JPS5961488A - Speed controlling method of dc motor - Google Patents

Speed controlling method of dc motor

Info

Publication number
JPS5961488A
JPS5961488A JP57171499A JP17149982A JPS5961488A JP S5961488 A JPS5961488 A JP S5961488A JP 57171499 A JP57171499 A JP 57171499A JP 17149982 A JP17149982 A JP 17149982A JP S5961488 A JPS5961488 A JP S5961488A
Authority
JP
Japan
Prior art keywords
speed
signal
motor
energization
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57171499A
Other languages
Japanese (ja)
Inventor
Takahisa Mihara
隆久 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57171499A priority Critical patent/JPS5961488A/en
Publication of JPS5961488A publication Critical patent/JPS5961488A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/06Arrangements for speed regulation of a single motor wherein the motor speed is measured and compared with a given physical value so as to adjust the motor speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To effectively prevent the variation of the rotating speed of a brushless DC motor by excluding the first rotation detection signal obtained immediately after switching the energization and deenergization from the object of discriminating the conditions of the energization and deenergization. CONSTITUTION:A rotating speed and the phase of a motor M are detected and fed back by a Hall sensor 4 to the speed detector 5. The output signal of the speed detector 5 which receives the reference clock from a reference signal generator 7 is inputted to a drive circuit 6, the phase of the motor M is switched by selecting the drive transistor, the speed signal A from the speed detector 5 is inputted to a pulse inhibit circuit 9, and the timing clock B is inputted to the reference signal generator 7. The ON or OFF signal E of the exciting current is outputted from a comparator 8 which receives the signal D produced by removing the first signal immediately after switching the energization and the deenergization for affecting adverse influence to the speed control of the speed signal A by a pulse inhibit circuit 9 and the reference signal C from a reference signal generator 7 to the drive circuit 6.

Description

【発明の詳細な説明】 (a)発明の技術分野 本発明は、ホールセンサなどのような磁気的な手段でロ
ータの回転を検出してモータの制御を行なう方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a method for controlling a motor by detecting rotation of a rotor using magnetic means such as a Hall sensor.

(b)技術の背景 磁気ディスク装置の小形化のために、磁気ディスク装ぼ
のスピンドルにモータを組み込む方式が増えてきている
。このような小形化を行なうには、ブラシレスの直流モ
ータが適しているが、磁気ディスク装置の記録密度の向
上に伴ってスピンドルモータの速度を一定に制御するこ
とが要求される。
(b) Background of the Technology In order to downsize magnetic disk drives, more and more methods are being used to incorporate a motor into the spindle of a magnetic disk drive. Brushless DC motors are suitable for achieving such miniaturization, but as the recording density of magnetic disk drives increases, it is required to control the speed of the spindle motor at a constant level.

ブラシ式の直流モータは、効率は高いがブラシで整流す
るため、摩耗のほかに火花の発生によるノイズで周辺回
路に悪影響を及ぼず欠点がある。これに対し、ホールセ
ンサでロータの回転を検出してステータの相切り替えと
速度制御を行なう直流モータは、ブラシ式の前記のよう
な問題が解消できる。ところが磁気的に検出するため、
モータのコイルから発生する磁気の影響で検出娯差を生
じる恐れがある。
Brush type DC motors have high efficiency, but because the brushes are used to commutate the current, they have the disadvantage that, in addition to wear, the noise generated by sparks does not adversely affect peripheral circuits. On the other hand, a DC motor that detects the rotation of the rotor using a Hall sensor to perform phase switching and speed control of the stator can solve the above-mentioned problems of the brush type motor. However, since it is detected magnetically,
There is a possibility that detection errors may occur due to the influence of magnetism generated from the motor coil.

(C1従来技術とその問題点 第1図は通常のホールセンサを備えた直流モータで、ス
テータ例の励磁コイル1の外側に、ロータを構成する永
久磁石2が配設され、回転軸3を中心に回転する。4が
ホールセンサで、永久磁石2の磁気を検出できるように
、永久磁石2の付近に配置されている。
(C1 Prior Art and Its Problems Figure 1 shows a DC motor equipped with a normal Hall sensor. Permanent magnets 2 constituting the rotor are disposed outside the excitation coil 1 of the stator example, and the rotating shaft 3 is the center of the motor.) A Hall sensor 4 is arranged near the permanent magnet 2 so that the magnetism of the permanent magnet 2 can be detected.

