JPS5960357A - Method for testing season cracking property of deep drawing product of austenite stainless steel sheet - Google Patents

Method for testing season cracking property of deep drawing product of austenite stainless steel sheet

Info

Publication number
JPS5960357A
JPS5960357A JP57169893A JP16989382A JPS5960357A JP S5960357 A JPS5960357 A JP S5960357A JP 57169893 A JP57169893 A JP 57169893A JP 16989382 A JP16989382 A JP 16989382A JP S5960357 A JPS5960357 A JP S5960357A
Authority
JP
Japan
Prior art keywords
hardness
product
stainless steel
season cracking
cracking property
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57169893A
Other languages
Japanese (ja)
Other versions
JPS6331739B2 (en
Inventor
Katsuo Goto
後藤 勝雄
Nobuo Ishioroshi
石下 伸生
Hitoshi Igarashi
五十嵐 等
Takashi Hoshino
星野 隆資
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Nippon Telegraph and Telephone Corp
Original Assignee
NEC Corp
Nippon Telegraph and Telephone Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Telegraph and Telephone Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57169893A priority Critical patent/JPS5960357A/en
Publication of JPS5960357A publication Critical patent/JPS5960357A/en
Publication of JPS6331739B2 publication Critical patent/JPS6331739B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/204Structure thereof, e.g. crystal structure
    • G01N33/2045Defects

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

PURPOSE:To test simply and quantitatively a season cracking property by evaluating the season cracking property by a product of the magnetized quantity and the hardness of a formed product. CONSTITUTION:If the Griffith's theory is applied on the assumption that the shape of martensite transformation phase is a sheet state of convex lens shape, a crack generation condition is obtained quantitatively as shown in an equation. It is found that the season cracking is caused when the product of the destructing stress sigmac2 and the hardness Hv attains the predetermined number. On the other hand, a residual stress sigma is nearly proportional to half power of magnetized quantity independently to the nickel content of austenite stainless steel. The magnetized quantity is nearly proportional to the martensite transformation quantity, thus the equation means that the product of the magnetized quantity caused by the martensite transformation and the hardness can be used to the evaluation of season cracking property. In the equation, E is the Young's modulus, gamma is the surface energy and (c) is the size of crystal grain.

Description

【発明の詳細な説明】 本発明は、オーステナイト系ステンレス鋼板を冷間深絞
り加工した成形品の時期割れ性試験方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for testing the period cracking resistance of a molded product obtained by cold deep drawing an austenitic stainless steel plate.

一般に、深絞り加工は、圧縮、引張シの複合成形である
ため、材料は複雑な変形様式を示す。このため、オース
テナイト系ステンレス鋼板を冷間深絞シ加工したときは
、加工誘起マルテンサイト変態を生じ、加工硬化、残留
応力増大などの変化が発生し、これらの変化景が特有な
値に達することにニジ時期割れが発生すると考えられて
いる(荒用、住友「ステンレス銅版プレス成形品に発生
する時効割れ」 塑性と加工 vol、 19 no、
205(1978年2月) p、 1.48〜155 
 参照)。しかし、定…:的な相関関係は明確ではない
。また、材料中に水素を含有するときは、鋼中のミクロ
クラック、転位などのような格子欠陥、異相界面などに
水素が集積することによシ払;械的性質を劣化させ、割
れが促進されるとさtしている(長谷用正義監修「ステ
ンレス鋼便覧」 日刊工業新聞社p、 128〜141
  参照)。
In general, deep drawing is a composite forming process of compression and tension, so the material exhibits a complex deformation pattern. Therefore, when an austenitic stainless steel sheet is subjected to cold deep drawing, deformation-induced martensitic transformation occurs, and changes such as work hardening and increased residual stress occur, and these changes reach specific values. It is thought that age cracking occurs in the process (Arayo, Sumitomo, “Age cracking that occurs in stainless steel copper plate press-formed products”, Plasticity and Processing vol. 19 no.
205 (February 1978) p, 1.48-155
reference). However, the definite correlation is not clear. In addition, when hydrogen is contained in the material, it is removed by accumulating in microcracks, lattice defects such as dislocations, and interfaces between different phases in the steel; it deteriorates mechanical properties and promotes cracking. (Supervised by Masayoshi Hase, “Stainless Steel Handbook,” Nikkan Kogyo Shimbun, p. 128-141)
reference).

