JPS5960601A - Device for controlling water supply - Google Patents

Device for controlling water supply

Info

Publication number
JPS5960601A
JPS5960601A JP17137982A JP17137982A JPS5960601A JP S5960601 A JPS5960601 A JP S5960601A JP 17137982 A JP17137982 A JP 17137982A JP 17137982 A JP17137982 A JP 17137982A JP S5960601 A JPS5960601 A JP S5960601A
Authority
JP
Japan
Prior art keywords
water supply
signal
command signal
flow rate
rotation speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17137982A
Other languages
Japanese (ja)
Inventor
Yasushi Eto
衞藤 靖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17137982A priority Critical patent/JPS5960601A/en
Publication of JPS5960601A publication Critical patent/JPS5960601A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/02Arrangements or modifications of condensate or air pumps
    • F01K9/023Control thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Feedback Control In General (AREA)

Abstract

PURPOSE:To obtain a device which can quickly and stably throttle the flow rate of a main water supply at the time of accident of the electricity transmitting and distributing system by providing a means or the like which directly inputs the variation of the main steam pressure of a boiler and drives a feed water pump driving device. CONSTITUTION:A function generator which directly inputs the variation of the main steam pressure of a boiler and outputs a driving signal of a feed water pump driving device and others are provided. At ordinary times, for example, a water supply command signal 20 sent from a device 15 for totally controlling a plant is inputted into a turbine 2 and feed water pump driving device, such as motor, etc., through a PI operator 24 and an operator 28 and the feeding flow rate of a feed water pump 1a is controlled. When the electricity transmitting and distributing system is in trouble, etc., the connection between the PI operator 24 and operator 28 is released and the function generator 32 and the operator 28 are connected to each other, by inputting an FCB generate signal into a switching device 33. Then, the function generator 32 directly inputs the main steam pressure signal 34 of the boiler and outputs a command signal 35 for the number of revolutions of the feed water pump, by which an appropriated feeding water flow rate is discharged at the time of single operation in the station.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は発電プラントにおける給水ポンプを制御するた
めの結水制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a water condensation control device for controlling a feed water pump in a power generation plant.

〔発明の技術的背景〕[Technical background of the invention]

第1図は一般的な発電プラントの構成を示す図である。 FIG. 1 is a diagram showing the configuration of a general power generation plant.

すなわち1!Lはタービン2により駆動される給水ポン
プであり、1bは電動機3により駆動される給水Iンゾ
である。上記給水ポンプ1aおよび1bはそれぞれ復水
器4から復水を吸い込みボイラ5へ給水する。このぎイ
ラ5は、その内部へ燃料タンク6に貯えられた燃料が燃
料ボンf2により送り込まれ、また燃焼用空気が送風フ
ァン8により送り込まれるため、上記燃料を燃焼して上
記給水された水を蒸気に変換する。なおその際に発生し
た燃焼排ガスは!!ε個等の後惜突から排出される。上
記ボイラ5で今生した蒸気は主蒸気量加減弁9により主
蒸気−をシ龜節され、そして主蒸気タービン1oを回転
させたのち、復水器4において循環水ポンfllにより
循環する冷水と熱交換して冷却さ2′l再こr水となっ
て給水ポンプ1aおよび1bに必−コムまねる。上記主
蒸気タービン10の回転は発=機izに伝達され電気を
発生させる。この発電性12において発生した電気はそ
の一部が所内電力として発電所内に供給され、残りが送
軍粛力として電力送配電糸状13に送らねる。
In other words, 1! L is a water supply pump driven by the turbine 2, and 1b is a water supply pump driven by the electric motor 3. The water supply pumps 1a and 1b each suck condensate from the condenser 4 and supply water to the boiler 5. The fuel stored in the fuel tank 6 is fed into the griller 5 by the fuel bomb f2, and the air for combustion is fed by the blower fan 8, so that the fuel is combusted and the supplied water is released. Convert to steam. What about the combustion exhaust gas generated at that time? ! It is ejected from the rear end of ε, etc. The steam currently produced in the boiler 5 is reduced to main steam by the main steam amount control valve 9, and after rotating the main steam turbine 1o, it is transferred to the condenser 4 with cold water and heat circulated by the circulating water pump flll. The water is exchanged and cooled, and the water is recycled and used to feed the water supply pumps 1a and 1b. The rotation of the main steam turbine 10 is transmitted to the generator iz to generate electricity. A part of the electricity generated in the power generating unit 12 is supplied to the power station as in-house power, and the rest is not sent to the power transmission and distribution line 13 as military power.

