JPS5960259A - A/d conversion system for ultrasonic flaw detection signal - Google Patents

A/d conversion system for ultrasonic flaw detection signal

Info

Publication number
JPS5960259A
JPS5960259A JP57170694A JP17069482A JPS5960259A JP S5960259 A JPS5960259 A JP S5960259A JP 57170694 A JP57170694 A JP 57170694A JP 17069482 A JP17069482 A JP 17069482A JP S5960259 A JPS5960259 A JP S5960259A
Authority
JP
Japan
Prior art keywords
flaw detection
circuit
signal
conversion
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57170694A
Other languages
Japanese (ja)
Inventor
Masuo Onuki
大貫 益夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57170694A priority Critical patent/JPS5960259A/en
Publication of JPS5960259A publication Critical patent/JPS5960259A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Abstract

PURPOSE:To improves S/N with respect to non-cyclic noises by adding a flaw detection signal at each repetition cycle of an ultrasonic pulse to enable an A/D conversion in the overall range of flaw detection. CONSTITUTION:An ultrasonic pulse is transmitted to a material 4 to be inspected via a probe 3 from a transmitting section 2 to perform formations of flaw detection signals from the reflected echo signals thereof through a receiver 5 and detecting amplifier 6. On the other hand, a sonic clock proportional to distance is gated 9 synchronizing the ultrasonic pulse to generate 10 various timing signals hich allows an A/D conversion 11 of the flaw detection signals as command signal. Outputs of the conversion are added 12 at each repetition cycle of the ultrasonic pulse and memorized into a memory 15. The resulting addition output is also added to the preceding value when memorized into the memory 15 through a multiplexer 14. At the same time, the signals to be memorized into the memory 15 are sent to a computer via an interface 16 each time addition is done.

Description

【発明の詳細な説明】 この発明は超音波探傷信号のA/D(アナログ/ディジ
タル)変換方式に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an A/D (analog/digital) conversion method for ultrasonic flaw detection signals.

超音波探傷信号は第1図(a、)に示すような繰り返し
周期τを持つパルス信号で、その典型的なものを図に示
′−jo符号Tで示されるものは送信パルス波形+  
”’1.’2は被検材内部欠陥からの反射エコーパルス
、Bは底面からのエコーパルスヲ示す。
The ultrasonic flaw detection signal is a pulse signal with a repetition period τ as shown in Fig. 1 (a), and a typical one is shown in the figure. The one indicated by the symbol T is the transmission pulse waveform +
``1.'' 2 shows the reflected echo pulse from the internal defect of the test material, and B shows the echo pulse from the bottom surface.

欠陥エコーの処理方法として電子計算機システムを使用
する場合など、パルス信号のA/D変換が必要であるが
現在一般に用いられている方法を第1図〜第3図により
説明する。
A currently commonly used method that requires A/D conversion of a pulse signal when using an electronic computer system as a defect echo processing method will be described with reference to FIGS. 1 to 3.

第1図において、Tは送信パルスt Fl ij第1 
回目の欠陥エコー、F’2は第2回目の欠陥エコー、F
1′は他の第1回目の欠陥エコー、F2′は他の第2回
目の欠陥エコー+B1+B2は第1.第2回目の底面エ
コー、τ目パルスである。探傷波形■の中から■・に示
す欠陥エコーのみをゲート信号■によって抽出した後、
ザンプルボードによりパルス信号の尖頭値に比例する信
号■変換する。次にA/Dコマンド信号のによりA/D
変換を行う。しかしこの方法はゲート内の尖頭値のみが
出力されるだめ。
In FIG. 1, T is the transmission pulse t Fl ij first
The second defect echo, F'2 is the second defect echo, F
1' is another first defective echo, F2' is another second defective echo +B1+B2 is the first. This is the second bottom echo, the τth pulse. After extracting only the defect echo shown in ■ from the flaw detection waveform ■ using the gate signal ■,
A sample board converts the signal proportional to the peak value of the pulse signal. Next, the A/D command signal
Perform the conversion. However, this method only outputs the peak value within the gate.

第1図に記号F1′で示すようなレベルの低いエコーは
検出されない欠点がある。
There is a drawback that low-level echoes, such as the one indicated by symbol F1' in FIG. 1, are not detected.