第2図はこのようなホールセンサを備えた直流モータの
制御方式を示すタイムチャートで、(イ)はモータの1
回転毎に発生するホール出力、(ロ)ハ基111%クロ
ック、(ハ)はモータのコイルに供給される駆動電流、
(ニ)はモータの回転速度をそれぞれ示している。
Figure 2 is a time chart showing the control method of a DC motor equipped with such a Hall sensor.
Hall output generated every rotation, (b) C 111% clock, (c) drive current supplied to the motor coil,
(d) indicates the rotational speed of the motor.

モータの回転速度が遅く、ホールセンサの出力より先に
基準クロックが発生したときは、基準クロックによって
駆動電流がオンし、(ニ)のようにモータの回転速度が
次第に速くなる。次第に加速され、モータのホール出力
が基準クロックより早く発生したときは、ホール出力に
よって駆動電流がオフとなり、(ニ)のようにモータは
次第に減速される。
When the rotation speed of the motor is slow and the reference clock is generated before the output of the Hall sensor, the drive current is turned on by the reference clock, and the rotation speed of the motor gradually increases as shown in (d). When the motor is gradually accelerated and the Hall output of the motor occurs earlier than the reference clock, the drive current is turned off by the Hall output, and the motor is gradually decelerated as shown in (d).

このように従来は、駆動電流のオン・オフで、モータの
速度制御や起動・停止を行なっている。
In this way, conventionally, the speed of the motor is controlled and the motor is started and stopped by turning on and off the drive current.

ボールモーフを正面から見た場合第3図のような構成と
なるため、励磁コイルlが連続して非通電状態であれば
、ボールセンサ4は励磁コイル1から磁気的なノイズは
受けない。非通電状態が続いた後通電状態に切り替わる
際に始めて、励磁コイルから磁気的なノイズを受ける。
When the ball morph is viewed from the front, it has a configuration as shown in FIG. 3, so if the excitation coil 1 is continuously de-energized, the ball sensor 4 will not receive magnetic noise from the excitation coil 1. Magnetic noise is received from the excitation coil only when the device is switched to the energized state after being in the non-energized state.

そのノイズによる誤差のために、誤差の方向性にもよる
が、実際は所定速度まで回転上昇しているにも拘わらず
、所定速度に達していないものと判断し、通電が継続さ
れる。そして誤差成分以上に高速になぜて始めて、所定
速度まで回転上弁したと判断して、非通電に切り替わる
。逆に、通電状態から非通電状態に切り替わった後にも
、励磁コイルから最後に受ける誤差のために、誤差の方
向性によっては、実際は所定速度まで減速しているにも
拘わらず、所定速度まで低下していないものと判断し、
非通電状態が継続される。そして誤差成分以上に減速し
て始めて、所定速度まで減速したと判断して、通電状態
に切り替わる。
Due to the error caused by the noise, it is determined that the rotation has not reached the predetermined speed even though the rotation has actually increased to the predetermined speed, and energization is continued. When the speed is higher than the error component, it is determined that the valve has rotated up to a predetermined speed and is switched to de-energization. Conversely, even after switching from the energized state to the de-energized state, due to the error received from the excitation coil at the end, depending on the direction of the error, the speed may decrease to the specified speed even though it is actually decelerating to the specified speed. It is determined that the
The de-energized state continues. Then, only when the speed has decelerated beyond the error component, it is determined that the speed has been decelerated to a predetermined speed, and the state is switched to the energized state.

このように、通電・非通電が切り替わる際に励磁コイル
から受ける磁気的な誤差の影響で、通電・非通電の切り
替えタイミングが狂い、回転変動が大きくなる。
In this way, due to the magnetic error received from the excitation coil when switching between energization and de-energization, the switching timing between energization and de-energization is out of order, and rotational fluctuations become large.

(d1発明の目的 そこで本発明は、ホールセンサを用いた直流モータにお
りるこのような問題を解決し2、通電・非通電の切り替
え時に起こる検出誤差の影響を受けないようにすること
を目的とする。
(d1 Purpose of the Invention) Therefore, the purpose of the present invention is to solve such problems in DC motors using Hall sensors, and to avoid being affected by detection errors that occur when switching between energization and de-energization. shall be.