なお、十F発@@12と電力送配電系統13との、間に
は主しゃ断器14が介在しており、電力送配電系統13
の事故等により送電を中止する必要が失した場合、開放
するように構成されてi、−1#、。
In addition, a main breaker 14 is interposed between the 10th floor station @@12 and the power transmission and distribution system 13, and the power transmission and distribution system 13
i, -1#, is configured to be opened when there is no need to stop power transmission due to an accident or the like.

往来、前Jぢの7!nさ発電グランドにおける給水ボン
7′18は、一般的に第2図の如きブロック図で示ゴね
る絵本制御系により給水流量を制御さねでし、へた。す
なわち、プラント統括卸値1装置d15において、給水
デマンド信号16から発電プラントにおける各給水ポン
プ1aおよび1bの給水流量の合計である主給水流量信
号17を減算した偏差信号18をPI演算器19に入力
し、給水指令信号2oを出力させる。給水制御装置21
は上記給水指令信号2oが入力されることにより、次の
如き演算を行ない給水ポンプ1aの給水流量を制御する
。すなわち、給水指令信号20から給水ボン7011L
の給水流量信号22を減算した偏差信号23をPI演算
器24に入力し、給水ポンプ1aの回転数指令信号25
を出力する。次にこの給水ボン701aの回転数指令信
号25から給水ポンプ1aの実回転数信号26を減算し
た偏差信号27を演算器28に入力し、蒸気量加減弁駆
動指令信号(以下「弁駆動指令信号Jと略す)29を出
力する。
Orai, Mae Jji no 7! The water supply bong 7'18 in the power generation ground generally has its water supply flow rate controlled by a picture book control system shown in a block diagram as shown in FIG. That is, in the plant integrated wholesale value 1 device d15, a deviation signal 18 obtained by subtracting the main water supply flow rate signal 17, which is the sum of the water supply flow rates of each water supply pump 1a and 1b in the power generation plant, from the water supply demand signal 16 is inputted to the PI calculator 19. , outputs the water supply command signal 2o. Water supply control device 21
When the water supply command signal 2o is input, the controller performs the following calculation to control the water supply flow rate of the water supply pump 1a. That is, from the water supply command signal 20 to the water supply bottle 7011L.
The deviation signal 23 obtained by subtracting the water supply flow rate signal 22 is input to the PI calculator 24, and the rotation speed command signal 25 of the water supply pump 1a is
Output. Next, a deviation signal 27 obtained by subtracting the actual rotational speed signal 26 of the water supply pump 1a from the rotational speed command signal 25 of the water supply bong 701a is inputted to the calculator 28, and a steam amount control valve drive command signal (hereinafter referred to as "valve drive command signal (abbreviated as J) outputs 29.

この弁駆動指令信号29により給水機構3oにおける蒸
気量加減弁31が制御され、給水ポンプ1aの給水流量
が調節される。なお電動機3により駆動される給水ボン
f1bを制御する場合は、上述の演算器28から電勲機
の電機子電圧等を制御する所定の信号が出力される。
This valve drive command signal 29 controls the steam amount adjustment valve 31 in the water supply mechanism 3o, and adjusts the water supply flow rate of the water supply pump 1a. Note that when controlling the water supply bottle f1b driven by the electric motor 3, a predetermined signal for controlling the armature voltage and the like of the electric motor is outputted from the above-mentioned arithmetic unit 28.

一般の事業用火力発電グランドでは、タービン2により
駆動される給水ポンプIaが2台、電動機3により駆動
される給水ポンプ1bが1ないし2台設けられており、
その各Wに前述の如き構成の給水制御装置21が付設さ
れている。
In a general commercial thermal power generation ground, two water supply pumps Ia driven by a turbine 2 and one or two water supply pumps 1b driven by an electric motor 3 are installed.
A water supply control device 21 configured as described above is attached to each W.

