JPS59616A - Photoelectric converter - Google Patents
Photoelectric converterInfo
- Publication number
- JPS59616A JPS59616A JP11009282A JP11009282A JPS59616A JP S59616 A JPS59616 A JP S59616A JP 11009282 A JP11009282 A JP 11009282A JP 11009282 A JP11009282 A JP 11009282A JP S59616 A JPS59616 A JP S59616A
- Authority
- JP
- Japan
- Prior art keywords
- light
- scale
- receiving elements
- moving
- fixed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 12
- 239000004973 liquid crystal related substance Substances 0.000 claims abstract description 5
- 238000006243 chemical reaction Methods 0.000 claims description 10
- 210000002858 crystal cell Anatomy 0.000 claims description 2
- 238000001514 detection method Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 206010041349 Somnolence Diseases 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/347—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
- G01D5/34707—Scales; Discs, e.g. fixation, fabrication, compensation
- G01D5/34715—Scale reading or illumination devices
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Optical Transform (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、デジタルダイヤルゲージ、デジタルマイク
ロメータ、デジタルハイドゲージ、デジタル秤などのデ
ジタル式の測定器に使用され、移動体の移動量を光電変
換して電気的に検出するようになした光電変換装置の改
良に関する。Detailed Description of the Invention This invention is used in digital measuring instruments such as digital dial gauges, digital micrometers, digital hide gauges, and digital scales, and is used to photoelectrically convert and electrically detect the amount of movement of a moving object. The present invention relates to an improvement of a photoelectric conversion device.
この種装置の従来例について以下説明する。A conventional example of this type of device will be described below.
第1図は従来の光電変換装置の分解斜視図である。FIG. 1 is an exploded perspective view of a conventional photoelectric conversion device.
第1図において、1はガラス、プラスチックなどの透明
部材よりなる移動スケールであり、その−力の表面には
一定のピッチPで等間隔に光に対して明・暗となる如き
周知のパターン2が施こされている。尚、図ではパター
ン2のピッチPは誇張して図示しである。ろはガラス、
プラスチックなどの透明部材よりなる固定スケールであ
り、その一方の表面(では、移動スケール1と同様に、
ピッチPで等間隔に光に対して明・暗となる複数のパタ
ーン4(図では四つのパター74a、 4b、4c、
4dが示さtている)が施こさACいる。尚、図ではパ
ターン4のピッチPは誇張して図示しである。In Fig. 1, reference numeral 1 is a moving scale made of a transparent member such as glass or plastic, and on its surface there is a well-known pattern 2 that is bright and dark against light at regular intervals at a constant pitch P. is being carried out. In addition, in the figure, the pitch P of pattern 2 is exaggerated. Roha glass,
This is a fixed scale made of a transparent material such as plastic, and one surface of the scale (like the moving scale 1,
A plurality of patterns 4 (in the figure, four patterns 74a, 4b, 4c,
4d is shown) is applied AC. In addition, in the figure, the pitch P of the pattern 4 is exaggerated.
そして、こ柱ら複数のパターン4a、 4b、 4c、
4dは例えハハターン4aを00としたとき、パターン
41)は90°、バp −ン4cハ180 ’、パター
ン4d&:! 270 ’となるように相互に位相が
ずれている。5はタングステンランプ、発光ダイオード
などよりなる光源、6はコリメートレンズで、光源5で
発せられた光を平行光線束にして、移動スクール1以後
に伝達する。7は、固定スケール3に施こされた複数の
パターン4のそれぞれン対応して、基板8上に設けられ
に受光素子であり、この例の場合にはパターン4a、4
b、4c、4dに対応して、受光素子7a、71)、7
c、7dの四つが設けら扛ている。このような構成にお
いて、光源5を発光させると、光源5より発せられコリ
メートレンズ乙に照射さn rc光はコリメートレンズ
乙により平行光線束にさ柱て移動スクール1に達する。Then, a plurality of patterns 4a, 4b, 4c,
For example, if 4d is 00 at turn 4a, pattern 41) is 90°, bump 4c is 180', pattern 4d &:! The phases are shifted from each other so that the angle becomes 270'. Reference numeral 5 indicates a light source such as a tungsten lamp or a light emitting diode, and 6 indicates a collimating lens, which converts the light emitted from the light source 5 into a parallel beam of light and transmits it to the mobile school 1 and beyond. 7 is a light receiving element provided on the substrate 8 corresponding to each of the plurality of patterns 4 formed on the fixed scale 3; in this example, the patterns 4a, 4
b, 4c, 4d, light receiving elements 7a, 71), 7
There are four, c and 7d. In such a configuration, when the light source 5 is made to emit light, the NRC light emitted from the light source 5 and irradiated onto the collimating lens B is collimated into a parallel beam by the collimating lens B and reaches the moving school 1.
