JPS5961753A - Densitometer - Google Patents

Densitometer

Info

Publication number
JPS5961753A
JPS5961753A JP17302782A JP17302782A JPS5961753A JP S5961753 A JPS5961753 A JP S5961753A JP 17302782 A JP17302782 A JP 17302782A JP 17302782 A JP17302782 A JP 17302782A JP S5961753 A JPS5961753 A JP S5961753A
Authority
JP
Japan
Prior art keywords
image
light
selectivity
end surfaces
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17302782A
Other languages
Japanese (ja)
Other versions
JPS6344189B2 (en
Inventor
Shojiro Hashizume
橋詰 昭次郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP17302782A priority Critical patent/JPS5961753A/en
Publication of JPS5961753A publication Critical patent/JPS5961753A/en
Publication of JPS6344189B2 publication Critical patent/JPS6344189B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • G01J3/427Dual wavelengths spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths

Abstract

PURPOSE:To widen the selectivity of two wavelengths and the selectivity of a specimen, by a method wherein the incident end surfaces of a pair of optical fibers are arranged to the surface of a spectrum image toward a wavelength dispersing direction in a freely displaceable manner and the emitting end surfaces thereof are arranged in opposed relation to a solid image detector. CONSTITUTION:The light issued from a white light source 1 is passed through a condensing lens 2, a specimen spot 3 on a plate and an image forming lens 5 and formed into an image 3' on the slit 6 of a spectroscope while the pervious light is subjected to spectral diffraction image formation by a concave diffraction grating 7. The light from said grating 7 is incident to the incident end surfaces Ilambda1, Ilambda2 of image guide type optical fibers 10lambda1, 10lambda2 parallelly arranged on an image surface 8 in a displaceable manner and guided to light detectors 9lambda1, 9lambda2 through the emitting end surfaces Elambda1, Elambda2 thereof to perform concn. measurement due to two-wavelength measuring light. Because the optical fiber is used, the selectivity of two wavelengths and the selectivity of a specimen are widened in range.

Description

【発明の詳細な説明】 本発明は濃度計、特に固体イメージセンサ−(検出器)
と分光器とを組み合わせた濃度計に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a densitometer, particularly a solid-state image sensor (detector).
This relates to a densitometer that combines a spectrometer and a spectrometer.

固体イメージ検出器としては、例えばフォトダイ副−ド
アレイ等が開発されているが、これらは受光末子が微小
であること、これらの受光案子を直線上、または面状に
配列できること、応答が早いこと等の特徴を有し、分光
器と組み合わせて濃度計の検出器として利用されている
As solid-state image detectors, for example, photodiode sub-door arrays have been developed, but these have small light-receiving elements, the ability to arrange these light-receiving elements in a straight line or a planar shape, and fast response. It has the following characteristics and is used as a densitometer detector in combination with a spectrometer.

第1図は、この固体イメージ検出器を使用した周知の三
波長測定を行なうように構成した濃度g1の概略図で、
図においてlは白色光源、2は集光レンズ、3は被測定
試料、例えばTLOプレート4上に展開された試料スポ
ットで、集光レンズ2が光源1からの光をスポット3上
に集光照射する。
FIG. 1 is a schematic diagram of the concentration g1 configured to perform the well-known three-wavelength measurement using this solid-state image detector.
In the figure, l is a white light source, 2 is a condensing lens, and 3 is a sample spot developed on a sample to be measured, for example, a TLO plate 4. The condensing lens 2 condenses the light from the light source 1 onto the spot 3 and irradiates it. do.

なお、図では光源1は透過用として配Wtされているが
、反射用光源(図示省略)を代替的に、または択一的使
用のために付加的に配備してもよい。
In the figure, the light source 1 is arranged for transmission, but a reflection light source (not shown) may be provided alternatively or additionally for alternative use.

試料スポット3からの透過光または反射光は、結像レン
ズ5によって分光器の入口スリット6上にスポット3の
イψ31  として結像される。そしてこのスポットの
イΦ31 の測定対象部分の光は入口スリット6から分
光米子(例えば凹面回折格子)7に入射し分光される。
The transmitted light or the reflected light from the sample spot 3 is imaged by the imaging lens 5 onto the entrance slit 6 of the spectrometer as the ray ψ31 of the spot 3. The light from the measurement target portion of this spot Φ31 enters a spectrometer (for example, a concave diffraction grating) 7 from the entrance slit 6 and is spectrally separated.

この回折格子7によって分光された各波長に対応するス
リット像6′ はスペクトル像面8上に連続的に形成さ
れるのでこの面8上の適当な位置に検出器を配置するこ
とにより、任意の波長での測光を行なうことができる。
Slit images 6' corresponding to each wavelength separated by this diffraction grating 7 are continuously formed on the spectral image plane 8, so by placing the detector at an appropriate position on this plane 8, an arbitrary image can be formed. Photometry at wavelength can be performed.