そして発電グランドに対する負荷に応じ、上記給水ポン
プ1aお上び1bのうちの1ないし2台が運転されてお
り、その各且に付設された給水制御装置21はそれぞれ
プラント統括制御装置a15から出力される給水指令信
号20に追従するような構成となっている。また上記各
給水ポンプ1aおよび1bの給水流量の合計である主給
水流量信号17がプラント統括制御装置15にフィード
バックされることにより、各給水ポンプ1aおよび1b
の相互の協調がとられている。
Depending on the load on the power generation ground, one or two of the water supply pumps 1a and 1b are operated, and the water supply control device 21 attached to each of these pumps receives output from the plant integrated control device a15. The water supply command signal 20 is configured to follow the water supply command signal 20. In addition, the main water supply flow rate signal 17, which is the sum of the water supply flow rates of each of the water supply pumps 1a and 1b, is fed back to the plant integrated control device 15, so that each of the water supply pumps 1a and 1b
Mutual cooperation is being taken.

°ところで、電力送配電系統13の事故等により送電を
中止する必要が生じた場合、主しゃ断器14が開かれ上
記電力送配電系統13を解列すると共に、発電所内の消
費電力のみをまかなうだけの所内単独運転に切替え、下
記電力送配電系統13が回復するまで待機しなければな
らない。そのため、発電所はボイラ5への燃料の供給を
急速に絞るいわゆるPCBを行なうと共に、ボイラ5へ
の主給水流量を急速に絞らなければならない。
By the way, if it becomes necessary to stop power transmission due to an accident in the power transmission and distribution system 13, the main circuit breaker 14 is opened and the power transmission and distribution system 13 is disconnected, and only the power consumed within the power plant is covered. It is necessary to switch to isolated operation within the station and wait until the power transmission and distribution system 13 described below is restored. Therefore, the power plant must perform so-called PCB to rapidly throttle the fuel supply to the boiler 5, and must also rapidly throttle the main water supply flow rate to the boiler 5.

従来、前記所内単独運転への移行時におけるzlPイラ
5への主給水流量制御は、通常運転時と同じく前述した
構成の給水制御装置21にグランド統括制御装置15か
らの給水指令信号2゜が入力されるにとにより行なわれ
ていた。
Conventionally, the main water supply flow rate control to the zlP ira 5 at the time of transition to the in-house independent operation is performed by inputting the water supply command signal 2° from the ground general control device 15 to the water supply control device 21 having the above-described configuration, as in normal operation. It was carried out by the

〔背景技術の問題点〕[Problems with background technology]

前述の如く電力送配′亀系統13の事故等により送電を
中止する必要が生じた場合、従来の給水制御装置f 、
? 1では、通常運転時のかなりゆっくりとした負荷変
化に対応した動作を行なうため、PCBと同1袋に制御
するという急激な変化に対応しきれず、したがってPC
Bと同時に行なうベきボイラ5への主給水流量の制御に
若干の時間遅れを生じ、その結果発電プラントの耐久性
を劣化させるという問題がある。また、最近の発”NU
所は変圧運転によりボイラ5への主蒸気圧力を調整して
いるため、PCB発生時の主蒸気圧力の状態によっては
、従来の給水制御装置2ノが作動したのちさらに熟練し
た運転員の判断にによる手動操作介入による主給水流量
の修正等を必要とし、施設管理上の問題があった。
As mentioned above, if it becomes necessary to stop power transmission due to an accident in the power transmission system 13, etc., the conventional water supply control device f,
? 1, because it operates in response to fairly slow load changes during normal operation, it cannot respond to sudden changes such as controlling to the same one bag as the PCB, and therefore the PCB
There is a problem in that there is a slight time delay in controlling the main water supply flow rate to the boiler 5, which is carried out at the same time as B, and as a result, the durability of the power plant is degraded. Also, the recent release “NU
Since the main steam pressure to boiler 5 is adjusted by variable pressure operation at the plant, depending on the state of the main steam pressure when a PCB occurs, the conventional water supply control device 2 may be activated and then the system may be operated at the discretion of a more experienced operator. This posed a problem in facility management, as it required manual intervention to correct the main water supply flow rate.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、前記の如き問題点を除去し、F’CB
発生時において、発電プラントの主蒸気圧力の状態に影
響されることなく、迅速かつ安定に、主給水流量を所内
単独運転に必要な量まで目動的に絞り込むことのできる
給水制御装置を提供することで・ある。
The purpose of the present invention is to eliminate the above-mentioned problems and to
To provide a water supply control device that can quickly and stably reduce the main water supply flow rate to the amount required for isolated operation within a power plant, without being affected by the state of the main steam pressure of a power plant, at the time of occurrence. There is a thing.