移動スケール1に達した後は、移動スケール1と固定ス
ケール2に施こさnた明・暗のパターン2.4にjり両
スケールの光の通る明部分同志が重なるときに、受光素
子7の受ける光量が最大となり、それよりピッチPが1
/2移動したときには光量が最小となるので、両スケー
ル2.4の相対移動量に対し、光量はほぼ三角波状に変
化する。したがって、この例の場合における受光′素子
7a、7b、7c、 7dは90°づつ位相のずlLを
三角波状の四つの電気信号が得られることになる。After reaching moving scale 1, according to the bright/dark pattern 2.4 applied to moving scale 1 and fixed scale 2, when the bright parts of both scales that the light passes through overlap, the light receiving element 7 The amount of light received is maximum, and the pitch P is 1 from that point.
Since the amount of light becomes the minimum when the scale moves by /2, the amount of light changes approximately in the form of a triangular wave with respect to the amount of relative movement of both scales 2.4. Therefore, in this example, the light-receiving elements 7a, 7b, 7c, and 7d obtain four electrical signals in the form of a triangular wave, each having a phase difference lL of 90 degrees.
受光素子(7a、7b、7c、7d)によって、光信号
を眠気信号に変換された後は、図示はしないが公知の如
くカウンタ内で四つの受光素子(7a、7b、7c。After the optical signal is converted into a drowsiness signal by the light-receiving elements (7a, 7b, 7c, 7d), four light-receiving elements (7a, 7b, 7c) are converted into a drowsiness signal within a counter as is well known, although not shown.
7d)によって得ら/′Lrt90°位相のずれた四つ
の電気信号を分割する電気処理をし先あと計数パルスに
変換さ扛、移動スクール1の移動量とパルスの数を対応
させることによって移動量をデジタrし的に表示部にて
表示させることが出来る。7d) After performing electrical processing to divide the four electrical signals with a 90° phase shift, they are converted into counting pulses, and the amount of movement is determined by matching the amount of movement of moving school 1 with the number of pulses. can be displayed digitally on the display unit.
