JPS596184B2 - How to recover oxidation catalyst - Google Patents

How to recover oxidation catalyst

Info

Publication number
JPS596184B2
JPS596184B2 JP52030857A JP3085777A JPS596184B2 JP S596184 B2 JPS596184 B2 JP S596184B2 JP 52030857 A JP52030857 A JP 52030857A JP 3085777 A JP3085777 A JP 3085777A JP S596184 B2 JPS596184 B2 JP S596184B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
exchange resin
acid
anion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52030857A
Other languages
Japanese (ja)
Other versions
JPS53114796A (en
Inventor
克也 村上
哲夫 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP52030857A priority Critical patent/JPS596184B2/en
Publication of JPS53114796A publication Critical patent/JPS53114796A/en
Publication of JPS596184B2 publication Critical patent/JPS596184B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明はベンゼンポリカルボン酸製造に用いられた液相
酸化触媒の回収方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for recovering a liquid phase oxidation catalyst used in the production of benzene polycarboxylic acid.

コバルト、マンガンなどの重金属および臭素化合物を触
媒として含む酢酸中でポリアルキルベンゼンを空気酸化
して対応するベンゼンポリカルボン酸を製造することは
周知であり、テレフタル酸、イソフタル酸、トリメリッ
ト酸、ピロメリット酸などはこの方法により工業的規模
で製造されている。
It is well known to air oxidize polyalkylbenzenes in acetic acid with heavy metals such as cobalt, manganese, and bromine compounds as catalysts to produce the corresponding benzene polycarboxylic acids, including terephthalic acid, isophthalic acid, trimellitic acid, pyromellitic acid, etc. Acids and the like are produced on an industrial scale by this method.

なかでもテレフタル酸はポリエステルの原料として特に
大規模に製造されている。用いられる触媒は高価である
ので、これを反復使用することはベンゼンポリカルボン
酸を経済的に製造するために必須不可欠である。しかし
反応に用いられた触媒は反応混合物からベンゼンポリカ
ルボン酸を分離した母液中に反応を阻害する不純物と共
存しているので、該反応母液をそのままで反応系に循環
することあるいは該反応母液から単に酢酸の一部を留去
した反応残渣(反応母液濃縮物)を反応系に循環するこ
とは望ましくない。このため、従来より触媒回収につい
て種々の工夫がなされている。
Among these, terephthalic acid is particularly produced on a large scale as a raw material for polyester. Since the catalyst used is expensive, repeated use is essential for economically producing benzene polycarboxylic acid. However, the catalyst used in the reaction coexists with impurities that inhibit the reaction in the mother liquor from which benzene polycarboxylic acid is separated from the reaction mixture. It is not desirable to simply circulate the reaction residue (reaction mother liquor concentrate) from which a portion of the acetic acid has been distilled off to the reaction system. For this reason, various efforts have been made for catalyst recovery.

たとえば反応残渣を水で抽出したのち炭酸塩の形で重金
属を沈澱分離する方法、残渣を焼却し、灰から重金属を
溶出する方法などがある。これらの方法では比較的高純
度の触媒を回収することができるが、工程が煩雑である
ばかりでなく、多量のアルカリまたは酸を必要とし、さ
らに触媒成分のうち臭素をほとんど全量損失するという
欠点がある。また反応母液もしくは残渣の水抽出液をカ
チオン交換樹脂に通して重金属を吸着させ、通過液を蒸
発することにより臭化水素を回収し、カチオン交換樹脂
に臭化水素酸を通じて重金属を回収する方法が提案され
ているが、この方法では装置の腐蝕が大きな問題となる
ことに加えて高沸点の臭化水素を回収するために多量の
溶媒を蒸発させる必要がある。本発明者らは、従来方法
では満足に回収されていなかつた臭素を回収でき、かつ
活性低下のほとんどない触媒を安価に回収する方法につ
いて研究を行つた結果本発明に到達した。
Examples include a method in which the reaction residue is extracted with water and then the heavy metals are precipitated and separated in the form of carbonate, and a method in which the residue is incinerated and the heavy metals are eluted from the ash. Although these methods can recover relatively high-purity catalysts, they not only require complicated steps, but also require a large amount of alkali or acid, and have the disadvantage that almost all of the bromine among the catalyst components is lost. be. Another method is to pass the reaction mother liquor or the aqueous extract of the residue through a cation exchange resin to adsorb heavy metals, recover hydrogen bromide by evaporating the passed liquid, and recover the heavy metals by passing hydrobromic acid through the cation exchange resin. Although this method has been proposed, in addition to the serious problem of corrosion of the equipment, it is necessary to evaporate a large amount of solvent in order to recover high-boiling hydrogen bromide. The present inventors have arrived at the present invention as a result of research into a method for recovering bromine, which has not been recovered satisfactorily by conventional methods, and for recovering a catalyst at low cost with almost no reduction in activity.