この場合、二波長測光を行なうには例えば二つの検出器
9λ1.9λ2をスペクトル像面8上の所望の波長位曾
にそれぞれ配置し、・また二波長の選択を行なうには各
検出器をスペクトル像面8上で波長分散方向(横方向)
に変位させればよい(なお検出器の変位と回折格子の回
動との組み合2わせによっても可能である)。
In this case, to perform two-wavelength photometry, for example, two detectors 9λ1 and 9λ2 are placed at desired wavelength positions on the spectral image plane 8, and to select two wavelengths, each detector is placed at the desired wavelength position on the spectral image plane 8. Wavelength dispersion direction (lateral direction) on image plane 8
(Note that this is also possible by a combination of the displacement of the detector and the rotation of the diffraction grating.)

なお、検出器での測定値の以後の処理については、二波
長測定は周知であるので、説明は省略する。
Note that the subsequent processing of the measured values by the detector will not be described since dual wavelength measurement is well known.

上記のような構成においては、次のような間鎮点が発生
する。すなわち、固体イメージ検出器には、これを構成
する多数の素子、例えばフォトダイオードアレイに接続
される配線束が付いているので、波長選択のために検出
器の位置を変えるごとに配線束をひきすることになり、
断線などの事故が起り易い。
In the above configuration, the following intermittent points occur. In other words, a solid-state image detector has a wiring bundle connected to the many elements that make up the detector, such as a photodiode array, so the wiring bundle must be pulled each time the detector position is changed to select a wavelength. I decided to do it,
Accidents such as wire breakage are likely to occur.

また、検出器の物理的な大きさによる制限のために、一
定間隔よりも接近した二波長位置に二つの検出器を並置
することができず、波長の1由な選択は不可能である。
Further, due to limitations due to the physical size of the detectors, it is not possible to arrange two detectors in parallel at two wavelength positions closer than a certain distance, and it is impossible to select a wavelength simply.

本発明は以上の欠点を克服するために、スリット形の入
射および出射端面ないしイメージガイド面をそれぞれ有
する少なくとも一対のオプチカルファイバーの入射端面
を、上記スペクトル像面において波長分散方向に変位自
在に配置するとともに、上記の出射端面を固定配置され
た少なくとも一対の固体イメージ検出器のそれぞれの受
光面に対向配置したものである。
In order to overcome the above drawbacks, the present invention arranges the entrance end surfaces of at least a pair of optical fibers each having a slit-shaped entrance and exit end surface or image guide surface so as to be freely displaceable in the wavelength dispersion direction on the spectral image plane. In addition, the above-mentioned output end face is arranged to face each light receiving surface of at least a pair of fixedly arranged solid-state image detectors.

以下、第2図にしたがって本発明の詳細な説明するが、
第2図において第1図と同一の参照記号は第1図と同一
の対応する要素を示すので説明は省略する。
The present invention will be described in detail below with reference to FIG.
In FIG. 2, the same reference symbols as in FIG. 1 indicate the same corresponding elements as in FIG. 1, and the explanation thereof will be omitted.

本発明によれば、固体イメージ検出器9λ1.9λ2は
スペクトル像面8上に配置されないで、装置の適当な位
faに固定配置される。1oλ1.1oλ2はイメージ
ガイド形オプチカルファイバーで、それぞれ幅の狭いス
リット形の入射端面(イメージガイド面)工λ1、工λ
2と出射端面EλISXλ2とを有する0 入射端商工λ1、工λ2は、それぞれ上述のスリット像
6′ の高さ、幅にほぼ一致しており、スペクト像面8
上において各別に波長分散方向に変位可能に並置されて
おり、一方出射端面Eλ1、Eλ2はそれぞれ検出器9
λ1.9λ2の受光面に対向配置されている。
According to the invention, the solid-state image detector 9λ1,9λ2 is not placed on the spectral image plane 8, but is fixedly placed at a suitable position fa in the device. 1oλ1.1oλ2 are image guide type optical fibers, each having a narrow slit-shaped entrance end face (image guide surface) with a diameter of λ1 and a diameter of λ.
2 and the output end surface EλISXλ2, the input end surface λ1 and the 0-incidence end surface EλISXλ2 almost match the height and width of the above-mentioned slit image 6', respectively, and the spectral image surface 8
At the top, they are arranged in parallel so that they can be displaced separately in the wavelength dispersion direction, while the output end surfaces Eλ1 and Eλ2 are respectively aligned with the detectors 9.
They are arranged opposite to the light receiving surface of λ1.9λ2.