ところで、各々の受光素子7a、71)、7c、7dに
よつで、光源5よりの光を移動スケール1、固定スクー
ル20両スケールで、形成された光信号を、電気信号に
光電変換する過程において、光軸りに対スルコリメート
レンズ6、移動スケール1、固定スクール2、受光素子
7の直角、対称性などの取付状態の相互の位置関係によ
り、各々の受光素子7a、7b、7c、7dによって受
ける光量について大小の差が生じてしまうことが多く、
この光量の大小が生じると、各受光素子で得られるほぼ
三角波状の電気信号の振幅にバラツキが発生してしまい
、後の電気処理とくに計数パルスの生成に不都合を起た
してしまうことになる。そこで、従来装置においでは第
1図に示すように、光源5がら受光素子7の光路内のコ
リメートレンズ6と移動スクール1の間に、各受光素子
7a、7b、7c、7dに対応し全光量調整用の調整ネ
ジ9a、91)、9c、9dが設けられていて、こ汎ら
四つの調整ネジ9a、9b、9c、9d、を適宜に出し
入nすることにより、コリメートレンズ6を通過し全光
量を制御卸調整し、四つの受光素子7a、7b、7c、
7dへの光量を均一となるようにしCいる。しかしなが
ら、こDように調整ネジ9の出し入nにより光量な制御
調整する従来装置においCは、微調整する場合にはネジ
径を小さくして、ネジのピッチを細がくしてやらなけn
ばならないが、ネジ径、ネジのピッチについ′Cは加工
上、取付上の限度があり、また、ネジ9の取付位置が対
向して位置するため、調整作業が面倒である。By the way, there is a process of photoelectrically converting the light signal from the light source 5 into an electric signal by the light receiving elements 7a, 71), 7c, and 7d on both the moving scale 1 and the fixed school 20 scales. In this case, each of the light receiving elements 7a, 7b, 7c, and 7d is arranged according to the mutual positional relationship of the anti-sulcollimating lens 6, the movable scale 1, the fixed school 2, and the light receiving element 7, such as right angles and symmetry along the optical axis. There is often a difference in the amount of light received by the
When this amount of light varies, the amplitude of the almost triangular electrical signal obtained by each light receiving element will vary, causing problems in later electrical processing, especially in the generation of counting pulses. . Therefore, in the conventional device, as shown in FIG. 1, between the light source 5, the collimating lens 6 in the optical path of the light receiving element 7, and the movable school 1, the total light amount corresponding to each of the light receiving elements 7a, 7b, 7c, and 7d is Adjustment screws 9a, 91), 9c, and 9d are provided for adjustment, and by moving these four adjustment screws 9a, 9b, 9c, and 9d in and out as appropriate, the light passing through the collimating lens 6 can be adjusted. The total amount of light is controlled and adjusted, and the four light receiving elements 7a, 7b, 7c,
The amount of light directed to 7d is made uniform. However, in the conventional device that controls and adjusts the light intensity by moving the adjustment screw 9 in and out, C has to reduce the screw diameter and narrow the pitch of the screw when making fine adjustments.
However, there are limits to the thread diameter and thread pitch in terms of processing and mounting, and since the mounting positions of the screws 9 are located opposite to each other, adjustment work is troublesome.
さらに、調整後は、調整ネジ9が移動しないように一般
的に接着剤により強固に固着してしまうため、装置の分
解、修理時には、調整ネジ9を再度調整することが出来
なくなる。また、さらに、装置の小型化および光路を出
来る丈短かくして消費電流を小さくじりいという要望か
ら、調整ネジ9をコリメートレンズ6に近接しで設けを
場合、うつかりして調整ネジ9を回しすぎてコリメート
レンズ6に当接しでしまいレンズ6にキズを付けCしま
5といったことも生じかねなかつそ。Furthermore, after adjustment, the adjustment screw 9 is generally firmly fixed with adhesive to prevent it from moving, so it becomes impossible to adjust the adjustment screw 9 again when disassembling or repairing the device. Furthermore, due to the desire to downsize the device and shorten the optical path to reduce current consumption, when the adjustment screw 9 is installed close to the collimating lens 6, it is necessary to turn the adjustment screw 9 in turn. If it is too close, it may come into contact with the collimating lens 6 and cause scratches on the lens 6, resulting in C-stripes.
本発明は係る上記の入点1C鑑みなされtもので、受光
素子への光量の調整を、調整ネジにかえで液晶セルより
なる光制御板にで行えるようにすることによって、光量
の微調整制御、調整作業の容易化、再調整操作を可能と
し、さらに信頼性を向上し全光電変換装置の提供を目的
としたものである。The present invention has been made in view of the above-mentioned point 1C, and by making it possible to adjust the amount of light to the light receiving element using a light control plate made of a liquid crystal cell instead of an adjustment screw, fine adjustment control of the amount of light, The purpose is to facilitate adjustment work, enable readjustment operations, and further improve reliability, thereby providing a complete photoelectric conversion device.
上記の目的を達成するkめの本発明の要旨とするところ
は、前掲の特許請求の範囲に掲記した通りである。The gist of the kth aspect of the present invention that achieves the above object is as set forth in the claims above.