すなわち本発明によれば、重金属および臭素化合物を触
媒として含む酢酸中でポリアルキルベンゼンを分子状酸
素含有ガスで酸化して得られる反応生成混合物からベン
ゼンポリカルボン酸を固液分離により除去した反応母液
より触媒成分を回収するにあたり、該反応母液を濃縮し
、これを水と混合したのち不溶物質を除去し、得られた
水洛液を強酸の対アニオンにより水酸基が置換された強
塩基性アニオン交換樹脂で処理することにより、触媒活
性の回復および臭素触媒の回収を効果的かつ安価に実施
することができる。
That is, according to the present invention, benzene polycarboxylic acid is removed from a reaction mother liquor by solid-liquid separation from a reaction product mixture obtained by oxidizing polyalkylbenzene with molecular oxygen-containing gas in acetic acid containing a heavy metal and a bromine compound as a catalyst. To recover the catalyst component, the reaction mother liquor is concentrated, mixed with water, insoluble substances are removed, and the resulting aqueous solution is treated with a strongly basic anion exchange resin in which the hydroxyl group has been substituted with a strong acid counter anion. By treating with , the catalyst activity can be recovered and the bromine catalyst can be recovered effectively and inexpensively.

本発明方法によれば反応残渣から触媒を水抽出する際に
水に不溶性の有機物がまず除去される。
According to the method of the present invention, water-insoluble organic substances are first removed when the catalyst is extracted with water from the reaction residue.

その際反応を阻害するタール状物質や着色物の大部分も
除去されるが、水層にはなお反応阻害物質が含まれてお
り、これらは強塩基性アニオン交換樹脂層により効果的
に除去され、重金属触媒成分および臭素化合物の大部分
が通過液中に存在する結果となる。本発明の方法は、パ
ラキシレンの一段階酸化によつて直接重合用テレフタル
酸を製造する際の触媒の回収法としてとくに価値が高い
。直接重合用テレフタル酸は4−カルボキシベンズアル
デヒド(以下4−CBAと略称する)や着色物質などの
不純物の少ない、いわゆる高純度テレフタル酸であるこ
とが要求され、かかる高純度テレフタル酸を製造するた
めには回収再使用する触媒中に混入する反応阻害物の量
を極力減少させることが必要であるが、本発明の方法に
よれば容易にその目的が達せられる。本発明にいうとこ
ろのポリアルキルベンゼンとは、パラキシレン、パラシ
メン、パラジイソプロピルベンゼン、メタキシレン、プ
ソイドクメン、ジユレンなどであり、ベンゼンポリカル
ボン酸とはテレフタル酸、イソフタル酸、トリメリツト
酸、ピロメリツト酸などである。
At this time, most of the tar-like substances and colored substances that inhibit the reaction are also removed, but the aqueous layer still contains reaction inhibitors, and these are effectively removed by the strongly basic anion exchange resin layer. , resulting in the majority of heavy metal catalyst components and bromine compounds being present in the flowthrough. The method of the present invention is particularly valuable as a catalyst recovery method for producing terephthalic acid for direct polymerization by one-step oxidation of paraxylene. Terephthalic acid for direct polymerization is required to be so-called high-purity terephthalic acid with few impurities such as 4-carboxybenzaldehyde (hereinafter abbreviated as 4-CBA) and coloring substances, and in order to produce such high-purity terephthalic acid, It is necessary to reduce as much as possible the amount of reaction inhibitors mixed into the catalyst to be recovered and reused, and the method of the present invention easily achieves this objective. In the present invention, polyalkylbenzenes include paraxylene, paracymene, paradiisopropylbenzene, metaxylene, pseudocumene, diyurene, etc., and benzene polycarboxylic acids include terephthalic acid, isophthalic acid, trimellitic acid, pyromellitic acid, etc. .