〔発明の概要〕[Summary of the invention]

本発明は前記目的を達成するために次の如く構成したこ
とを特徴とする。すなわち、本発明はプラント統括制御
装置から送られた給水指令信号をPI演算器および演算
器を介してタービンや電動機等の給水ポンプ駆動装置の
駆動指令信号に変換する給水制御装置において、上記プ
ラント統括制御装置からの給水指令信号の替りにボイラ
の主蒸気圧力の変化を直接入力して給水ポンプ駆動装置
の駆動信号を出力するための関数発生器を設け、上記P
I演算器の出力端子と上記関数発生器の出力側端子とを
切替装置により自動的に切替えて、いずれか一方を上記
演算器に接続する構成にした。したがって通常はプラン
ト統括制御装置からの給水指令信号を入力し、電力送配
電系統の事故等により発電プラントが所内単独運転に切
替えられた場合において、その後給水流量が上記所内単
独運転における適正な値に絞り込まれるまでの間は、上
記切替装置が自動的に関数発生器側へ切替えられて、ボ
イラの主蒸気圧力の値が直接上記関数発生器により上記
所内単独運転における適正な給水流量を吐出するための
給水ポンプ回転数指令信号に変換される。この給水ポン
プ回転数指令信号に対し給水ポンプの実回転数信号を減
算した偏量信号を上記演算器に入力して給水Iンノ駆動
装置Rの駆動信号を出力するようにしたことを特徴とす
る。
In order to achieve the above object, the present invention is characterized by the following configuration. That is, the present invention provides a water supply control device that converts a water supply command signal sent from a plant general control device into a drive command signal for a water supply pump drive device such as a turbine or an electric motor through a PI computing unit and a computing unit. A function generator is provided to output a drive signal for the feedwater pump drive device by directly inputting changes in the main steam pressure of the boiler instead of the water supply command signal from the control device, and the above P
The output terminal of the I computing unit and the output side terminal of the function generator are automatically switched by a switching device, and either one is connected to the computing unit. Therefore, normally, a water supply command signal from the plant integrated control device is input, and when the power generation plant is switched to on-site isolated operation due to an accident in the power transmission and distribution system, the water supply flow rate is then adjusted to the appropriate value for the above-mentioned on-site isolated operation. Until it is narrowed down, the switching device is automatically switched to the function generator side, and the value of the main steam pressure of the boiler is directly controlled by the function generator to discharge an appropriate flow rate of feed water in the above-mentioned independent operation. is converted into a water supply pump rotation speed command signal. A deviation signal obtained by subtracting the actual rotational speed signal of the water supply pump from the water supply pump rotational speed command signal is input to the arithmetic unit to output a drive signal for the water supply input drive device R. .

〔発明の実施例〕[Embodiments of the invention]

第3図および第4図は本発明の一実施例を説明するため
の図である。なお先に示した第1図および第2図と同一
部分には同一符号を付し、その部分の詳細な説明は省く
FIG. 3 and FIG. 4 are diagrams for explaining one embodiment of the present invention. Note that the same parts as in FIGS. 1 and 2 shown above are given the same reference numerals, and a detailed explanation of those parts will be omitted.