(e1発明の構成 この目的を達成するために本発明は、ロータの回転位置
の検出を1周に1回ないし数回行ない、基準発振出力と
の比較により次の1回転の通電・非通電を判別して回転
数を制御する方法において、通電・非通電の切り替えが
行なわれた直後に得られた第1番目の回転検出信号が通
電・非通電の条件判別部に入力されないようにする方法
を採っている。
(e1 Structure of the invention In order to achieve this object, the present invention detects the rotational position of the rotor once or several times per revolution, and determines energization/de-energization for the next rotation by comparing it with a reference oscillation output. In the method of determining and controlling the rotation speed, there is a method for preventing the first rotation detection signal obtained immediately after switching between energization and de-energization from being input to the energization/de-energization condition discriminator. I'm picking it up.

(f)発明の実施例 次に本発明による直流モータの速度制御方法が実際上ど
のように具体化されるかを実施例で説明する。第4図は
直流モータの制御回路を示す図である。Mは直流モータ
で、そのロータの付近にホールセンサ4が配設されて、
モータの相を磁気的に検出すると共に回転速度を検出し
、速度検出回路5にフィードハックする。そして速度検
出回路5の出力信号を、駆動回路6に入力して、駆動ト
ランジスタを選択することにより、モータMの相切り替
えが行なわれる。
(f) Embodiments of the Invention Next, how the method for controlling the speed of a DC motor according to the present invention is actually implemented will be explained by way of embodiments. FIG. 4 is a diagram showing a control circuit for a DC motor. M is a DC motor, and a Hall sensor 4 is installed near its rotor.
The phase of the motor is detected magnetically, the rotational speed is detected, and the detected speed is fed back to the speed detection circuit 5. Then, the output signal of the speed detection circuit 5 is inputted to the drive circuit 6 to select a drive transistor, thereby switching the phase of the motor M.

またホールセンサ4の検出信号が入力した速度検出回路
5から出力する速度信号Aと、基準信号発生器7から出
力する基準信号Cが比較器8に入力する。ただし速度信
号Aは、バルスインヒビソト回路9を介して、検出誤差
を含んでいない速度信号りのみが、比較器8に入力され
る。
Further, a speed signal A outputted from the speed detection circuit 5 into which the detection signal of the Hall sensor 4 is inputted, and a reference signal C outputted from the reference signal generator 7 are inputted to the comparator 8. However, only the speed signal A that does not include a detection error is input to the comparator 8 via the pulse inhibit circuit 9.

第6図は、第4図の制御回路の動作を説明するタイムチ
ャートで、φは基準信号発生器7から出力する基準クロ
ック、Aは速度検出回路5から出力される速度信号、B
は速度検出回路5から出力されるタイミングクロンク、
Cは基準信号発注器7から出力される基準信号、Dは速
度信号Aのうち検出誤差を含んでいない速度信号、Eは
駆動回路6に入力される励磁電流のオン・オフ信号であ
る。
FIG. 6 is a time chart explaining the operation of the control circuit shown in FIG. 4, in which φ is the reference clock output from the reference signal generator 7, A is the speed signal output from the speed detection circuit 5, and B is the reference clock output from the reference signal generator 7.
is the timing clock output from the speed detection circuit 5,
C is a reference signal output from the reference signal ordering device 7, D is a speed signal that does not include detection errors among the speed signals A, and E is an on/off signal of the excitation current input to the drive circuit 6.

従来は速度信号Aは直接比較器8に入力され、基準信号
Cと比較することにより、基準信号Cより早く速度信号
Aが入力すると、モータ速度が速すぎるものと判断して
、次の1回転は励磁コイルを非通電にし、逆に基準信号
Cより遅く速度信号Aが入力すると、モータ速度が遅い
ものと判断と7て、次の1回転は励磁コイルを通電する
というように制御している。
Conventionally, the speed signal A is directly input to the comparator 8, and by comparing it with the reference signal C, if the speed signal A is input earlier than the reference signal C, it is determined that the motor speed is too fast, and the next revolution is stopped. The excitation coil is de-energized, and conversely, if the speed signal A is input slower than the reference signal C, it is determined that the motor speed is slow, and the excitation coil is energized for the next rotation. .