重金属触媒とはコバルト、マンガン、ニツケル、セリウ
ムなどの金属の化合物であり、これらは単独で、または
2種以上の組合せで用いられる。臭素化合物とは臭化ナ
トリウム、臭化カリウムなどのアルカリ金属塩や分子状
臭素、臭化水素、臭化コバルト、臭化マンガンなどの無
機臭素化合物の他にテトラブロモエタン、ブロモホルム
、パラメチルベンジルブロマイドなどの有機臭素化合物
も含まれるが、アルカリ金属の蓄積は好ましくないので
臭素化合物を追加して使用する場合には臭化水素、臭化
コバルト、テトラブロモエタンが好ましい。分子状酸素
含有ガスとは酸素または空気もしくは空気を窒素などの
不活性気体で希釈したものなどである。本発明方法は、
上記の重金属および臭素化合物を触媒として含む酢酸中
で上記ポリアルキルベンゼンを分子状酸素含有ガスによ
り酸化することにより得られる反応生成物からベンゼン
ポリカルボン酸を固液分離した反応母液に対して適用で
きる。
The heavy metal catalyst is a compound of metals such as cobalt, manganese, nickel, and cerium, and these are used alone or in combination of two or more. Bromine compounds include alkali metal salts such as sodium bromide and potassium bromide, inorganic bromine compounds such as molecular bromine, hydrogen bromide, cobalt bromide, and manganese bromide, as well as tetrabromoethane, bromoform, and paramethylbenzyl bromide. Organic bromine compounds such as bromine compounds are also included, but since accumulation of alkali metals is undesirable, when additional bromine compounds are used, hydrogen bromide, cobalt bromide, and tetrabromoethane are preferred. The molecular oxygen-containing gas is oxygen, air, or air diluted with an inert gas such as nitrogen. The method of the present invention includes
It can be applied to a reaction mother liquor obtained by solid-liquid separation of benzene polycarboxylic acid from a reaction product obtained by oxidizing the above polyalkylbenzene with a molecular oxygen-containing gas in acetic acid containing the above heavy metal and bromine compound as a catalyst.

ポリアルキルベンゼン酸化反応時の反応温度などの反応
条件および各物質の濃度、ならびにベンゼンポリカルボ
ン酸の分離方法およびその条件などは問わない。分離し
た反応母液は酢酸溶媒を回収するため蒸留され、触媒は
残渣としてとり出される。
The reaction conditions such as the reaction temperature during the polyalkylbenzene oxidation reaction, the concentration of each substance, the method of separating benzene polycarboxylic acid and its conditions, etc. are not limited. The separated reaction mother liquor is distilled to recover the acetic acid solvent, and the catalyst is taken out as a residue.

残渣に含まれる遊離酢酸は50重量%以下であることが
好ましい。なお遊離酢酸とは金属塩の形で存在するもの
を除いた酢酸である。かかる残渣は有機不純物をはじめ
、鉄、クロム、銅などの金属化合物の不純物も同時に含
有しており、水抽出操作により不爵性の残渣と触媒溶液
とに分離される。
The amount of free acetic acid contained in the residue is preferably 50% by weight or less. Note that free acetic acid is acetic acid excluding those present in the form of metal salts. This residue contains not only organic impurities but also impurities of metal compounds such as iron, chromium, copper, etc., and is separated into a filthy residue and a catalyst solution by a water extraction operation.

すなわち残渣と水とを混合し、水層に触媒を抽出したの
ち遠心分離、減圧ろ過、傾斜など公知の方法で水抽出液
より不溶性残渣が分離除去される。この場合、鉄、クロ
ム、銅などの酸化反応に対して悪影響を持つ金属は大部
分不溶性残渣と共に除去される。水抽出に使用する水の
量は、残渣1重量部に対して2〜10重量部が適当であ
るが、抽出水中の遊離酢酸濃度が30重量%以下、特に
10重量%以下になるよう調節するのが好ましい。遊離
酢酸濃度が高くなると水不洛性有機残渣が水中へ溶出し
やすくなるため、次の工程で用いられるアニオン交換樹
脂の吸着能力を低下させる原因となる。不洛性残渣を分
離する温度は、有機残渣の溶解度を低下させる目的から
、なるべく低いことが好ましいが、特に制限はない。本
発明に用いる強塩基性アニオン交換樹脂とは、交換基と
して4級アンモニウム基を持つ樹脂であり、一般にI型
および型強塩基性アニオン交換樹脂として知られるもの
を含む。I型強塩基性アニオン交換樹脂とはスチレンお
よびジビニルベンゼンの共重合体を基体とし、交換基と
して式1で示される基を持つものであり、型は式で示さ
れる基を交換基として持つものである。本発明において
I型および型の水酸基が強酸の対アニオン、たとえば塩
素イオン、臭素イオン、沃素イオン、硫酸イオン、硝酸
イオンなどで置換されていることが必要である。
That is, the residue and water are mixed, the catalyst is extracted into the aqueous layer, and then the insoluble residue is separated and removed from the aqueous extract by a known method such as centrifugation, vacuum filtration, or decanting. In this case, metals that have an adverse effect on oxidation reactions, such as iron, chromium, and copper, are mostly removed together with insoluble residues. The appropriate amount of water used for water extraction is 2 to 10 parts by weight per 1 part by weight of the residue, but it should be adjusted so that the concentration of free acetic acid in the extracted water is 30% by weight or less, especially 10% by weight or less. is preferable. When the free acetic acid concentration increases, the water-impossible organic residue becomes more likely to elute into water, which causes a decrease in the adsorption capacity of the anion exchange resin used in the next step. The temperature at which the intractable residue is separated is preferably as low as possible for the purpose of reducing the solubility of the organic residue, but is not particularly limited. The strongly basic anion exchange resin used in the present invention is a resin having a quaternary ammonium group as an exchange group, and includes what is generally known as type I and type strongly basic anion exchange resins. Type I strongly basic anion exchange resin is one that has a copolymer of styrene and divinylbenzene as a base and has a group shown by formula 1 as an exchange group, and the type has a group shown by the formula as an exchange group. It is. In the present invention, it is necessary that the type I and type hydroxyl groups be substituted with a counteranion of a strong acid, such as chloride ion, bromide ion, iodide ion, sulfate ion, nitrate ion, etc.