負)3図において32は関数発生器であり、所内単独運
転開始時すなわちぜイラ5への燃料の供給を急速に絞る
いわゆるPCB発生時において、切替装置33により自
動的に演算器28側と接続される構成をなす。なお上記
関数発生器32と演算器28側との接続は給水流量が上
記所内単独運転における適正な値にまで絞り込まれたの
ち開放され、再びPI演算器24と上記演算器28側と
が接続される。
In Fig. 3, 32 is a function generator, which is automatically connected to the computing unit 28 side by a switching device 33 at the start of isolated operation in the station, that is, at the occurrence of a so-called PCB that rapidly reduces the supply of fuel to the generator 5. The configuration is as follows. Note that the connection between the function generator 32 and the computing unit 28 side is opened after the water supply flow rate has been narrowed down to an appropriate value for the above-mentioned in-house independent operation, and the PI computing unit 24 and the computing unit 28 side are connected again. Ru.

上記関数発生器32には、ボイラ5の主蒸気圧力信号3
4を供給し、所内単独運転における適正な給水流量を吐
出させる如き給水ポンプ回転数指令信号35を出力する
関数をあらかじめ与えておく。
The function generator 32 includes a main steam pressure signal 3 of the boiler 5.
4 and outputs a water supply pump rotation speed command signal 35 that discharges an appropriate water supply flow rate in isolated operation within the station is given in advance.

第4図は上記関数の一例を示す図である。すなわち、主
蒸気圧カフ 2 、3 [ATG )のとき給水ポンプ
回転数2700 (rpm 〕、主蒸気圧力18θ、3
[ATG :]のとき給水ポンプ回転数s 9 o O
[rpm :]、主蒸気圧力366 、7 [ATG 
]のとき給水ポング回転数5500Crpm〕に制御す
る如き曲線で示される関数である。
FIG. 4 is a diagram showing an example of the above function. That is, when the main steam pressure cuff 2, 3 [ATG], the water supply pump rotation speed is 2700 (rpm), the main steam pressure is 18θ, 3
When [ATG:], water supply pump rotation speed s 9 o O
[rpm:], main steam pressure 366, 7 [ATG
] is a function shown by a curve such that the water supply pump rotational speed is controlled to 5500 Crpm].

上記切替装置33はPCB発生信号が入力されることに
より関数発生器32と演算器28側とを接続する如く作
動する。また、その後給水流量が所内単独運転における
適正な値にまで絞り込まれたとき、その給水流量信号を
検知して、関数発生器32と演算器28側との接続を開
放し、PI演算器24と演算器28側とを接続する如く
作動する。
The switching device 33 operates to connect the function generator 32 and the arithmetic unit 28 side when the PCB generation signal is input. Further, when the water supply flow rate is subsequently narrowed down to an appropriate value for in-house independent operation, the water supply flow rate signal is detected, the connection between the function generator 32 and the calculator 28 is released, and the PI calculator 24 It operates as if connected to the computing unit 28 side.

次に上記構成の本実施例の作用を説明する。Next, the operation of this embodiment having the above configuration will be explained.

すなわち、通常はプラント統括制御装w15から送られ
た給水指令信号2oを、PI演算器24および演算器2
8を介してタービン2や電動機3等の給水ポンプ駆動装
置を制御することにより、給水ボンf i h (7b
 )の給水流量を制御する。′電力送配電系統13の事
故等により発′「「プラントが所内単独運転に切替えら
れたときは、切替装置33にPCB発生信号が入力され
ることにより、P■演算器24と演算器28側との接続
が開放され、関数発生器32と上記演算器28側とが接
続される。そうすると、関数発生器32はボイラ5の主
蒸気圧力信号34を直接入力し、所内単独運転における
適正な給水流量を吐出させる如き給水ポンプ回転数指令
信号35を出力する。そして、この給水ポンダ回転数指
令信号35から給水ポンプ1a(1b)の実回転数1g
号26′を減棹した偏差信号36を演砕器28に入力す
ることにより、以下Ail述した従来技術と同様の給水
ポンプza(zb)の給水流↑・(制御が行なわれる。
That is, normally, the water supply command signal 2o sent from the plant integrated control unit w15 is sent to the PI computing unit 24 and the computing unit 2.
By controlling the water supply pump driving device such as the turbine 2 and the electric motor 3 through the water supply pump f i h (7b
) controls the water supply flow rate. ``When the plant is switched to in-plant isolated operation due to an accident in the electric power transmission and distribution system 13, the PCB generation signal is input to the switching device 33, and the P■ calculation unit 24 and calculation unit 28 side connection is opened, and the function generator 32 is connected to the arithmetic unit 28 side.Then, the function generator 32 directly inputs the main steam pressure signal 34 of the boiler 5, and ensures proper water supply in isolated operation within the station. A water supply pump rotation speed command signal 35 is output that causes a flow rate to be discharged.Then, from this water supply pump rotation speed command signal 35, the actual rotation speed 1g of the water supply pump 1a (1b) is determined.
By inputting the deviation signal 36 obtained by reducing the signal 26' to the disintegrator 28, the feed water flow ↑.