加工中および加工後に発生する時期割れを阻止すること
は重要な課題であるが、例えば下表に示すような組成の
JIS規格4AS IJ S 304.5(J8304
L等に対する時期剤n、防止対策としては、組成4分と
してのニッケル添加量の高水準化、加工形状の緩和、中
間焼鈍適用による残留応力ならびに加工硬化の低下を図
ること等が行なわ扛ている。
It is an important issue to prevent cracking that occurs during and after processing.
Countermeasures to prevent L, etc., include increasing the amount of nickel added to the composition, relaxing the processed shape, and reducing residual stress and work hardening by applying intermediate annealing. .

(チ) しかし、これらは定性的な方策に留寸り、時期割れ性を
定量的に試験する方法は行なわ扛ていない。このため焼
鋪を行なわない冷間深絞シ加工では、加工後の経時変化
により時期割扛が発生することが多い。
(H) However, these are only qualitative measures, and no method of quantitatively testing the susceptibility to timing has been carried out. For this reason, in cold deep drawing processing that does not involve hardening, period cracking often occurs due to changes over time after processing.

本発明の目的は、上述の事情に鑑み、オーステナイト系
ステンレス鋼の冷間での虚紋り加工における被加工物の
時期割扛発生条件を定量化することにエリ、該発生条件
との比較にエルオーステナイト系ステンレス鋼板深絞シ
成形品の時期割れ性を評価する試験方法を提供すること
にある。
In view of the above-mentioned circumstances, it is an object of the present invention to quantify the conditions under which periodic breakage occurs on a workpiece during cold forming of austenitic stainless steel, and to compare the conditions with the occurrence conditions. The object of the present invention is to provide a test method for evaluating the period cracking resistance of deep-drawn products of eraustenitic stainless steel sheets.

本発明の試験方法は、オーステナイト系ステンレスW4
根を冷間深絞り加工した成形品の磁化−頃と硬さの精に
よって時期割才を性を評価することを特徴とする。
The test method of the present invention is based on austenitic stainless steel W4.
It is characterized by evaluating the age and quality of the molded product obtained by cold deep drawing of the roots based on the magnetization and hardness of the molded product.

次に、本発明について、図面を参照して詳細に説明する
Next, the present invention will be explained in detail with reference to the drawings.

先ず、時期割れ発生条件の定量化について考える。オー
ステナイト系ステンレス鋼板を冷間深絞り加工した成形
品に起こる時期割れtよ、被加工物に誘起されるマルテ
ンナイト変態1.l−+蝕さ、残留応力が特有な値に辻
することに、!:りて発生する。
First, let's consider quantifying the conditions for the occurrence of timing discrepancies. Timing cracks that occur in molded products formed by cold deep drawing of austenitic stainless steel sheets, martenitic transformation induced in the workpiece1. l-+erosion, the residual stress reaches a unique value! : Occurs.

この場合、初期クラックは、マルテンサイト変態相とオ
ーステナイト相界面の引張シ残留応力がマルテンサイト
変態相の周縁に集中して発生し、該引張り残留応力が原
子間の最大応力を′超えるために発生すると考えられる
。従って、初期クラックは、マルテンサイト変態相゛の
周縁に削った方向に発生し、その太きさけマルテンサイ
ト変態相の結晶粒度と同じである。
In this case, the initial crack occurs because the tensile residual stress at the interface between the martensitic transformed phase and the austenite phase is concentrated at the periphery of the martensitic transformed phase, and this tensile residual stress exceeds the maximum stress between atoms. It is thought that then. Therefore, initial cracks occur in the cutting direction of the periphery of the martensitic transformed phase, and their thickness is the same as the crystal grain size of the martensitic transformed phase.