なぜならば水酸基型は耐熱性が低いうえに、コロレトな
どの触媒金属と接触すれば、金属水酸化物を樹脂表面に
沈着させて効率を低下させる欠点があり、また使用の初
期において臭素イオンを吸着し、本発明方法の特徴のひ
とつである臭素の回収効率の低下を来たすからである。
しかしながら水酸基型であつても使用を繰り返すうちに
実質的には臭素型となる。上記置換アニオンのうち塩素
イオン、臭素イオンがより好ましく、臭素イオンが最も
好ましい。以下の説明においては、I型において水酸基
が臭素イオンで置換されたものをI型臭素型強塩基性ア
ニオン交換樹脂と呼び、単にアニオン交換樹脂と呼ぶ場
合はこれらの総てを含む。アニオン交換樹脂はミクロボ
アのみを有するゲル型樹脂、該ゲル型樹脂に物理的マク
ロボアを形成せしめたポーラス型樹脂いずれであつても
よく、さらに一般に用いられるような球状であつても、
イオン交換膜として知られるシート状であつてもよい。
アニオン交換樹脂を用いる処理操作は、回分式および連
続式のいずれでも行うことができる。
This is because the hydroxyl group type has low heat resistance, and if it comes into contact with catalyst metals such as coloreto, it deposits metal hydroxide on the resin surface and reduces efficiency, and it also absorbs bromide ions in the initial stage of use. However, this results in a decrease in the bromine recovery efficiency, which is one of the characteristics of the method of the present invention.
However, even if it is a hydroxyl type, it becomes substantially a bromine type with repeated use. Among the above substituted anions, chlorine ion and bromide ion are more preferred, and bromide ion is most preferred. In the following description, a type I resin in which the hydroxyl group is substituted with a bromide ion is referred to as a type I bromine type strongly basic anion exchange resin, and when simply referred to as an anion exchange resin, all of these are included. The anion exchange resin may be either a gel type resin having only micropores or a porous type resin in which physical macropores are formed in the gel type resin, and even if it is generally spherical,
It may also be in the form of a sheet known as an ion exchange membrane.
The treatment operation using an anion exchange resin can be carried out either batchwise or continuously.