本発明の場合は、速度信号Aを直接比較器8に入力する
のでなく、速度信号へのうち速度制御に悪影響を及ぼず
速度信号をパルスインヒビソト回路9で除去し、Dで示
されるように誤差を含んでいない速度信号のみを比較器
8に入力して、励磁電流のオン・オフの判別に供する。
In the case of the present invention, instead of directly inputting the speed signal A to the comparator 8, the speed signal is removed by the pulse inhibit circuit 9 without adversely affecting speed control, as shown by D. Only the speed signal that does not contain any error is input to the comparator 8, and is used for determining whether the excitation current is on or off.

第5 UIJ ハハルスインヒビント回路9の構成を示
す回路図、第7図はそのインヒビソト動作を示スタイム
チャ−1・である。io、itはモノマルチ回路で、上
側のモノマルチ回路10には、比較器8から出力される
オン・オフ信号Eが直接入力されるが、下側のモノマル
チ回路11には、インバータ12を介して、オン・オフ
信号Eを反転した信号が入力される。そしてオン・オフ
信号Eおよびオン・オフ信号Eの反転された信号は、そ
れぞれモノマルチ回路10,11で設定された長さもの
インヒビット信号Fを発生し、オア回路13を通過する
と共に反転した状態で、アンド回路工4に入力してゲー
ト制御する。このアンド回路14のもう一方の入力端子
には、速度信号Aが入力され、モノマルチ回路10,1
1がら入力するゲート制御信号によって、第6図りで示
されるように、インヒビットされる。
FIG. 7 is a circuit diagram showing the configuration of the fifth UIJ hahalus inhibit circuit 9, and FIG. 7 is a time chart 1 showing its inhibit operation. io and it are mono multi circuits, and the on/off signal E output from the comparator 8 is directly input to the upper mono multi circuit 10, but the inverter 12 is input to the lower mono multi circuit 11. A signal obtained by inverting the on/off signal E is inputted through the inverter. Then, the on/off signal E and the inverted signal of the on/off signal E generate an inhibit signal F with a set length in the monomulti circuits 10 and 11, respectively, and pass through the OR circuit 13 and are in an inverted state. Then, it is input to the AND circuit 4 for gate control. The speed signal A is input to the other input terminal of this AND circuit 14, and the mono multi-circuit 10, 1
1 is inhibited by the gate control signal input from 1, as shown in the sixth diagram.

即ち第7図のようにオン・オフ信号E1が発生してモノ
マルチ回路10に入力すると、設定時間tだけインヒビ
ント信号Fが発生ずるが、それが反転してアンド回路1
4をオフにするため、速度信号Aはアンド回路14を通
過できない。モノマルチ回路10,11は、タイミング
クロックBの1周期より長く、 2周期より短く設定さ
れる。
That is, as shown in FIG. 7, when the on/off signal E1 is generated and input to the monomulti circuit 10, an inhibit signal F is generated for a set time t, which is inverted and input to the AND circuit 1.
4 is turned off, the speed signal A cannot pass through the AND circuit 14. The monomulti circuits 10 and 11 are set to be longer than one cycle of timing clock B and shorter than two cycles.

そのためモノマルチ回路1oがトリガーされてがうil
!初(7)1つ目の速度信号Aのみにインヒビントがか
かる。インヒビット信号がオフとなると、それの反転信
号でアンド回路14がオンし、2つ目の速度信号Aから
はアンド回路14を通過できる。
Therefore, the monomulti circuit 1o is triggered.
! First (7) Only the first speed signal A is inhibited. When the inhibit signal is turned off, the AND circuit 14 is turned on with its inverted signal, and the second speed signal A can pass through the AND circuit 14.

このようにモータ速度が速いとの判断で励磁電流が連続
的にオフした後、規定速度まで減速して励磁電流をオン
にすると、その後の最初の1つ目の速度信号Aはインヒ
ビットされて、通電・非通電の条件判別の対象から除外
される。そのため、速度誤差を招くノイズ成分を含んだ
速度信号は除外され、誤差成分を含むとしても、誤差成
分が規則的に発生ずる2つ目の速度信号から通電・非通
電の条件判別が行なわれる。そのため、励磁コイルから
受ける誤差によるモータ速度の変動が防止される。
After the excitation current is turned off continuously based on the determination that the motor speed is high, when the motor speed is decelerated to the specified speed and the excitation current is turned on, the first speed signal A is inhibited. Excluded from the target of energized/de-energized condition determination. Therefore, a speed signal that includes a noise component that causes a speed error is excluded, and even if it contains an error component, the energization/de-energization condition is determined from the second speed signal in which the error component is regularly generated. Therefore, variations in motor speed due to errors received from the excitation coil are prevented.