第2図は検出ゲート幅を狭くシ、且つ送信パルス繰り返
1〜周期毎に少しづ\移動させ、それぞれの位置でゲー
トされたエコーをサンプルホールド1、、A/D変換す
るもので、第2図■の如くエコーパルスをイ22ロ、ノ
、二、ホの如くゲートが移動することにより第2図■の
イ22ロ、ハ二、ホの如キゲートエコーが得られ、これ
をサンプルホールドして■とし、これをA/Dコマンド
信号■によってディジタル出力■を得るものである。し
かし、この方法では波形の形状までもA/D変換可能で
あるが、探傷全範囲にわたってA/D変燻を行うにはR
/△RX PRT(R:探傷範囲、△R:IPRT当り
の遅延距離、PRT:  パルス繰り返し周期)の時間
を要し、エコーレベ゛ルの変動が激しい場合は忠実に変
換されない欠点がある。
In Figure 2, the detection gate width is narrowed and moved little by little every cycle from transmission pulse repetition 1, and the gated echoes are sampled and held at each position and A/D converted. As shown in Figure 2 (■), by moving the echo pulse as shown in A22B, No, 2, and E, gate echoes as shown in A22B, H2, and E in Figure 2■ are obtained, which are sampled and held. The digital output (2) is obtained by using the A/D command signal (2). However, although this method allows A/D conversion of even the shape of the waveform, it is difficult to perform A/D conversion over the entire flaw detection range.
/△RX PRT (R: flaw detection range, △R: delay distance per IPRT, PRT: pulse repetition period), and has the disadvantage that it cannot be faithfully converted if the echo level fluctuates significantly.

第3図は第1図と第2図の欠点を補う一方法である。す
なわち第1図のゲートを第3図に示すイ。
FIG. 3 is a method of compensating for the shortcomings of FIGS. 1 and 2. That is, the gate shown in FIG. 1 is shown in FIG.

口、ハ、二、ホの如く時分割し、それぞれのゲートでゲ
ートされたエコーを各ゲート対応のサンプルホールド回
路によジ■の如くエコーの尖頭値に相幽する直流に変換
し、これをA/Dコマンド信号■によりディジタル信号
■にそれぞれ変換される。しかし、この方法はゲートの
細分化の程度によりエコ一群中の各エコーを分離可能と
なるが分割数に応じた回路が必要となる。父、エコーの
波形、までは変換できない欠点がある他、瞬時的ノイズ
に弱い欠点がある。
The echoes gated by each gate are time-divided as shown in (1), (2), and (7), and the echo gated by each gate is converted into a direct current that corresponds to the peak value of the echo as shown in (2) by the sample-hold circuit corresponding to each gate. are converted into digital signals (2) by A/D command signals (2). However, with this method, each echo in a group of echoes can be separated depending on the degree of subdivision of the gate, but a circuit corresponding to the number of divisions is required. In addition to being unable to convert echo waveforms, it also has the disadvantage of being susceptible to instantaneous noise.

この発明は、このような従来の欠点を改善するもので、
以下この発明の一実施例を図面により詳述する。
This invention improves these conventional drawbacks,
An embodiment of the present invention will be described in detail below with reference to the drawings.

第4図はこの発明に係るA/D変給十式を示すもので、
この発明は第3図のゲート分割方式と第1図の単位ゲー
ト方式の特徴を生かし、且つ各繰り返し周期毎の出力を
゛加勢、することにより耐ノイズ性を高めているもので
ある。
Figure 4 shows ten A/D variable feeders according to this invention.
This invention takes advantage of the characteristics of the gate division method shown in FIG. 3 and the unit gate method shown in FIG. 1, and enhances the noise resistance by boosting the output for each repetition period.

すなわち、第4図において超音波探傷波形(a)探傷範
囲を決めるゲート■により、単位距離に対応する音速ク
ロック■をゲートする。この音速クロック0によって作
られた分割ゲートによりエコーを■の如く分割し、高速
A/Dコマンド信号■により順次A/D変換し記憶させ
る。このA/D変換は@で示す如< PRF周期毎にD
1〜Dnのディジタル出力が(8られるが、これらを同
一分割点毎にn周期加算し■を待て2周期性を持たない
ノイズに対するS/N改善を行っている。
That is, in FIG. 4, the ultrasonic flaw detection waveform (a) gate (2) which determines the flaw detection range gates the sonic speed clock (2) corresponding to the unit distance. The echoes are divided as shown in (2) by the division gate created by this sonic speed clock 0, and are sequentially A/D converted and stored using the high speed A/D command signal (2). This A/D conversion is as shown by @<D every PRF cycle.
The digital outputs of 1 to Dn are (8), but these are added n cycles at each same dividing point, and the S/N is improved for noise that does not have periodicity.