球状のアニオン交換樹脂を用いる場合、これを塔に充填
し、この塔に触媒抽出液を下降流または上昇流として通
過させる方法が好ましい。この場合、触媒抽出液の流通
速度は操作温度ならびに該触媒抽出液中の触媒、遊離酢
酸および有機不純物の濃度にもよるが、一般には空間速
度で0.5〜5hr−1の範囲が好ましい。触媒抽出液
は通常黄色の着色不純物を含んでいるので、吸着の破過
点は通過液の着色度を測定することにより知ることがで
き、特に300〜400nmの吸光度変化を利用するの
が便利である。吸着操作は5℃以上80℃以下の広い温
度範囲で行うことができるが高温であるほどアニオン交
換樹脂の劣化が速くなり、逆に低温であるほど触媒抽出
液から徐々に析出する有機物によりイオン交換樹脂の吸
着効果が低下しやすくなるので20〜60℃の範囲の温
度で行うことが好ましい。アニオン交換樹脂11あたり
の触媒処理能力は、各種の要因によつて大幅に異なるが
、一般にポリカルボン酸10〜200k9を製造するに
要する量の触媒をアニオン交換樹脂11で処理すること
ができる。破過点に達したアニオン交換樹脂は水または
50重量%以下の酢酸を含む水で洗浄したのち、再生処
理を行うことにより繰り返し使用することができる。再
生方法としては、特に酢酸による洗浄が有効である。用
いる酢酸は50重量%以下、好ましくは30重量%以下
の水を含有していてもよい。一般に酢酸中の水分率が高
くなるにしたがつて再生効率は低下する。また酢酸など
の再生溶媒はあらかじめ脱気しておくのが好ましい。ア
ニオン交換樹脂に吸着された有機不純物は再生処理によ
り脱離される。再生処理に用いた溶媒は蒸発により回収
され、残渣は水抽出工程で分離された不溶性残渣と共に
焼却などの処理に付される。吸着および再生を繰返すう
ちにアニオン交換樹脂の吸着能力が徐々に低下するが、
かかる場合には、鉱酸およびアルカリで洗浄したのち、
要すれば所定のアニオンを含む水溶液を通過させ、これ
によつて置換型アニオン交換樹脂を再生することができ
る。アニオン交換樹脂で処理された触媒液は、不足して
いる触媒成分を補給し、また場合により蒸発等により水
分量を調節した後、再び酸化反応触媒として循環される
When using a spherical anion exchange resin, it is preferable to pack it into a column and pass the catalyst extract through the column as a downward flow or an upward flow. In this case, the flow rate of the catalyst extract depends on the operating temperature and the concentrations of the catalyst, free acetic acid and organic impurities in the catalyst extract, but is generally preferably in the range of 0.5 to 5 hr-1 in space velocity. Since the catalyst extract usually contains yellow colored impurities, the adsorption breakthrough point can be determined by measuring the degree of coloration of the passing liquid, and it is particularly convenient to use the change in absorbance between 300 and 400 nm. be. The adsorption operation can be carried out in a wide temperature range from 5°C to 80°C, but the higher the temperature, the faster the deterioration of the anion exchange resin, and conversely, the lower the temperature, the more organic substances that gradually precipitate from the catalyst extract will cause ion exchange. Since the adsorption effect of the resin tends to decrease, it is preferable to carry out the reaction at a temperature in the range of 20 to 60°C. The catalyst treatment capacity per anion exchange resin 11 varies greatly depending on various factors, but in general, the amount of catalyst required to produce polycarboxylic acids 10 to 200k9 can be treated with the anion exchange resin 11. The anion exchange resin that has reached its breakthrough point can be used repeatedly by washing it with water or water containing 50% by weight or less of acetic acid, and then performing a regeneration treatment. As a regeneration method, cleaning with acetic acid is particularly effective. The acetic acid used may contain up to 50% by weight of water, preferably up to 30% by weight. Generally, as the moisture content in acetic acid increases, the regeneration efficiency decreases. Further, it is preferable to degas the regeneration solvent such as acetic acid in advance. Organic impurities adsorbed on the anion exchange resin are removed by regeneration treatment. The solvent used in the regeneration process is recovered by evaporation, and the residue is subjected to a process such as incineration together with the insoluble residue separated in the water extraction process. As adsorption and regeneration are repeated, the adsorption capacity of anion exchange resin gradually decreases, but
In such cases, after cleaning with mineral acid and alkali,
If necessary, the substituted anion exchange resin can be regenerated by passing an aqueous solution containing a predetermined anion therethrough. The catalyst liquid treated with the anion exchange resin is recycled again as an oxidation reaction catalyst after replenishing the missing catalyst components and adjusting the water content by evaporation or the like if necessary.

一般に触媒のうち臭素成分は酸化反応時に一部臭化水素
として系外に逃散するため、重金属触媒に比べてその補
給量は多くなる。本発明方法を採用し、触媒の回収循環
使用を繰り返すうちに、反応装置などを洗浄する目的で
使用したアルカリ等が触媒中に蓄積する場合があるが、
このような場合にはその蓄積量が許容限度をこえないよ
うに適宜触媒の一部を循環系より抜き出し、アルカリ等
の除去操作を行うのが好ましい。以下に本発明を実施例
により具体的に説明する。なお例中、%はことわりがな
い限り重量%をあられす。実施例 1 触媒として酢酸コバルト4水塩0.15%、酢酸マンガ
ン4水塩0.105%、臭化ナトリウム0.13%を溶
解した4%含水酢酸1kgを21チタン製オートクレー
ブに仕込み、200℃、231<g/c!Iiのもとに
空気気を10NI/分の速度で導入しながらパラキシレ
ンを1.8y/分の割合で2時間送入し、攪拌しながら
酸化反応を行つた。
Generally, part of the bromine component of the catalyst escapes from the system as hydrogen bromide during the oxidation reaction, so the amount of replenishment is larger than that of a heavy metal catalyst. When the method of the present invention is adopted and the catalyst is repeatedly used for recovery and circulation, alkali, etc. used for cleaning the reaction equipment etc. may accumulate in the catalyst.
In such a case, it is preferable to appropriately extract a portion of the catalyst from the circulation system and carry out an operation for removing alkali and the like so that the accumulated amount does not exceed the permissible limit. The present invention will be specifically explained below using examples. In the examples, % is by weight unless otherwise specified. Example 1 1 kg of 4% hydrous acetic acid in which 0.15% of cobalt acetate tetrahydrate, 0.105% of manganese acetate tetrahydrate, and 0.13% of sodium bromide were dissolved as a catalyst was charged into a 21 titanium autoclave and heated at 200°C. , 231<g/c! While introducing air at a rate of 10 NI/min under Ii, paraxylene was introduced at a rate of 1.8 y/min for 2 hours, and an oxidation reaction was carried out with stirring.