本実施例においては、上述の如く直接ボイラ5の主蒸気
圧力信号34により給水ボン7’ 1 a(1b)の給
水流量を制御するので、PCBと同時に上記給水流量の
絞り込みがなされ、かつPCB発生時の主蒸気圧力の状
態に拘らず適正な給水制御を行なうことができる。その
後給水流量が所内単独運転における適正な値にまで絞り
込まれたとき、切替装置33がその給水流量信号を検知
して、関数発生器32と演算器28側との接続が開放さ
れ、再びPI演算器24と演算′a28側とが接続され
る。以上の作用により、所内単独運転開始時すなわちP
CB発生時において、迅速に給水流量の絞り込みができ
る。
In this embodiment, as described above, the feed water flow rate of the water supply cylinder 7'1a (1b) is directly controlled by the main steam pressure signal 34 of the boiler 5, so that the feed water flow rate is narrowed down at the same time as the PCB, and the PCB is generated. Appropriate water supply control can be performed regardless of the state of the main steam pressure at the time. After that, when the water supply flow rate is narrowed down to an appropriate value for in-house independent operation, the switching device 33 detects the water supply flow rate signal, the connection between the function generator 32 and the computing unit 28 is released, and the PI calculation is performed again. The unit 24 and the arithmetic operation 'a28 side are connected. Due to the above effects, at the start of isolated operation in the station, that is, P
When CB occurs, the water supply flow rate can be quickly narrowed down.