つぎに、本発明の好適な実施例について、第2図星下の
図面を参照して詳細に説明する。Next, a preferred embodiment of the present invention will be described in detail with reference to the drawings below the star in FIG.
尚、第1図と同一の部分には同一の符号を付して説明を
省略する。Incidentally, the same parts as in FIG. 1 are given the same reference numerals, and the description thereof will be omitted.
第2図は本発明の光電変換装置の分解斜視図で、1はパ
ターン2を備えた移動スケール、3は複数のパターン4
(図では四つのパターン4a、41)、4c。FIG. 2 is an exploded perspective view of the photoelectric conversion device of the present invention, in which 1 is a moving scale equipped with a pattern 2, 3 is a moving scale with a plurality of patterns 4
(Four patterns 4a, 41 in the figure), 4c.
71d)を備えを固定スケール、5は光源、6はコリメ
ートレンズ、7は基板8上に設けら;l’L /):受
光素子で、固定スクール3のパターン4a、4b、4C
14dに対応しく四一つの受光素子7a、71)、7C
17dから構成さ7tでいる。符号10は本発明の要部
である光制御板である。この光制御板1Dは第6図に示
し先ように上Fのガラス基板11.120間に液晶物質
1ろをサンドイッチし、さらに上下ガラス基板11.1
2を偏光板14.15によりサンドインチして印加電圧
の大きさにより光の透過量を制御するようにした公知の
液晶セルよりなり、四つの受光素子7a、71)、7c
、7dへの光量をそれぞれ独立しで制御するため、四つ
のセグメント10a 、 10b 、 10c、10
dに分割されている。尚、第2図では、この光制御板1
0をコリメートレンズ6と移動スケール1との間に設け
であるが、光源5から受光素子7までの光路内の任意の
位置に設けてやっても勿論よい。71d) is provided with a fixed scale, 5 is a light source, 6 is a collimating lens, 7 is provided on a substrate 8; l'L/): Light receiving element, fixed school 3 patterns 4a, 4b, 4C
Four light receiving elements 7a, 71), 7C correspond to 14d.
It is composed of 17d and 7t. Reference numeral 10 is a light control plate which is a main part of the present invention. As shown in FIG. 6, this light control plate 1D has a liquid crystal material 1 sandwiched between the upper glass substrates 11.120, and further has upper and lower glass substrates 11.1.
2 is sandwiched between polarizing plates 14 and 15 to control the amount of light transmitted by the magnitude of the applied voltage, and the four light receiving elements 7a, 71), 7c
, 7d, the four segments 10a, 10b, 10c, 10
It is divided into d. In addition, in FIG. 2, this light control plate 1
0 is provided between the collimating lens 6 and the moving scale 1, but it may of course be provided at any position within the optical path from the light source 5 to the light receiving element 7.
このような構成において、光制御板10の各セグメント
10a、 10b、 10c、10dへの印加電圧
をそれぞr制御することにより、移動スケール1の/く
ターン2と固定スケール3の各ノくターン4a、4b、
71IC14dの明部分同志が重なっkときの、各受光
素子7a、7b、7C17dの受ける光量を容易に等し
くすることが出来る。In such a configuration, by controlling the voltage applied to each segment 10a, 10b, 10c, and 10d of the light control plate 10, each turn 2 of the moving scale 1 and each turn of the fixed scale 3 can be controlled. 4a, 4b,
When the bright portions of 71IC14d overlap, the amount of light received by each of the light receiving elements 7a, 7b, and 7C17d can be easily made equal.
つぎに本発明よりなる光電変換装置を、−例としC長さ
測定装置の検出ユニットで応用した場合について第4図
を参照して説明する。尚、第4図において、第2図と同
一の部分については同一の符号を付して説明を省略する
。Next, an example in which the photoelectric conversion device according to the present invention is applied to a detection unit of a C length measuring device will be described with reference to FIG. Incidentally, in FIG. 4, the same parts as in FIG. 2 are given the same reference numerals, and the explanation thereof will be omitted.