従って、入射端商工λ1、工λ2をそれぞれスペクトル
像面8上の所望の波長λ市、λ2の位置に配置すること
により、その波長の光を検出器9λい9λ2に導びくこ
とができる。
Therefore, by arranging the incident end beams λ1 and λ2 at the positions of desired wavelengths λ and λ2 on the spectral image plane 8, respectively, light of the wavelengths can be guided to the detectors 9λ and 9λ2.

この場合、スペクトル像面8上の像を歪ませることなく
検出器9λ1.9λ2の受光面上に投影する必要があり
、このため上記のイメージガイド形オプチカル7アイパ
ー10λ1.10λ2はそれぞれの入射端商工λ1、工
λ2と出射端面Eλt、Kλ2においてこのオプチカル
ファイバーを構成する各ファイバー(素線)が両端面に
おいて対応した幾何学的に同−位置を占めるように配列
されていることが必要である。
In this case, it is necessary to project the image on the spectral image plane 8 onto the light-receiving surface of the detector 9λ1.9λ2 without distorting it. It is necessary that each fiber (strand) constituting this optical fiber at the output end faces Eλt, Kλ2 and Eλt, Kλ2 be arranged so as to occupy corresponding geometrical same positions on both end faces.

ついで検出器9λ1.9λ2の出力は増幅され測定目的
に応じた適当な回路ないし装置によって処理される。
The outputs of the detectors 9λ1, 9λ2 are then amplified and processed by a suitable circuit or device depending on the purpose of the measurement.

以上のように、本発明はイメージガイド形オプチカルフ
ァイバーのスリット形人剤端面を試料の透過光または反
射光のスペクトル像面上に変位可能に配備したものであ
るが、入射端面の幅は固体イメージ検出器の幅に比べて
狭くすることができるので、固体イメージ検出器の受光
面を直接にスペクトル像面上に配Uする場合よりもより
接近した二波長の選択が可能となり分析対象としての試
料の選択性等が広くなる。
As described above, in the present invention, the slit-shaped end face of an image guide type optical fiber is disposed so as to be displaceable on the spectral image plane of the transmitted light or reflected light of the sample. Since the width of the detector can be made narrower than the width of the detector, it is possible to select two wavelengths that are closer to each other than when the light-receiving surface of a solid-state image detector is placed directly on the spectral image plane. The selectivity, etc. of

また、固体イメージ検出器自体を可動とした構成にとも
なう断線の危険性等の不都合も排除することができる。
Further, it is also possible to eliminate inconveniences such as the risk of wire breakage due to the configuration in which the solid-state image detector itself is movable.

なお、一般的に試料スポットには濃度むらがあるため、
スリット像の全体を積分したのち吸光度変換して試料濃
度を算出すると測定誤差を生ずることは周知のことであ
る。しかしながら本発明では、試料スポットに濃度むら
があっても、試料スポットの一部を入口スリットを通し
てスペクトル像に形成し、スペクトル像の相対的強度分
布をそのままイメージガイド形オプチカルファイバーで
小さな検出素子をスリットの長さ方向に並べた例えばフ
メトダイオードアレイのような固体イメージ検出器に導
びく方式をとっているので、試料スポットのスペクトル
像は測定誤差が無視し得る程度に細分され、よって各検
出器からの出力が吸光度変換された後に積分すれば正確
な測定ができることとなる。
In addition, since there is generally uneven concentration in the sample spot,
It is well known that measurement errors occur when the sample concentration is calculated by integrating the entire slit image and then converting the absorbance. However, in the present invention, even if there is density unevenness in the sample spot, a part of the sample spot is formed into a spectral image through the entrance slit, and the relative intensity distribution of the spectral image is directly transferred to the slit using an image-guide optical fiber. Since the spectral image of the sample spot is subdivided to the extent that the measurement error can be ignored, each detector Accurate measurements can be made by integrating the output after absorbance conversion.

また上記の実施例においては、二波長測光について説明
したが、これに限らず検出器およびイメージガイド形オ
プチカルファイバーを多v!1.設けておき、これらの
うちの適当な検出器とイメージガイド形オプチカルファ
イバーの組合わせを利用することにより測光方式の幅広
い選択も可能となる。
Further, in the above embodiment, dual wavelength photometry was explained, but the detector and image guide type optical fiber are not limited to this. 1. By using a combination of a suitable detector and an image guide type optical fiber, a wide range of photometry methods can be selected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は固体イメージ検出器を可動とした濃度Nlの概
略構成図、第2図は本発明の一夾施例の概略構成図であ
る。 2・・・集光レンズ、   3・・・試料スポット、4
・ −@TLOプレート、 5・・・結像レンズ、  6・・・入口スリット、61
・・・スリット像、  7・・・回折格子、8・・eス
ペクトル像面、 9λ重、9λ2 ・・・固体イメージ検出器、10λ、
、 10λ2 ・ ・ ・イメージガイド形オプヂカル
ファイバー。
FIG. 1 is a schematic block diagram of the concentration Nl with a movable solid-state image detector, and FIG. 2 is a schematic block diagram of one embodiment of the present invention. 2... Condenser lens, 3... Sample spot, 4
-@TLO plate, 5...imaging lens, 6...entrance slit, 61
...Slit image, 7...Diffraction grating, 8...e spectral image plane, 9λ weight, 9λ2...Solid image detector, 10λ,
, 10λ2 ・ ・ ・Image guide type optical fiber.