なお本発明は上述した一実施例に限定されるものではな
い。たとえば、関数発生器32に与えるべき関数は第4
図に示す如きものに限定されるものではなく、給水ボン
fl a (1b )等の機詣の定格により異なるため
実験的に求めるべきものである。また、切替装置33の
制御はPCB発生信号および給水流量信号によらず、他
の信号により制御してもよい。さらに、プラント統括制
御装置#15においてy+クイラ5の主蒸気圧力制御を
行なっている場合には、関数発生器32に上記プラント
統括制御装置15の主蒸気圧力設定値信号を入力しても
よい。また、複数の主蒸気圧力センサから主蒸気圧力信
号を入力し、かつ上記プラント統括制御装置15からの
主蒸気圧力設定値信号をも入力して、そのうち二つの近
似した信号の平均値を関数発生器32に入力して・もよ
い。この場合、いずれかの信号が異常値であっても適正
な給水制御ができ信頼性が向上するという効果がある。
Note that the present invention is not limited to the above-mentioned embodiment. For example, the power function given to the function generator 32 is the fourth
It is not limited to what is shown in the figure, but should be determined experimentally since it varies depending on the rating of the equipment such as the water bottle fl a (1b). Furthermore, the switching device 33 may be controlled not based on the PCB generation signal and the water supply flow rate signal, but also on other signals. Further, when main steam pressure control of the y+ queiler 5 is performed in the plant general control device #15, the main steam pressure set value signal of the plant general control device 15 may be input to the function generator 32. In addition, main steam pressure signals are input from a plurality of main steam pressure sensors, and a main steam pressure set value signal from the plant integrated control device 15 is also input, and the average value of two approximate signals is used to generate a function. It may also be input into the device 32. In this case, there is an effect that even if any of the signals is an abnormal value, appropriate water supply control can be performed and reliability is improved.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、電力送配置M、系統の事故等により発
電プラントが所内単独運転に切替えられた場合において
、切替装置が自動的に関数発生藷側の回路に切替えられ
て、ボイラの主蒸気圧力の値を直接入力することにより
給水ポンダの給水流り土を制御するので、発電プラント
の主蒸気圧力の状Iルに影響されることなく迅速かつ安
定に、主給水流量を所内単独運転に必要な量まで自動的
に絞り込むことができるという効果がある。
According to the present invention, when the power generation plant is switched to in-house isolated operation due to power transmission arrangement M, grid failure, etc., the switching device is automatically switched to the circuit on the function generation side, and the main steam of the boiler is Since the feedwater flow of the water supply ponder is controlled by directly inputting the pressure value, the main feedwater flow rate can be quickly and stably adjusted to independent operation within the plant without being affected by the main steam pressure of the power plant. This has the effect of automatically narrowing down to the required amount.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般的な発電プラントの構成を示す概略図、第
2図は従来の給水制御の一例を示す概略ブロック図、第
3図は本発明の一実施例の構成を示すブロック図、第4
図は同実施例の関数発生器に与える関数の一例を示す図
である。 1aおよび1b・・・給水ポンプ、2・・・タービン、
3・・・電動機、4・・・復水器、5・・・ボイラ、6
・・・燃料タンク、7・・・燃料ポンプ、8・・・送風
ファン、9・・・主蒸気量加減弁、10・・・主蒸気タ
ービン、1ノ・・・循環水ポンプ、12・・・発電機、
13・・・電力送配電系統、14・・・主しゃ断器、1
5・・・プラント統括制御装置、16・・・給水デマン
ド信号、17・・・主給水流量信号、18・・・偏差信
号、19・・・PI演算器、20・・・給水指令信号、
21・・・給水制御装jM 、22・・・給水流量信号
、23・・・偏差信号、24・・・PI演算器、25・
・・回転数指令信号、26・・・実回転数信号、27・
・・偏差信号、28・・・演算器、29・・・蒸気量加
減弁駆動指令信号、3o・・・給水4:A構、31・・
・蒸気量加減弁、32・・・関数発生器、33・・・切
替装置、34・・・生魚気圧力信号135・・・回転数
指令信号、36・・・偏差信号。
Fig. 1 is a schematic diagram showing the configuration of a general power generation plant, Fig. 2 is a schematic block diagram showing an example of conventional water supply control, and Fig. 3 is a block diagram showing the configuration of an embodiment of the present invention. 4
The figure is a diagram showing an example of a function given to the function generator of the same embodiment. 1a and 1b...water supply pump, 2...turbine,
3...Electric motor, 4...Condenser, 5...Boiler, 6
...Fuel tank, 7.Fuel pump, 8.Blower fan, 9.Main steam amount control valve, 10.Main steam turbine, 1..Circulating water pump, 12.. ·Generator,
13...Power transmission and distribution system, 14...Main breaker, 1
5... Plant general control device, 16... Water supply demand signal, 17... Main water supply flow rate signal, 18... Deviation signal, 19... PI calculator, 20... Water supply command signal,
21... Water supply control device jM, 22... Water supply flow rate signal, 23... Deviation signal, 24... PI calculator, 25...
... Rotation speed command signal, 26... Actual rotation speed signal, 27.
... Deviation signal, 28... Calculator, 29... Steam amount control valve drive command signal, 3o... Water supply 4: A structure, 31...
- Steam amount adjustment valve, 32... Function generator, 33... Switching device, 34... Raw fish air pressure signal 135... Rotation speed command signal, 36... Deviation signal.