第4図は長さ測定装置の検出ユニットへの側面図で、2
0は検出ユニットAのベースブロック、21はこのベー
スブロック20に強固に結合したステムである。22は
プランジャで、一端側はステム21によって支持され、
他端側はこのプランジャ22K −し入れにかえて、光
制御板の各セグメントへの印加電圧の調整で行なえるよ
うにしたため、光量の微調整制御かり能となり、また、
印加電圧の調整部材も光制御板と離れた位置でしかも同
一方向に配設出来るため、その調整作業も容易となるk
め作業性が向上する。また、分解組立時における光量の
再調整時においでも、光制御板自体を直接操作すること
なく、光路外に設けそ調整部材を操作することによって
光量調整が可能となるなど、その実用上の効果は極めて
大なるものである。Figure 4 is a side view of the detection unit of the length measuring device.
0 is a base block of the detection unit A, and 21 is a stem firmly connected to this base block 20. 22 is a plunger, one end of which is supported by the stem 21;
The other end can be adjusted by adjusting the voltage applied to each segment of the light control board instead of inserting the plunger 22K, allowing for fine adjustment control of the light amount.
The adjustment member for the applied voltage can also be placed at a distance from the light control board and in the same direction, making adjustment work easier.
This improves work efficiency. In addition, even when readjusting the light intensity during disassembly and reassembly, the light intensity can be adjusted by operating the adjustment member installed outside the optical path, without directly operating the light control board itself. is extremely large.
第1図は従来の光電変換装置の分解斜視図、第2図は本
発明の光電変換装置の分解斜視図、第6図は光制御板の
断面図、第4図は本発明の光電変換装置を長さ測定装置
の検出ユニットに応用しt要部説明図である。FIG. 1 is an exploded perspective view of a conventional photoelectric conversion device, FIG. 2 is an exploded perspective view of a photoelectric conversion device of the present invention, FIG. 6 is a sectional view of a light control plate, and FIG. 4 is a photoelectric conversion device of the present invention. FIG. 2 is a diagram illustrating the main parts of the present invention applied to a detection unit of a length measuring device.
Claims (1)
ールと、この移動スケールに対向し、前記パターンと同
一で、相互に位相のすnた複数のハターンヲ有スる固定
スケールと、この一対のスケールを挾りで、前記移動ス
ケール側に自装置された光源と、前記固定スクール側(
c(置き扛、しかも前記固定スクールに施こさnrt複
数のパターンの各々(C対応した複数の受光素子とを備
えた光電変換装置(でおいて、前記光源から発せらnる
光を、前記移動スクールおよび固定スクールを介しC前
記各々の受光素子により受光さ在る光路内に、前記各々
の受光素子への光量を制御可能な液晶セルよりなる光制
御板を設けたことを特徴とする光電変換装置。A moving scale having a light and dark pattern applied at equal intervals; a fixed scale facing the moving scale having a plurality of patterns that are identical to the pattern and mutually in phase; The scale is held between the light source installed on the moving scale side and the fixed school side (
A photoelectric conversion device (with a plurality of light-receiving elements corresponding to each of the plurality of patterns applied to the fixed school), in which the light emitted from the light source is A photoelectric conversion characterized in that a light control board made of a liquid crystal cell capable of controlling the amount of light to each of the light receiving elements is provided in the optical path through which light is received by each of the light receiving elements C through the school and the fixed school. Device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11009282A JPS59616A (en) | 1982-06-26 | 1982-06-26 | Photoelectric converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11009282A JPS59616A (en) | 1982-06-26 | 1982-06-26 | Photoelectric converter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59616A true JPS59616A (en) | 1984-01-05 |
Family
ID=14526817
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11009282A Pending JPS59616A (en) | 1982-06-26 | 1982-06-26 | Photoelectric converter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59616A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6130715A (en) * | 1984-07-24 | 1986-02-13 | Yaskawa Electric Mfg Co Ltd | Transmission type optical encoder |