今、マルテンサイト変態相の形状が凸レンズ形の薄板状
であると仮定してグリフイスの理論(石井勇五部 4′
:i[機緘材料学 物性と評価] 日刊工業新聞社 p
、105〜109参照)を応用すると割れ発生条件が定
量的に求められる。ずなわち、グリフイスの理論による
と破かい応力σ。は、σ =L(下−!−>”  、−
−−−−−一−−−−−−−(1)2   c である。ただし、1弓はヤング率、γは表面エネルギ+
 2 c (d結晶粒子の大きさである。これをステン
レス鋼のように破壊が塑性変形を伴なう場合に適用する
ため有効表面エネルギγ′を、γ = pγ  −−−
−−−−−−−(2)とする。ただしpはクラック伝播
に要する塑性変形仕事に関する係数であり、硬さHvに
反比例する量である。従ってKを常数(例えばガラスの
硬さ)として、 と書きかえることができる。そして、(1)式のγの代
シに(2)式のγ′を用い、(3)式を代入して整理す
る。cll−1−1v = ii’jK7/ 4c =
 K’     (4)を得る。ここにに′は同種の材
料ではほぼ同程度の値であり、定数と考えて良い。すな
わち、破壊応力σc11と硬さ■1vの積がある一定数
に達したとき時期割れが発生することがわかる。
Now, assuming that the shape of the martensitic transformation phase is a convex lens-shaped thin plate, we will use Griffith's theory (Isamu Ishii 4'
:i [Mechanical materials science, physical properties and evaluation] Nikkan Kogyo Shimbun p.
, 105-109), the conditions for crack occurrence can be quantitatively determined. According to Griffith's theory, the fracture stress σ. is, σ = L(lower−!−>”, −
-------(1) 2c. However, 1 bow is Young's modulus, γ is surface energy +
2 c (d is the size of crystal grains. To apply this to cases where fracture involves plastic deformation, such as stainless steel, the effective surface energy γ' is expressed as γ = pγ ---
-----------(2). However, p is a coefficient related to the plastic deformation work required for crack propagation, and is an amount inversely proportional to the hardness Hv. Therefore, if K is a constant (for example, the hardness of glass), it can be rewritten as follows. Then, γ' in equation (2) is used as a substitute for γ in equation (1), and equation (3) is substituted for rearrangement. cll-1-1v = ii'jK7/ 4c =
Obtain K' (4). Here, ′ has almost the same value for the same type of materials, and can be considered a constant. That is, it can be seen that period cracking occurs when the product of the fracture stress σc11 and the hardness 1v reaches a certain value.

一方、残留応力σは、オーステナイト糸ステンレス鋼の
ニッケル含有用に関係なく、はぼ磁化量Sのl/2乗に
比例することが実験により確められた。ここに磁化h]
−とは、加工によりマルテンサイト変態を生ずるために
発生した磁性を示す量であり、一定の磁界中に埴いたと
きに6?′(化される鼠である。こ扛は、例えばフエジ
イトスコープによって容易に測定できる。なお、磁化量
−は、マルテンサイト変態−M、にほぼ比例するといわ
11.ている。(lLつて、(4)式は、マルテンサイ
ト票態によυ発生した磁化量と硬さの積が時期割れ性の
評価に使用できることを意味することになる。
On the other hand, it has been confirmed through experiments that the residual stress σ is proportional to the l/2 power of the magnetization amount S, regardless of whether the austenitic thread stainless steel contains nickel. Magnetization h here]
- indicates the amount of magnetism generated due to martensitic transformation during processing, and when it is suspended in a constant magnetic field, 6? '() This can be easily measured using, for example, a fegitoscope.It is said that the amount of magnetization - is approximately proportional to the martensitic transformation -M. , Equation (4) means that the product of the amount of magnetization υ generated by the martensite vote state and the hardness can be used to evaluate the period cracking property.