パラキシレンの送入を停止したのち、10分間空気の導
入を続けて反応を完結させ、ついで反応器を冷却して内
容物を取り出し、テレフタル酸を戸別した。戸液を減圧
下に濃縮し、触媒を含む有機残渣を8.69得た。該残
渣に水309を加えて常温で4時間攪拌して触媒を水抽
出したのち減圧ろ過し、ケークを水209で洗浄した。
ケークは1.89、水抽出液と洗液は合わせて56yで
あつた。別に川型塩素型強塩基性アニオン交換樹脂(ダ
イヤイオンSA2OA8三菱化成工業社製)20aを内
径1.5c!nのガラスカラムに入れ、1規定の水酸化
ナトリウム200WLI1水200a11規定の臭化水
素酸200aを順次通液したのち、さらに蒸留水をハロ
ゲンイオンがほと浅ど検出されなくなるまで通液して1
型臭素型強塩基性アニオン交換樹脂とした。
After stopping the supply of paraxylene, air was continued to be introduced for 10 minutes to complete the reaction, and then the reactor was cooled and the contents were taken out, and the terephthalic acid was poured out. The solution was concentrated under reduced pressure to obtain 8.69 g of an organic residue containing the catalyst. Water 309 was added to the residue and stirred at room temperature for 4 hours to extract the catalyst with water, followed by vacuum filtration and the cake was washed with water 209.
The weight of the cake was 1.89, and the combined weight of the water extract and washing liquid was 56y. Separately, use a river-type chlorine-type strong basic anion exchange resin (Diaion SA2OA8 manufactured by Mitsubishi Chemical Industries, Ltd.) 20a with an inner diameter of 1.5c! After passing 1 N sodium hydroxide 200 WLI 1 water 200 a and 11 N hydrobromic acid 200 a in order, distilled water was further passed until halogen ions were barely detected.
It was made into a bromine type strongly basic anion exchange resin.

該樹脂を含むカラムに、先に得た触媒抽出液56yを2
5℃にて60m1/時の速度で通液し、つぎに水107
7L1を通じて触媒がカラム内に残らなくなるまで洗浄
した。通過液中に含まれる触媒成分はオートクレーブに
仕込んだ量を基準として、コバルト94%、マンガン9
5%、臭素イオン76%、ナトリウム96%であつた。
臭素イオンの回収率が低い理由は、臭素の一部が有機臭
素化合物となつているためである。該通過液を減圧濃縮
し、水分量を調節したのち、不足の触媒成分を酢酸コバ
ルト、酢酸マンガン、酢酸ナトリウムおよび臭化水素酸
の形で補充して酸化反応に用いるべき触媒の酢酸溶液1
kgを調製した。5CI!lの石英セルを用い、該酢酸
溶液について340nmの波長における吸光度ε340
を分光度計で測定したところ0.05であつた。
2 of the previously obtained catalyst extract 56y was added to the column containing the resin.
The liquid was passed through at a rate of 60 ml/hour at 5°C, and then 107 ml of water was added.
The catalyst was washed through 7L1 until no catalyst remained in the column. The catalyst components contained in the passing liquid are 94% cobalt and 9% manganese, based on the amount charged in the autoclave.
5%, bromide ion 76%, and sodium 96%.
The reason why the recovery rate of bromide ions is low is that some of the bromine is converted into organic bromine compounds. After concentrating the permeate under reduced pressure and adjusting the water content, the deficient catalyst components are replenished in the form of cobalt acetate, manganese acetate, sodium acetate, and hydrobromic acid, and an acetic acid solution of the catalyst to be used in the oxidation reaction 1 is prepared.
kg was prepared. 5CI! Absorbance ε340 at a wavelength of 340 nm for the acetic acid solution using a quartz cell of
was measured with a spectrometer and found to be 0.05.

一方アニオン交換樹脂は真空脱気した酢酸(含水率4%
)40dを30分間で通液して洗浄再生処理した。
On the other hand, the anion exchange resin is vacuum degassed acetic acid (water content 4%).
) 40d was washed and regenerated by passing liquid through it for 30 minutes.

