
リーナエレメント12を通過して円筒状の中央室16内
に入り、さらに円筒状案内筒10内の整流要素11によ
り軸方向に整流されながら主空気通路部1、ベンチュリ
2を通過する。すなわちエアクリ−°す構体を通過する
空気は常に軸対称に一様分布しながら流れることにより
、汚れに備シがなく、その結果として偏流による特性の
経時変化を軽減できる。
As is clear from the embodiments described above, in the device of the present invention, the air flowing into the inflow part 19 from the intake port 21 passes through the outer peripheral edge through hole 18 into the spacer part 1 surrounded by the cylindrical outer wall 13.
4, the air passes through the air cleaner element 12 uniformly in an inward radial direction, enters the cylindrical central chamber 16, and is further rectified in the axial direction by the rectifying element 11 in the cylindrical guide tube 10. It passes through the main air passage section 1 and the venturi 2. That is, the air passing through the air cleaning structure always flows in an axially symmetrical and uniform distribution, so there is no possibility of dirt, and as a result, changes in characteristics over time due to drifting can be reduced.

さらに上記案内筒10およびその内部のハニカムコイル
またはメツシュ等の整流要素11を上記中央室16中に
配置したことにより、空気流に対する整流効果とともに
偏流に対する緩衝作用が得られる。
Further, by arranging the guide tube 10 and the rectifying element 11 such as a honeycomb coil or mesh inside the central chamber 16, a rectifying effect on the air flow and a buffering effect against the drift can be obtained.

また前述のように空気緩衝室7を主空気通路部1の前端
に直結したため、ダストは慣性にょシ主として主空気通
路部1への流れで運ばれ、バイパス空気通路3にはほと
んど流入しない。したがって感温抵抗体4.5へのダス
トの付着がそれだけ減少するため、前述の空気流経路の
軸対称化による汚れの偏シ防止作用と相俟って、偏流に
よる特性の経時変化を軽減し、エンジンの電子制御に要
求される所望の高精度が得られる。
Further, as described above, since the air buffer chamber 7 is directly connected to the front end of the main air passage section 1, the dust is mainly carried by the flow toward the main air passage section 1 due to inertia, and hardly flows into the bypass air passage 3. Therefore, the adhesion of dust to the temperature-sensitive resistor 4.5 is reduced accordingly, and this, together with the effect of preventing uneven distribution of dirt due to the axial symmetry of the air flow path mentioned above, reduces changes in characteristics over time due to uneven flow. , the desired high precision required for electronic control of the engine can be obtained.

本発明では上記のような性能上の精度向上の効果のほか
に、次のような構造上の利点も得られる。
In addition to the above-mentioned effect of improving performance accuracy, the present invention also provides the following structural advantages.

すなわち上記整流要素11をエアクリーナエレメント1
2が形成する円筒状中央室16のいわば余分の空間を利
用して該空間内に介在させたため利用スペースを節減で
きたこと、および主空気通路1の前端周辺部のエアクリ
ーナ構体支持取付部の付近すなわち主要空気流から最も
遠い部分の空間を利用してバイパス人口8を設けたとと
によりバイパス通路3を慣性が大きくダストが通り難い
静圧取込形とするためのチャンバ形状を簡単化できたこ
とである。
That is, the rectifying element 11 is replaced by the air cleaner element 1.
2, the cylindrical central chamber 16 formed by the cylindrical central chamber 16 is interposed in the extra space, which saves space. That is, by providing the bypass passage 8 by utilizing the space farthest from the main air flow, the chamber shape can be simplified to make the bypass passage 3 a static pressure intake type that has a large inertia and is difficult for dust to pass through. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の一実施例を示す縦断正面図、第2
図は同じく他の一実施例を示す縦断正面図である。
FIG. 1 is a longitudinal sectional front view showing one embodiment of the device of the present invention, and FIG.
The figure is a longitudinal sectional front view showing another embodiment.