次に、時ル1割fLが発生する磁化1!1−と硬さの積
(一定値)を求めるために、−例として、板厚が2.5
記のオーステナイト系ステンレス鋼板(SUS304)
を第1図に示すような形状に深絞り加工して、時期割れ
発生個所での硬さと磁化量を測定した。この時の硬さと
磁化量は、第2図で点32として示されている。この点
32を通って硬さと磁化量の積が一定となる曲線31を
引く。この曲線31は時期側杆発生限界曲線であり、図
中右上側が時期割n発生領域である。さらに、安全領域
を求めるために、水素チャージを行って時期割れを促進
させ、発生した時期側杆部の硬さと磁化量を測定した結
果が曲、1g3として示さnている。水素の影響ハ、マ
ルテンサイト相とオーステナイト相界面に拡散集積し、
界面の脆化によりマルテンサイト相をクラックとして顕
在化させる。従って、水素チャージにニジ時期割nが促
進され経時変化による時期割れの主要因と考えられる。
Next, in order to find the product (constant value) of the magnetization 1!1- which generates an hourly 10% fL and the hardness, as an example, if the plate thickness is 2.5
Austenitic stainless steel plate (SUS304)
was deep-drawn into the shape shown in Figure 1, and the hardness and magnetization at the location where periodic cracks occurred were measured. The hardness and magnetization amount at this time are shown as point 32 in FIG. A curve 31 is drawn through this point 32 where the product of hardness and magnetization is constant. This curve 31 is the timing side rod occurrence limit curve, and the upper right side in the figure is the period n occurrence area. Furthermore, in order to find a safe range, hydrogen charging was carried out to accelerate the cracking, and the hardness and magnetization of the produced timing side rod portion were measured, and the results are shown as curve 1g3. The effect of hydrogen is to diffuse and accumulate at the martensite phase and austenite phase interface,
The martensite phase manifests as cracks due to the embrittlement of the interface. Therefore, it is considered that the rainbow timing distribution n is promoted in hydrogen charging and is the main cause of the timing difference due to changes over time.

すなわち、曲線33.1:り左下側の領域では、経時変
化に↓す水素チャージさ扛ても時期側杆が発生しないと
考えて良い。曲線33は、はぼ硬さと磁化量の積が一定
の曲線であり、この一定値は安全率を見た時期割れ評価
基準として使用される。上記磁化量は、例えばフェライ
トスコープによって材料を破壊しないで容易に測定する
ことが可能であるが、硬さは破壊試験によらざるを得な
い。しかし、磁化量および硬さは、材料および加工条件
が定まればそれぞれほぼ一定となり、また後述のように
同一材料では磁化量と硬さの関係はほぼ直線状になるこ
とから、磁化量の6!1]定によって概略の硬さを求め
ることもできる。すなわち、成形品の磁化量を測定し、
この磁化−61から求めた硬さを乗じた値が前記一定値
未満であ扛ば時期割れは発生しないといえる。
That is, in the region on the lower left side of curve 33.1, it can be considered that the timing side bar does not occur even if the hydrogen charge decreases over time. The curve 33 is a curve in which the product of the material hardness and the amount of magnetization is constant, and this constant value is used as a criterion for evaluating timing cracks based on the safety factor. The amount of magnetization can be easily measured using, for example, a ferrite scope without destroying the material, but the hardness must be determined by a destructive test. However, the amount of magnetization and hardness are almost constant once the material and processing conditions are determined, and as described later, the relationship between the amount of magnetization and hardness is almost linear for the same material. !1] Approximate hardness can also be determined by In other words, the amount of magnetization of the molded product is measured,
If the value obtained by multiplying the hardness obtained from this magnetization -61 is less than the above-mentioned certain value, it can be said that no cracking occurs.

次に、5US304Lを用いて第1図に示した形状に深
絞り加工した成形品の各部の磁化量と硬さを求めた結果
を第2図の曲線34と35に示す。
Next, curves 34 and 35 in FIG. 2 show the results of determining the amount of magnetization and hardness of each part of a molded product deep drawn into the shape shown in FIG. 1 using 5US304L.