また通電状態が続いた後オン・オフ信号Eがオフとなっ
た場合、インバータI2で反転された信号で下側のモノ
マルチ回路11がトリガーされてインヒビソト信号Fが
発生し、その反転信号でアンl:回路14がオフとなる
。そのため前記の場合と同様に、インヒビソト信号が発
生している間だけは、速度信号Aがアンド回路14を通
過できず、通電・非通電の条件判別の対象から除外され
、2つ目以降の速度信号へから比較器8に供給されて、
通電・非通電の判別対象とされる。2つ目以降は、励磁
コイルから磁気の影響を受けたとしても、受ける周期は
一定していて規則性があるので、実質的にロータの位置
検出に誤差をもたらすようなことはない。
In addition, when the on/off signal E turns off after the energization continues, the lower mono multi-circuit 11 is triggered by the signal inverted by the inverter I2 and an inhibit signal F is generated, and the inverted signal l: The circuit 14 is turned off. Therefore, as in the above case, only while the inhibit signal is being generated, the speed signal A cannot pass through the AND circuit 14, and is excluded from the determination of energization/de-energization conditions, and the second and subsequent speeds from the signal to the comparator 8,
It is used to determine whether the power is energized or not. Even if the second and subsequent coils are influenced by magnetism from the excitation coil, the period of the influence is constant and regular, so there is virtually no error in detecting the position of the rotor.

このようにして、インヒビソトされずにアンl:回路1
4を通過した2つ目以降の速度信号りが比較器8に入力
し、基準信号発生器7から入力した基準信号Cと比較さ
れ、次の通電・非通電の判別が行なわれる。そのため、
通電・非通電の切り替え時の誤差を含んだ速度信号に起
因する速度変動が防止され、ホールセンサを利用した速
度制御方式の欠点が解消される。
In this way, circuit 1 can be uninhibited without being inhibited.
The second and subsequent speed signals that have passed through the reference signal generator 7 are input to the comparator 8, and compared with the reference signal C input from the reference signal generator 7, and the next energization/de-energization determination is made. Therefore,
Speed fluctuations caused by speed signals containing errors when switching between energization and de-energization are prevented, and the drawbacks of speed control methods using Hall sensors are eliminated.

(明発明の効果 以上のように本発明によれば、通電・非通電の切り替え
が行なわれた直後に得られる第1番目の回転検出信号を
通電・非通電の条件判別の対象から除外する方法を採っ
ている。そのため以後の回転検出時には、ロータから受
ける磁束と励磁コイルから受ける磁束が一定周期で規則
的に現れるので、ホールセンサは励磁コイルから発生す
る磁束の影響を受4Jでも、励磁コイルの通電・非通電
の切り替えタイミングを狂わす要因とはならず、モータ
の回転速度の変動が確実に防止される。
(Effects of the Invention As described above, according to the present invention, the first rotation detection signal obtained immediately after the switching between energization and de-energization is performed is excluded from the object of determining the energization/de-energization condition. Therefore, when detecting rotation thereafter, the magnetic flux received from the rotor and the magnetic flux received from the excitation coil appear regularly at a certain period, so the Hall sensor is affected by the magnetic flux generated from the excitation coil. This does not cause a change in the switching timing between energization and de-energization of the motor, and fluctuations in the rotational speed of the motor are reliably prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はホールセンサを備えたモータの断面図、第2図
は従来の直流モータの回転制御方式を示すタイムチャー
ト、第3図はホールセンサを備えたモータの正面図、第
4図以下は本発明によるモータの速度制御方法の実施例
を示すもので、第4図は直流モータの制御回路を示す図
、第5図はインヒビット回路を示す図、第6図は制御回
路の動作を示すタイムチャート、第7図はインヒビソト
動作を示すタイムチャートである。 図において、Mは直流モータ、1は励磁コイル、2はロ
ータの永久磁石、4はホールセンサ、5は速度検出回路
、6は駆動回路、8は比較器、9はインヒビソト回路、
10,11はモノマルチ回路、14はアンド回路をそれ
ぞれ示す。
Figure 1 is a cross-sectional view of a motor equipped with a Hall sensor, Figure 2 is a time chart showing a conventional DC motor rotation control system, Figure 3 is a front view of a motor equipped with a Hall sensor, and Figures 4 and below are 4 shows a control circuit for a DC motor, FIG. 5 shows an inhibit circuit, and FIG. 6 shows a timing diagram showing the operation of the control circuit. FIG. 7 is a time chart showing the inhibit operation. In the figure, M is a DC motor, 1 is an excitation coil, 2 is a permanent magnet of the rotor, 4 is a Hall sensor, 5 is a speed detection circuit, 6 is a drive circuit, 8 is a comparator, 9 is an inhibit circuit,
10 and 11 are monomulti circuits, and 14 is an AND circuit, respectively.