第5図はこの発明を具体化した場合の回路系統を示した
ものである。第5図において、(1)はpnp発掘回路
、(2)は送信部、(3)は探触子、(4)は被検材。
FIG. 5 shows a circuit system in which the present invention is embodied. In FIG. 5, (1) is a PNP excavation circuit, (2) is a transmitter, (3) is a probe, and (4) is a material to be tested.

(5)は受信部、 (6)Lli極波増幅回路、(7)
はゲート信号発生回路、(8)は音速クロック発生回路
、(9)はゲート回路、0Qけタイミング信号発生回路
、 11)はA/−D変換回路、02はディジタル加算
回路、03は加算数設定回路、0イ)はマルチプレクサ
、u5)はメモリ回路。
(5) is a receiving section, (6) Lli polar wave amplification circuit, (7)
is a gate signal generation circuit, (8) is a sonic clock generation circuit, (9) is a gate circuit, 0Q timing signal generation circuit, 11) is an A/-D conversion circuit, 02 is a digital addition circuit, 03 is an addition number setting The circuit, 0i) is a multiplexer, and u5) is a memory circuit.

口eはインタフェース回路、■は探傷信号、■は探傷範
囲ゲート信号、■は音速クロック信号、■はA/Dコマ
ンド信号、■は周期ブUのディジタル信号、■は加3’
?−後のディジタル信号である。
E is the interface circuit, ■ is the flaw detection signal, ■ is the flaw detection range gate signal, ■ is the sonic clock signal, ■ is the A/D command signal, ■ is the digital signal of periodic block U, and ■ is the addition 3'
? - later digital signal.

さてP R’F発振回路(1)により送信部(2)カド
ら探触子(3)に送信パルスを供給して被検材(4)に
超音波を投入し、欠陥や底面からの反射エコーを受信部
(5)によシ増幅し、検波および増幅回路(6)によシ
第4図■に示すような探傷波形を得る。一方P RF発
振回路(1)のPEPに同期し/ヒゲー1・信号■をゲ
ート信号発生回路(7)により作成し、音速クロック発
生回路(8)により作成した距離に比例した音速クロッ
ク@をゲート回路(9)でゲートし、タイミング信号発
生回路(10)で音速クロック■に同期した各fifj
タイミング信号を発生させる。−A−/D変換回路(1
1)はA/ff)コマンド信号のにより検波増幅回路(
6)からの受信信号を時分割にA/D変換する。上記A
 7/D変換回路(11)によりV4Iられたディジタ
ル信号@は繰り返し周期(PRF )毎にディジタル加
算回路α2により加初さり、だ後メモリ回路(15)に
記憶される。
Now, the P R'F oscillator circuit (1) supplies transmitting pulses to the transmitter (2) and corner probe (3) to inject ultrasonic waves into the material to be inspected (4), detecting defects and reflections from the bottom surface. The echo is amplified by the receiver (5), and the detection and amplification circuit (6) obtains a flaw detection waveform as shown in FIG. On the other hand, in synchronization with the PEP of the P RF oscillation circuit (1), the gate signal generating circuit (7) generates a signal 1, and the sonic clock generated by the sonic clock generating circuit (8) generates a sonic clock @ proportional to the distance. Each fifj is gated by the circuit (9) and synchronized with the sonic clock ■ by the timing signal generation circuit (10).
Generate timing signals. -A-/D conversion circuit (1
1) is a detection amplifier circuit (A/ff) according to the command signal.
A/D converting the received signal from 6) in a time-division manner. A above
The digital signal @ converted to V4I by the 7/D conversion circuit (11) is added by the digital adder circuit α2 every repetition period (PRF), and then stored in the memory circuit (15).