曲線34は、ニッケル含有量が12.11%のものであ
り、曲線35はニッケル含有−鼠が9.91%のものを
示す。すなわち、成形品の各部所によって磁化量および
硬さが異なるが、その積の最大値はいずれも前記基準値
(曲線33)より小であシ、経時変化によっても時期わ
れを発生しないことがわかる。上記積値が小である程耐
時期割れ性が高いことは勿論であり、この積値に工って
冷間深絞り加工したオーステナイト系ステンレス鋼板の
時期割れ性が試験できる。また、曲線34.35はいず
れもほぼ直線であシ、材料によって磁化量と硬さが一定
の関係になることを示している。
Curve 34 is for a nickel content of 12.11%, and curve 35 is for a nickel content of 9.91%. In other words, although the amount of magnetization and hardness differ depending on each part of the molded product, the maximum value of the product is all smaller than the reference value (curve 33), and it can be seen that no cracking occurs due to changes over time. . It goes without saying that the smaller the above-mentioned product value is, the higher the resistance to aging cracking is, and the aging cracking resistance of an austenitic stainless steel sheet that has been cold deep drawn can be tested based on this product value. Further, curves 34 and 35 are both substantially straight lines, indicating that the amount of magnetization and hardness have a constant relationship depending on the material.

以上のように、本発明においては、加工成形品の磁化量
と硬さの積によって時期割れ性を評価する試験方法を採
用したから、時期割n性を定量的に試験することが可能
となり、多量生産品の信頼性を保鉦する試験法としても
有効である。また、同種材料の磁化量と硬さの関係をあ
らかじめ求めておけば、非破壊試験にLる磁化量の測定
のみで簡便に測定できるから頗る便宜であシ、現場にお
いて容易に試験することが可能である。
As described above, in the present invention, since the test method of evaluating the period crackability by the product of the magnetization amount and the hardness of the processed molded product is adopted, it is possible to quantitatively test the period crackability. It is also effective as a test method to ensure the reliability of mass-produced products. In addition, if the relationship between the magnetization and hardness of similar materials is determined in advance, it can be easily measured by just measuring the magnetization, which is sufficient for non-destructive testing. It is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はオーステナイト系ステンレス鋼板を冷間深絞シ
加工した成形品の一例を示す斜視図、第2図は時期側杆
発生限界および磁化量と硬さの関係を示す図である。 図において、31・・・時期割れ発生限界曲線、:32
・・・時期割れ発生時点での硬さと磁化量を示す点、3
3・・・水素チャージによる割れ発生限界曲線、34 
、 :35・・・被加工物の各部の硬さと磁化(3,の
測定結果を示す曲線。 代理人 弁理士住田俊宗
FIG. 1 is a perspective view showing an example of a molded product obtained by cold deep drawing an austenitic stainless steel plate, and FIG. 2 is a diagram showing the limit of generation of side rods and the relationship between magnetization and hardness. In the figure, 31...Creation limit curve, :32
...A point indicating the hardness and magnetization amount at the time of occurrence of a period crack, 3
3... Crack occurrence limit curve due to hydrogen charging, 34
, :35...Curve showing the measurement results of hardness and magnetization of each part of the workpiece (3). Agent: Toshimune Sumita, patent attorney

Claims (1)

【特許請求の範囲】[Claims] オーステナイト系ステンレス@板を冷間深絞シ加工した
成形品の磁化量と硬さの積によって時期割扛性を評価す
ることを特徴とするオーステナイト系ステンレス鋼板深
絞り成形品の時期割れ性試験方法。
A method for testing the period breakability of deep-drawn austenitic stainless steel sheets, which is characterized by evaluating the period breakability of the molded product obtained by cold deep-drawing an austenitic stainless steel plate by the product of magnetization and hardness. .
JP57169893A 1982-09-30 1982-09-30 Method for testing season cracking property of deep drawing product of austenite stainless steel sheet Granted JPS5960357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57169893A JPS5960357A (en) 1982-09-30 1982-09-30 Method for testing season cracking property of deep drawing product of austenite stainless steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57169893A JPS5960357A (en) 1982-09-30 1982-09-30 Method for testing season cracking property of deep drawing product of austenite stainless steel sheet

Publications (2)

Publication Number Publication Date
JPS5960357A true JPS5960357A (en) 1984-04-06
JPS6331739B2 JPS6331739B2 (en) 1988-06-27