Claims (1)

【特許請求の範囲】[Claims] ロータの回転位置の検出を1周に1回ないし数回行ない
、基準発振出力との比較により次の1回転の通電・非通
電を判別して回転数を制御する方法において、通電・非
通電の切り替えが行なわれた直後に得られた第1番目の
回転検出信号が通電・非通電の条件判別部に入力されな
いようにすることを特徴とする直流モータの速度制御方
法。
In the method of controlling the rotation speed by detecting the rotational position of the rotor once or several times per revolution and comparing it with the reference oscillation output to determine whether the next revolution is energized or not, A method for controlling the speed of a DC motor, characterized in that a first rotation detection signal obtained immediately after switching is not input to a energization/de-energization condition determining section.
JP57171499A 1982-09-30 1982-09-30 Speed controlling method of dc motor Pending JPS5961488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57171499A JPS5961488A (en) 1982-09-30 1982-09-30 Speed controlling method of dc motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57171499A JPS5961488A (en) 1982-09-30 1982-09-30 Speed controlling method of dc motor

Publications (1)

Publication Number Publication Date
JPS5961488A true JPS5961488A (en) 1984-04-07

Family

ID=15924227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57171499A Pending JPS5961488A (en) 1982-09-30 1982-09-30 Speed controlling method of dc motor

Country Status (1)

Country Link
JP (1) JPS5961488A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4880474A (en) * 1986-10-08 1989-11-14 Hitachi, Ltd. Method and apparatus for operating vacuum cleaner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4880474A (en) * 1986-10-08 1989-11-14 Hitachi, Ltd. Method and apparatus for operating vacuum cleaner
EP0424364A2 (en) * 1986-10-08 1991-04-24 Hitachi, Ltd. Method and apparatus for operating vacuum cleaner
EP0424363A2 (en) * 1986-10-08 1991-04-24 Hitachi, Ltd. Method and apparatus for operating vacuum cleaner

Similar Documents

Publication Publication Date Title
JP2547061B2 (en) DC brushless motor start rotation control method
EP0802620A1 (en) Method of starting electric machines
US10340826B2 (en) Method of controlling a brushless permanent-magnet motor
US20170310255A1 (en) Method of determining the rotor position of a permanent-magnet motor
US7633251B2 (en) Single-sensor based commutation of multi-phase motor
JPH0732634B2 (en) How to start brushless DC motor
EP0419303A1 (en) A pulse with modulation control system for a motor
JP2005117895A (en) Commutation method for brushless dc motor
JPH07250494A (en) Drive stop device for dc brushless motor
KR880002581B1 (en) Controll circuit of motors
JPS5961488A (en) Speed controlling method of dc motor
JP2002186283A (en) Switched reluctance motor and its drive circuit without sensor
US5512805A (en) Method and apparatus for determining reverse rotation of a polyphase DC motor
JP2660113B2 (en) Sensorless spindle motor control circuit
JPH04197099A (en) Step motor driving system
JP3140073B2 (en) Motor speed detection circuit
JPH08308276A (en) Rotation stop controller for motor
JPH0336237Y2 (en)
JPH05236783A (en) Rotational direction identifying method for two-phase unipolar sensorless motor
JPH0112554Y2 (en)
JP3402700B2 (en) Operating method of brushless motor
JPH05244794A (en) Driving circuit for two-phase unipolar sensorless motor
JPH0271459A (en) Magnetic disk device
JP3217387B2 (en) Fan device
JPH10146083A (en) Controller of switched reluctance motor