テイジタル加算回路0力はマルチプレクサ(14)を通
じてメモリ回路(151にWe憶される前の値と加算す
るもので、マルチプレクサ04)は加算回路(12とメ
モリ回路(+!11へのテイジタル信号■を切換えるも
のである。
The digital adder circuit 0 output is used to add the value before being stored in the memory circuit (151) through the multiplexer (14), and the multiplexer 04 adds the digital signal to the adder circuit (12) and the memory circuit (+!11). It is something that can be switched.

加;l敷1−1、加3’?: D設定回路a■により設
定される。こう[7て記1.梧された信号は通常、加算
毎にインターフェース回路(田を通じて計算機に送られ
る。
加;l 1-1, 加3'? : Set by D setting circuit a■. This [7th note 1. The converted signal is usually sent to the computer through an interface circuit (interface) after each addition.

以上述べた如くこの発明のA/D変換方式は縁り返し周
期毎に探傷全範囲のA/D変換が可能であり、王制の傷
°徴を有する。
As described above, the A/D conversion method of the present invention is capable of A/D conversion of the entire flaw detection range in each reversal cycle, and has the flaw characteristics of a monarch system.

(1)超音波パルス波形を再現できる程度に分解能を上
げることができ、目、つ動きの早い現象にも追従できる
(1) The resolution can be increased to the extent that the ultrasonic pulse waveform can be reproduced, and it is possible to follow phenomena that involve rapid eye movements.

f21  A/D変換結果を加算することにより非周期
性ノイズに対するS / Nを改善することができる。
By adding the f21 A/D conversion results, the S/N for non-periodic noise can be improved.

(3)直接前1394機へ高速転送が可能であり、欠陥
の断面像表示等の処理が容易である。
(3) High-speed transfer is possible directly to the previous 1394 machines, and processing such as displaying cross-sectional images of defects is easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は一般に実施されている超音波探傷信号
のA/D変換方式を示す図、第4図はこの発明に係るA
/D変換方式の説明図、第5図はこの発明の装置系統図
である。 図「民(1)はPI’(F発振回路、(2)は送信部、
(3)は探触子、(4)は被検月、(5)は受各部、(
6)は検波・増幅回路、(7)はゲート信号発生回路、
(8)は音速クロッ、り発生回路、(9)はゲート回路
、00)はタイミング信号発生回路、 (II)はA/
D変換回路、θりけディジタル加算回路、α鴫は加算数
設定回路、04はマルチプレクサ、(19はメモリ回路
、 Q61はインタフェース回路である。 代理人 葛野信− 第 11夛 (F)− ■ ■(−率票一一≧f畢−一華一
Figures 1 to 3 are diagrams showing A/D conversion methods of ultrasonic flaw detection signals that are generally implemented, and Figure 4 is an A/D conversion method according to the present invention.
FIG. 5, which is an explanatory diagram of the /D conversion method, is a system diagram of the device according to the present invention. Figure ``Private (1) is the PI' (F oscillation circuit, (2) is the transmitter,
(3) is the probe, (4) is the test month, (5) is the receiving part, (
6) is a detection/amplification circuit, (7) is a gate signal generation circuit,
(8) is a sonic clock generation circuit, (9) is a gate circuit, 00 is a timing signal generation circuit, (II) is an A/
D conversion circuit, θ rike digital addition circuit, α sushi is addition number setting circuit, 04 is multiplexer, (19 is memory circuit, Q61 is interface circuit. Agent Makoto Kuzuno - 11th unit (F) - ■ ■ (-11 rate votes ≧f-11

Claims (1)