Family

ID=15894911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57169893A Granted JPS5960357A (en) 1982-09-30 1982-09-30 Method for testing season cracking property of deep drawing product of austenite stainless steel sheet

Country Status (1)

Country Link
JP (1) JPS5960357A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100376529B1 (en) * 1998-09-22 2003-06-18 주식회사 포스코 Determination of Aging Crack in Austenitic Stainless Steel Sheets
US8690268B2 (en) 2007-03-06 2014-04-08 Lg Electronics Inc. Laundry treating apparatus
CN104777280A (en) * 2015-04-21 2015-07-15 苏州热工研究院有限公司 Thermal ageing assessment method of cast austenitic stainless steel of CPR1000 nuclear power plant

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348432U (en) * 1986-09-16 1988-04-01

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100376529B1 (en) * 1998-09-22 2003-06-18 주식회사 포스코 Determination of Aging Crack in Austenitic Stainless Steel Sheets
US8690268B2 (en) 2007-03-06 2014-04-08 Lg Electronics Inc. Laundry treating apparatus
CN104777280A (en) * 2015-04-21 2015-07-15 苏州热工研究院有限公司 Thermal ageing assessment method of cast austenitic stainless steel of CPR1000 nuclear power plant

Also Published As

Publication number Publication date
JPS6331739B2 (en) 1988-06-27

Similar Documents

Publication Publication Date Title
Haušild et al. Characterization of strain-induced martensitic transformation in A301 stainless steel by Barkhausen noise measurement
Stefanita et al. Plastic versus elastic deformation effects on magnetic Barkhausen noise in steel
US20100235110A1 (en) Systems and methods to predict fatigue lives of aluminum alloys under multiaxial loading
Ng et al. Study of microstructure, mechanical properties, and magnetization process in low carbon steel bars by Barkhausen emission
Cullity Some problems in X-ray stress measurements
Shibayama et al. An evaluation method for hydrogen embrittlement of high strength steel sheets using U-bend specimens
Nichipuruk et al. A procedure and device for calibration-free determination of residual compression stresses in low-carbon steels deformed by tension
JPS5960357A (en) Method for testing season cracking property of deep drawing product of austenite stainless steel sheet
Benedetti et al. Enhancing plain fatigue strength in aluminum alloys through shot peening: Experimental investigations and a strain energy density interpretation
Nichipuruk et al. Induced magnetic anisotropy in low-carbon steel plates subjected to plastic deformation by stretching
Hama et al. Prediction of work-hardening behavior under various loading paths in 5083-O aluminum alloy sheet using crystal plasticity models
Lindgren et al. Application of a novel type Barkhausen noise sensor to continuous fatigue monitoring
Maeda et al. Experimental verification of the tension-compression asymmetry of the flow stresses of a high strength steel sheet
Povolotskaya et al. Effect of plastic deformation on the magnetic parameters and magnetostriction of the 20GN steel
Li et al. Influence of shot peening on superficial yield strength of spring steel in hard state
Enloe et al. Strain Rate Effect on Martensitic Transformation in a TRIP Steel Containing Carbide-Free Bainite
Busko et al. Application of magnetic noise method to control the mechanical anisotropy of ferromagnetic materials
Sumikawa et al. Stress state dependency of unloading behavior in high strength steels
Suzuki et al. Residual microstress of austenitic stainless steel due to tensile deformation
EP2172763A1 (en) Method of judging fatigue of pressure-resistant member for high-pressure hydrogen
Augustyniak et al. Assessment with mechanical Barkhausen effect of residual stress in grain oriented polycrystalline 3% Si-Fe sheet
Korzunin et al. Effect of mechanical stresses on the magnetic properties of anisotropic electrical steel
Vankudre et al. Effect of in-plane biaxial strain paths on the variation of normal anisotropy and texture of steel sheet
Lazreg et al. Influence of plasticity on magnetic and magnetostrictive behaviors of dual-phase steel
Tsunemi et al. Crystal Plasticity Analysis of Anisotropic Work Hardening Behavior in IF steel