JPS6238029A (en) * | 1985-08-13 | 1987-02-19 | Seiko Epson Corp | Encoder |
JPH02143113A (en) * | 1988-11-25 | 1990-06-01 | Canon Electron Inc | Optical encoder |
CN108895970A (en) * | 2018-07-13 | 2018-11-27 | 重庆理工大学 | A kind of straight-line displacement measuring system based on alternation light field |
CN108895988A (en) * | 2018-07-13 | 2018-11-27 | 重庆理工大学 | One kind being based on the closed angle displacement measurement system of alternation light field complete cycle |
CN115854884A (en) * | 2022-11-10 | 2023-03-28 | 郑州轻工业大学 | Nanometer displacement sensor dynamically modulated by twin structure light field and measuring method thereof |
-
1982
- 1982-06-26 JP JP11009282A patent/JPS59616A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6130715A (en) * | 1984-07-24 | 1986-02-13 | Yaskawa Electric Mfg Co Ltd | Transmission type optical encoder |
JPS6238029A (en) * | 1985-08-13 | 1987-02-19 | Seiko Epson Corp | Encoder |
JPH02143113A (en) * | 1988-11-25 | 1990-06-01 | Canon Electron Inc | Optical encoder |
CN108895970A (en) * | 2018-07-13 | 2018-11-27 | 重庆理工大学 | A kind of straight-line displacement measuring system based on alternation light field |
CN108895988A (en) * | 2018-07-13 | 2018-11-27 | 重庆理工大学 | One kind being based on the closed angle displacement measurement system of alternation light field complete cycle |
CN108895970B (en) * | 2018-07-13 | 2020-07-24 | 重庆理工大学 | Linear displacement measurement system based on alternating light field |
CN108895988B (en) * | 2018-07-13 | 2020-07-24 | 重庆理工大学 | Angular displacement measurement system based on complete-circle sealing of alternating light field |
CN115854884A (en) * | 2022-11-10 | 2023-03-28 | 郑州轻工业大学 | Nanometer displacement sensor dynamically modulated by twin structure light field and measuring method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3715165A (en) | Investigating the topography of reflecting surfaces | |
US7684024B2 (en) | Swept-angle SPR measurement system | |
US4297033A (en) | Incremental photoelectric measuring device | |
JPS59616A (en) | Photoelectric converter | |
CN103314280A (en) | Device for forming interference grating on sample | |
JPS63501316A (en) | Phase-controlled incremental distance measurement system | |
JP2780409B2 (en) | Angle detector | |
US3218913A (en) | Method and apparatus for electro-optically aligning a remote object | |
CN110178005A (en) | Optical splitter, analytical equipment and Wavelength variable light source | |
GB2238880A (en) | Optical correction apparatus | |
JPH07110966A (en) | Method and apparatus for measurement of warp of substance | |
EP0310231B1 (en) | Optical measuring apparatus | |
US4044248A (en) | Method and apparatus for linearizing a mirror galvanometer | |
US4808807A (en) | Optical focus sensor system | |
US4151418A (en) | Multiple crystal holder assembly for wavelength dispersive X-ray spectrometers | |
JPH0422261Y2 (en) | ||
CN218409115U (en) | Large-range scanning device for ceilometer | |
EP0151015A2 (en) | Apparatus for sensing strain in a transparent fibre | |
KR100246583B1 (en) | Vertical displacement and level adjusting apparatus of stage | |
RU1781540C (en) | Photoelectric travel converter | |
SU838323A1 (en) | Device for contactless measuring of surface geometric parameters | |
KR100208674B1 (en) | Method for measuring an operation of an actuated mirror array and an apparatus for performming the same | |
SU739384A1 (en) | Device for measuring atmospheric refraction | |
JPH0318720A (en) | Displacement measuring instrument | |
RU1052095C (en) | Device for synthesis of long holographic difraction latices9528,93046246,303 mass balance of sport watercraft according to fuel consumption |