洛出酢酸のはじめの20m1は黄色であり、次の20m
1は微黄色であつた。ついで水20dを通液し、この液
を再生処理液に合わせ、これに酢酸を追加して11<9
とし、5cm石英セルで340nmの吸光度を測定した
ところ0.48であつた。該再生処理液に含まれる触媒
成分はオートクレーブに仕込んだ量を基準としてコバル
ト、マンガン、ナトリウムが共に0.2〜0.3%であ
り、臭素イオンは0.5%、全臭素は1.4%であつた
(全臭素は蒸発残渣を酸素中で燃焼せしめ、過酸化水素
で臭素イオンに変えて硝酸銀で滴定する方法で測定した
。)。再生処理液を減圧濃縮することにより、黄色の有
機物1.35yが得られた。アニオン交換樹脂は次回の
吸着操作にそのまま用いた。得られた回収触媒酢酸洛液
を再びオートクレーブに仕込み、第2回目の酸化反応を
第1回目と同じ条件で行つた。
The first 20 ml of Rakude acetic acid is yellow, and the next 20 ml
Sample No. 1 was slightly yellow. Next, 20 d of water was passed through, this liquid was combined with the regeneration treatment liquid, and acetic acid was added to this to make 11<9.
When the absorbance at 340 nm was measured using a 5 cm quartz cell, it was 0.48. The catalyst components contained in the regenerated solution are 0.2 to 0.3% of cobalt, manganese, and sodium, 0.5% of bromide ion, and 1.4% of total bromine based on the amount charged in the autoclave. % (Total bromine was measured by burning the evaporation residue in oxygen, converting it to bromine ions with hydrogen peroxide, and titrating with silver nitrate.) By concentrating the regenerated solution under reduced pressure, 1.35y of yellow organic matter was obtained. The anion exchange resin was used as is for the next adsorption operation. The obtained recovered catalyst acetic acid solution was charged into the autoclave again, and a second oxidation reaction was carried out under the same conditions as the first.

このようにして反応および触媒回収をくり返し行うこと
により得られたテレフタル酸の品質変化を第1表に示す
。第1表においてテレフタル酸の着色度は、テレフタル
酸4f!を2規定水酸化カリウム50m1&C溶解して
測定した光路長5cm,波長340nmにおける吸光度
を表わす。4−CBA濃度および着色度が共に低いほど
テレフタル酸は高純度であり、直接重合用テレフタル酸
として適している。
Table 1 shows changes in the quality of terephthalic acid obtained by repeating the reaction and catalyst recovery in this manner. In Table 1, the degree of coloration of terephthalic acid is 4f! It represents the absorbance at an optical path length of 5 cm and a wavelength of 340 nm, which was measured by dissolving 2N potassium hydroxide in 50ml of 1&C. The lower the 4-CBA concentration and the degree of coloration, the higher the purity of terephthalic acid, which is suitable as terephthalic acid for direct polymerization.

比較例 1 アニオン交換樹脂による処理を行わなかつた以外は実施
例1と同様にして触媒水溶液を回収し、反応を繰り返し
た。
Comparative Example 1 The catalyst aqueous solution was recovered and the reaction was repeated in the same manner as in Example 1 except that the treatment with the anion exchange resin was not performed.

3回目の反応に用いた触媒溶液の着色度はε340=0
.64であり、反応後のテレフタル酸の着色度は0.1
1、4−CBA濃度は360PPI[lとなり、触媒の
活性が大巾に低下していた。
The degree of coloration of the catalyst solution used in the third reaction is ε340=0
.. 64, and the coloring degree of terephthalic acid after reaction is 0.1
The 1,4-CBA concentration was 360 PPI [l, and the activity of the catalyst was significantly reduced.

実施例 2実施例1における…型臭素型アニオン交換樹
脂のかわりにI型塩素型強塩基性アニオン交換樹脂(ダ
イヤイオンSAlOA8三菱化成工業社製)を用いて実
施例1と同様に触媒回収を行い、繰り返し反応実験を行
つた結果を第2表に示す。
Example 2 Catalyst recovery was carried out in the same manner as in Example 1, using type I chlorine type strongly basic anion exchange resin (Diaion SAlOA8 manufactured by Mitsubishi Chemical Industries, Ltd.) instead of the ... type bromine type anion exchange resin in Example 1. Table 2 shows the results of repeated reaction experiments.

実施例 3実施例1におけるパラキシレンのかわりにメ
タキシレンを用いた他は、触媒その他反応条件を実施例
1におけると全く同一として酸化を行つた。
Example 3 Oxidation was carried out using the same catalyst and other reaction conditions as in Example 1, except that meta-xylene was used instead of para-xylene in Example 1.