Claims (1)

【特許請求の範囲】[Claims] プラン)M括制御装置から送られた給水指令信号に対し
て給水流量信号を減τRした偏差信号を第1の給水ポン
プ回転数指令信号に変換するPI演算器と、発電ブラン
ドが所内単狛運転に切替えられたときボイラの主蒸気圧
力の値を入力して上記所内単独運転における適正な給水
流量を吐出するための第2の給水ポンプ回転数指令信号
に変換する関数発生器と、上記第1また1:第2の給水
ポンプ回転@指令信号に対して給−1、ポンプの実回転
数信号を減算した偏差信号を給水ポンプ駆p+装置の駆
動指令信号に変捨する、缶は器と、通常は上記PI演算
器から出力される弔1の給水ポンプ回転数指令信号を上
記演μ≦に送りi′jニー72電プラントが所内革独運
転に切替えらねたのちね水流量が上記所内隼独運転に2
5ける適正な値まで絞り込まれるまでの間は上記関数発
生器から出力される第2の給水?ンプ回転数指令信号を
上記演算器に送るべく回路の切替を自動的に行なう切替
装置とを具備した給水制御装置。
Plan) A PI calculator that converts the deviation signal obtained by reducing the water supply flow rate signal τR from the water supply command signal sent from the M integrated control device into the first water supply pump rotation speed command signal, and the power generation brand is operated in a single station. a function generator that inputs the value of the main steam pressure of the boiler and converts it into a second feed water pump rotation speed command signal for discharging an appropriate feed water flow rate in the station independent operation; In addition, 1: Subtract the actual rotation speed signal of the feed-1 and pump from the second water supply pump rotation @command signal, and convert the deviation signal to the drive command signal of the water supply pump drive p+ device. Normally, the water supply pump rotation speed command signal for the 1st water supply pump output from the PI calculator is sent to the above calculation μ≦. Hayabusa driving 2
Until the value is narrowed down to an appropriate value, the second water supply output from the function generator is used. A water supply control device comprising a switching device that automatically switches a circuit to send a pump rotation speed command signal to the arithmetic unit.
JP17137982A 1982-09-30 1982-09-30 Device for controlling water supply Pending JPS5960601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17137982A JPS5960601A (en) 1982-09-30 1982-09-30 Device for controlling water supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17137982A JPS5960601A (en) 1982-09-30 1982-09-30 Device for controlling water supply

Publications (1)

Publication Number Publication Date
JPS5960601A true JPS5960601A (en) 1984-04-06

Family

ID=15922081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17137982A Pending JPS5960601A (en) 1982-09-30 1982-09-30 Device for controlling water supply

Country Status (1)

Country Link
JP (1) JPS5960601A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617696U (en) * 1979-07-18 1981-02-16
JPS5722687B2 (en) * 1974-01-26 1982-05-14

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5722687B2 (en) * 1974-01-26 1982-05-14
JPS5617696U (en) * 1979-07-18 1981-02-16

Similar Documents

Publication Publication Date Title
US6278262B1 (en) Auxiliary power unit system and method of operating an auxiliary power unit
US5533337A (en) Feed water supply system of power plant
US20070084214A1 (en) Torque control for starling system
RU2608784C2 (en) Method and system for power control in case of at least one aircraft engine failure
JPH0468455B2 (en)
US20100167601A1 (en) Method and apparatus for operation of a marine vessel hybrid propulsion system
US4173124A (en) Boiler feed water pump control systems
KR840001325B1 (en) Turbine control device
KR100362517B1 (en) Full range feedwater control system and method for pressurized water reactor steam generators
JPS5960601A (en) Device for controlling water supply
US8467491B2 (en) Feedwater controller, nuclear power plant and method for controlling feedwater
JPS5956827A (en) Non-utility generator
JPH073166B2 (en) Control method for parallel operation of exhaust gas turbo generator and diesel generator
SE439038B (en) ENGINE CONTROL SYSTEM
US1824692A (en) Electric power system
JP2752980B2 (en) Distributed control system for power plant
US1801133A (en) Power system
JPH07133703A (en) Control method for power generating plant
JP2531755B2 (en) Water supply control device
JPS59201638A (en) Output controller of composite generating plant
CN113605998A (en) Method and system for processing operation fault of power generating unit of thermal power plant
JPS622129B2 (en)
JPS5886322A (en) Controlling device for mechanical stokers of boiler
JPH05125905A (en) Cogeneration equipment
JPH09209712A (en) Load control system for combined cycle plant