Claims (1)

【特許請求の範囲】 1、エンジンへの空気吸入経路において、主空気通路ベ
ンチュリ部入口の上流側に同心円筒状に設置された整流
案内筒と、該整流案内筒を間隔を以って同心円筒状に包
囲するエアクリーナエレメントと、該エアクリーナエレ
メント外周を間隙部を介して同心円筒状に包囲する外壁
体と、上記間隙部との間の連通部を有する外部空気流入
部とのそれぞれの軸中心方向を、上記主空気通路ベンチ
ュリ部における吸込空気流の進行中心方向と実質的に一
致するように形成したことを特徴とするエンジン吸入空
気流量熱式検出装置。 2、上記主空気通路ベンチュリ部入口と上記整流案内筒
との間に装置された緩衝室との間に形成されたバイパス
空気通路に熱式流量計の感熱素子を設置したことを特徴
とする特許請求の範囲第1項記載のエンジン吸入空気流
量熱式検出装置。
[Scope of Claims] 1. In the air intake path to the engine, a rectifying guide tube installed in a concentric cylindrical shape on the upstream side of the main air passage venturi section entrance, and a concentric cylindrical rectifying guide tube installed at intervals between the rectifying guide tubes. In the respective axial center directions of an air cleaner element that surrounds the air cleaner element, an outer wall that surrounds the outer periphery of the air cleaner element in a concentric cylindrical shape through a gap, and an external air inlet that has a communication part with the gap. An engine intake air flow rate thermal type detection device, characterized in that the engine intake air flow rate thermal detection device is formed to substantially coincide with the direction of the center of movement of the intake air flow in the venturi portion of the main air passage. 2. A patent characterized in that a heat-sensitive element of a thermal flowmeter is installed in a bypass air passage formed between the main air passage venturi entrance and a buffer chamber provided between the rectification guide cylinder. An engine intake air flow rate thermal detection device according to claim 1.
JP57110001A 1982-06-28 1982-06-28 Thermal detector for engine suction air flow rate Pending JPS59619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57110001A JPS59619A (en) 1982-06-28 1982-06-28 Thermal detector for engine suction air flow rate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57110001A JPS59619A (en) 1982-06-28 1982-06-28 Thermal detector for engine suction air flow rate

Publications (1)

Publication Number Publication Date
JPS59619A true JPS59619A (en) 1984-01-05

Family

ID=14524577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57110001A Pending JPS59619A (en) 1982-06-28 1982-06-28 Thermal detector for engine suction air flow rate

Country Status (1)

Country Link
JP (1) JPS59619A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6363572U (en) * 1986-10-14 1988-04-26

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6363572U (en) * 1986-10-14 1988-04-26
JPH0330620Y2 (en) * 1986-10-14 1991-06-27

Similar Documents

Publication Publication Date Title
US5086650A (en) Low noise fluid flow sensor mounting
JPH07198440A (en) Device for measuring qauntity of fluid medium
US4104915A (en) Ultrasonic device for the determination of the rate of air flow in the inlet duct of an internal combustion engine
JP3950578B2 (en) Flow measuring device
JP3292817B2 (en) Thermal flow sensor
US4776213A (en) Mass airflow meter
JP3240782B2 (en) Hot wire type air flow meter
US4428231A (en) Viscous link drive for fluid flowmeter
JPS59619A (en) Thermal detector for engine suction air flow rate
EP1004856A3 (en) Thermal air flow meter
JP4477710B2 (en) Air flow measurement device
JPS604813A (en) Gas flow rate measuring apparatus
JPS62159016A (en) Flow rate detector
JPH05322624A (en) Flow meter
JPH10205415A (en) Intake manifold for internal combustion engine
JPH0320619A (en) Hot-wire type air flowmeter
JPH06288805A (en) Air flowmeter
JPS5861411A (en) Measuring device for flow rate of gas
JP2001255188A (en) Flow rate and flowing velocity measuring apparatus
JP2993912B2 (en) Air flow meter and internal combustion engine using it
JPS5821517A (en) Sensor for karman's vortex street flow rate
JPS5942808B2 (en) flow measuring device
JPH085428A (en) Air flow rate measuring apparatus
JPS5984115A (en) Device for measuring flow rate
JPS606736Y2 (en) Intake air amount measuring device