Claims (1)

【特許請求の範囲】[Claims] 照射された光に基づく試料の像が形成される入口スリッ
トと、この入口スリットを通過した光を分光する分光;
に子と、分光された光をそれぞれ検出する少なくとも一
対の上記のスリット長さ方向に並べられた固体イメージ
検出器とから成る濃度計において、前記入口スリットの
スペクトル像面上に対応する形状の入射端面および出射
端面を有する少なくとも一対のイメージガイド形オプヂ
カルファイバーヲ設け、各オプチカルファイバーの入射
端面を前記分光素子によるスペクトル像面上において波
長分散方向に変位自在に配置するとともに上記各固体イ
メージ検出器を固定配置し、この固体イメージ検出器の
受光面に前記各イメージガイド形オプチカルファイバー
の出射端面なそれぞれ対向配置したことを特徴とする濃
度計。
an entrance slit in which an image of the sample is formed based on the irradiated light; and a spectroscopy system that separates the light that has passed through the entrance slit;
and at least one pair of solid-state image detectors arranged in the longitudinal direction of the slits for detecting the separated light, respectively, in which a correspondingly shaped incident light is formed on the spectral image plane of the entrance slit. At least a pair of image guide type optical fibers having an end face and an output end face are provided, and the entrance end face of each optical fiber is disposed so as to be freely displaceable in the wavelength dispersion direction on the spectral image plane of the spectroscopic element, and each of the solid-state images is detected. 1. A densitometer, characterized in that a light-receiving surface of the solid-state image detector and the output end surface of each of the image guide type optical fibers are arranged opposite to each other.
JP17302782A 1982-09-30 1982-09-30 Densitometer Granted JPS5961753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17302782A JPS5961753A (en) 1982-09-30 1982-09-30 Densitometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17302782A JPS5961753A (en) 1982-09-30 1982-09-30 Densitometer

Publications (2)

Publication Number Publication Date
JPS5961753A true JPS5961753A (en) 1984-04-09
JPS6344189B2 JPS6344189B2 (en) 1988-09-02

Family

ID=15952849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17302782A Granted JPS5961753A (en) 1982-09-30 1982-09-30 Densitometer

Country Status (1)

Country Link
JP (1) JPS5961753A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0382908A2 (en) * 1989-02-16 1990-08-22 Anadis Instruments S.A. Ir-spectrometric analysing procedure and means

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0382908A2 (en) * 1989-02-16 1990-08-22 Anadis Instruments S.A. Ir-spectrometric analysing procedure and means

Also Published As

Publication number Publication date
JPS6344189B2 (en) 1988-09-02

Similar Documents

Publication Publication Date Title
US7433552B2 (en) Obtaining analyte information
US6496260B1 (en) Vertical-beam photometer for determination of light absorption pathlength
US6188476B1 (en) Determination of light absorption pathlength in a vertical-beam photometer
US7315667B2 (en) Propagating light to be sensed
US7522786B2 (en) Transmitting light with photon energy information
US8437582B2 (en) Transmitting light with lateral variation
US6643016B2 (en) Multiple pathlength spectrophotometer
KR20110127122A (en) Sample analyzing apparatus
US5923039A (en) Ultraviolet transmittance analyzing method and instrument
JP2002005823A (en) Thin-film measuring apparatus
JPS61292043A (en) Photodetecting probe for spectocolorimeter
JPS5961753A (en) Densitometer
US20060268270A1 (en) Grating spectrometer system and method for the acquisition of measured values
KR102130418B1 (en) Dazaja spectrometer
JPH11101692A (en) Spectroscopic colorimeter
JPH10115583A (en) Spectrochemical analyzer
JPS6219945Y2 (en)
JP5480055B2 (en) Diffuse reflection measuring device
JP2935287B2 (en) Differential refractive index spectrometer
JPH0359443A (en) Device for spectrochemical analysis
JPS6344188B2 (en)
JPH04132938A (en) Spectral measuring device
JPH02141630A (en) Spectral photometric device
JPH0120367B2 (en)
JPS6333658B2 (en)