Claims (1)

【特許請求の範囲】[Claims] 1 重金属および臭素化合物を触媒として含む酢酸中で
ポリアルキルベンゼンを分子状酸素含有ガスで酸化して
得られる反応生成混合物からベンゼンポリカルボン酸を
固液分離により除去した反応母液より触媒成分を回収す
るにあたり、該反応母液を濃縮し、これを水と混合した
のち不溶物質を除去し、得られた水溶液を強酸の対アニ
オンにより水酸基が置換された強塩基性アニオン交換樹
脂間に通液し、触媒を通過液として回収することを特徴
とする酸化触媒の回収方法。
1. Benzene polycarboxylic acid is removed from the reaction product mixture obtained by oxidizing polyalkylbenzene with molecular oxygen-containing gas in acetic acid containing heavy metals and bromine compounds as catalysts by solid-liquid separation, and the catalyst component is recovered from the reaction mother liquor. After concentrating the reaction mother liquor and mixing it with water, insoluble substances are removed, and the resulting aqueous solution is passed through a strongly basic anion exchange resin in which the hydroxyl group has been substituted with a counter anion of a strong acid to remove the catalyst. A method for recovering an oxidation catalyst, the method comprising recovering the oxidation catalyst as a permeate.
JP52030857A 1977-03-17 1977-03-17 How to recover oxidation catalyst Expired JPS596184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52030857A JPS596184B2 (en) 1977-03-17 1977-03-17 How to recover oxidation catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52030857A JPS596184B2 (en) 1977-03-17 1977-03-17 How to recover oxidation catalyst

Publications (2)

Publication Number Publication Date
JPS53114796A JPS53114796A (en) 1978-10-06
JPS596184B2 true JPS596184B2 (en) 1984-02-09

Family

ID=12315376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52030857A Expired JPS596184B2 (en) 1977-03-17 1977-03-17 How to recover oxidation catalyst

Country Status (1)

Country Link
JP (1) JPS596184B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2962928D1 (en) * 1978-12-21 1982-07-08 Ici Plc Recovery of bromine from the effluent gases of a bromine catalysed oxidation process

Also Published As

Publication number Publication date
JPS53114796A (en) 1978-10-06

Similar Documents

Publication Publication Date Title
US4939297A (en) Extraction process for removal of impurities from terephthalic acid filtrate
EP2292581B1 (en) Extraction process for removal of impurities from mother liquor in the synthesis of terephthalic acid
US3873468A (en) Method of removing substance harmful to oxidation reaction in the production of benzenecarboxylic acids by oxidation
JP3390169B2 (en) Method for producing 2,6-naphthalenedicarboxylic acid
EP2093210B1 (en) Process for production of terephthalic acid
JP2002012573A (en) Method for recovering catalytic component from mother liquor of liquid-phase oxidation reaction
US8242304B2 (en) Process for production of isophthalic acid
EP0902004B1 (en) Process for producing aromatic carboxylic acid
CA1072579A (en) Process for producing pure racemic acid and meso-tartaric acid
US3959449A (en) Method of recovering heavy metal [-bromine] bromides and hydrobromic acid catalysts for liquid-phase oxidation [catalyst]
JP2752602B2 (en) Separation method of oxidation catalyst for trimellitic acid production
US4298759A (en) Separation of cobalt and manganese from trimellitic acid process residue by extraction, ion exchanger and magnet
JP5028707B2 (en) Method for producing aromatic carboxylic acid
JPS596184B2 (en) How to recover oxidation catalyst
US4311521A (en) Membrane separation of catalyst metals from trimellitic acid production and separation of cobalt from manganese
US4202797A (en) Recovering catalyst values in reaction liquors from oxidative production of carboxylic and polycarboxilic acids
JPH11152246A (en) Production of aromatic carboxylic acid
KR20130090896A (en) Improving terephthalic acid purge filtration rate by controlling % water in filter feed slurry
US4312778A (en) Membrane separation of catalyst metals from aromatic acid production
JP4207273B2 (en) Method for producing naphthalenedicarboxylic acid
JPS62212340A (en) Simultaneous production of 2,6-naphthalene-dicarboxylic acid and trimellitic acid
JP7169241B2 (en) Method for producing mixture of aromatic carboxylic acid and aliphatic organic acid
WO2006100969A1 (en) Process for producing high-purity terephthalic acid
JPS5935907B2 (en) Production method of aromatic polycarboxylic acid
JP2004321889A (en) Method for recovering catalyst from slurry and method for producing aromatic carboxylic acid