【特許請求の範囲】 単位距離に対応する周期をもつ音速クロックを発生する
音速クロック発生回路と、とのPRF発据回路の出力に
より探触子に送信パルスを供給する送信部と、上記探触
子にょ9被検拐へ超音波を入射した後、被検材の欠陥、
底面からの反射エコーを上記探触子を介して受信し、そ
れを検波および増幅して探傷信号を得る検波、増幅回路
と、±8+’、PRF発振回路のパルス繰知し周波数に
同期してゲートイδ号を発生するゲート信号発生回路と
。 上RLゲート信号により音速クロックをゲートするゲー
ト回路と、このゲート回路の出方を入力して上記音速ク
ロックに同期し/ヒタイミング信号を発生°ノーるタイ
ミング信号発生回路と、上記検波、増幅回路によりイU
られた探傷信号を上記タイミング信号によりAl1)変
換するA/D変換回路とを備え、上記A / I)変換
回路にょシディジタル信号に変換されだ探傷信号を上記
タイミング信号に従って予め設定した加算数1で加算し
た後、それを記憶するとともに加算周期ごとに計3’p
、 U!&シスデムへ転送することを特徴とする超音波
探傷信号のA/D変換方式。
[Scope of Claims] A sonic clock generation circuit that generates a sonic clock having a period corresponding to a unit distance; After injecting ultrasonic waves into the material to be tested, defects in the material to be tested,
A detection and amplification circuit that receives the reflected echo from the bottom via the probe, detects and amplifies it to obtain a flaw detection signal, and a detection and amplification circuit that receives the reflected echo from the bottom surface via the probe and detects and amplifies it to obtain a flaw detection signal. A gate signal generation circuit that generates a gate signal δ. A gate circuit that gates the sonic clock using the upper RL gate signal, a timing signal generation circuit that inputs the output of this gate circuit and generates a timing signal in synchronization with the sonic clock, and the detection and amplification circuit described above. By IU
and an A/D conversion circuit that converts the detected flaw detection signal into a digital signal according to the timing signal, and the flaw detection signal that has been converted into a digital signal by the A/I) conversion circuit is added to a preset addition number 1 according to the timing signal. After adding, it is memorized and a total of 3'p is added every addition period
, U! & An A/D conversion method for ultrasonic flaw detection signals that is transferred to the system.
JP57170694A 1982-09-29 1982-09-29 A/d conversion system for ultrasonic flaw detection signal Pending JPS5960259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57170694A JPS5960259A (en) 1982-09-29 1982-09-29 A/d conversion system for ultrasonic flaw detection signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57170694A JPS5960259A (en) 1982-09-29 1982-09-29 A/d conversion system for ultrasonic flaw detection signal

Publications (1)

Publication Number Publication Date
JPS5960259A true JPS5960259A (en) 1984-04-06

Family

ID=15909661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57170694A Pending JPS5960259A (en) 1982-09-29 1982-09-29 A/d conversion system for ultrasonic flaw detection signal

Country Status (1)

Country Link
JP (1) JPS5960259A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02132367A (en) * 1988-11-14 1990-05-21 Hitachi Constr Mach Co Ltd A/d conversion processing system of ultrasonic measuring instrument
JP2008031812A (en) * 2006-08-01 2008-02-14 Shin Nikkei Co Ltd Crescent and sash with crescent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02132367A (en) * 1988-11-14 1990-05-21 Hitachi Constr Mach Co Ltd A/d conversion processing system of ultrasonic measuring instrument
JP2008031812A (en) * 2006-08-01 2008-02-14 Shin Nikkei Co Ltd Crescent and sash with crescent

Similar Documents

Publication Publication Date Title
US4866986A (en) Method and system for dual phase scanning acoustic microscopy
GB1133519A (en) Material tester
US3872715A (en) Ultrasonic pulse-echo gate circuit
JPH01248053A (en) Ultrasonic measuring method and apparatus
US4084148A (en) Object recognition system
CA1103489A (en) Digital type ultrasonic holography apparatus
GB1489999A (en) Methods of ultrasonic testing
NL110770C (en)
JPS5960259A (en) A/d conversion system for ultrasonic flaw detection signal
JPS61278758A (en) Ultrasonic test apparatus for nondestructive material test
US4875372A (en) Echo cancellation system
US3512125A (en) Underwater acoustic telemetering system
CA1249656A (en) Ultrasonic transmitter/receiver
JPH0139557B2 (en)
JP2728265B2 (en) Equipment for measuring the thickness of objects with coatings
JP2812688B2 (en) Measuring method of thickness of coated object
JP2631783B2 (en) Ultrasound imaging equipment
JPS6082855A (en) Ultrasonic flaw detecting apparatus
SU1350603A1 (en) Ultrasonic flaw detector
JP2801997B2 (en) Tidal current measurement method
JPS6020007Y2 (en) Analog signal time width changing device
US5291786A (en) Ultrasonic microscope
Li et al. An acoustic injection test object for colour flow imaging systems
SU728077A1 (en) Device for ultrasonic flaw detector for multitone recording fields
JPS6017354A (en) Ultrasonic flaw detector